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Abstract—Current inertia estimation methods aim at determining 
a mass or inertia parameter of an underlying power system model 
by using bus frequency and real power output from PMU time 
series data. However, this neglects the fact that t inertial response 
depends of other processes within the grid andhe the power plant 
control systems. This becomes especially important under the 
presence of governor dynamics and even more difficult during 
periods of automatic generation control (AGC) operation. 
However, due to the turbine governor's time constants being 
longer, it is hypothesized that the effect of certain low-frequency 
dynamics can be filtered out of the frequency domain in the 
ambient data to obtain an inertial response across a specific 
timescale. An investigation of this hypothesis is presented in this 
work, aiming to give insight on the frequency range where the 
filtering can be applied. Furthermore, this work aims to extend 
the concept of inertia as a constant parameter to a frequency 
domain inertial response when attempting to estimate the inertia 
of a power plant. Simulations are performed using a nonlinear 
model of a single-machine system under ambient load 
perturbations and comparisons drawn to estimates obtained from 
an event.    

Index Terms—Inertial response, Synchrophasors, Wide area 
monitoring 

I. INTRODUCTION 
With the increasing penetration of renewable generation 

coupled with conventional generation retirements, power 
system stability has become a major concern. This is due to an 
overall reduction in system inertia which plays the role of 
arresting the frequency changes following major disturbances. 
Another issue that exacerbates this condition is the tendency of 
the distributed energy resources to disconnect when under 
abnormal frequencies [1]. Thus, locational inertia, which 
defines the relationship between power imbalance and rate of 
change of frequency (ROCOF), can be used as a metric for 
system dynamic performance. This motivates the need to track 
its values as the system changes. 

Inertia estimation from disturbance data has been studied in 
the literature [2] - [4] and is usually carried out by performing 
inertia estimation using the swing equation. The mechanical 
input to the generator (𝑃𝑃𝑚𝑚) is assumed to be a constant in the 
first few seconds following the event under the assumption that 

𝑃𝑃𝑚𝑚 response is slow. While fairly effective, these approaches 
are limited to event measurement data (i.e. transient or 
ringdown responses) and subsequently cannot be used for 
continuous monitoring/tracking during ambient conditions.  

Given the fact that the power system mostly operates in 
ambient conditions, inertia has traditionally been monitored 
using generator statuses [5]. The first approach proposed in [6] 
for estimating inertia from ambient data involved estimating a 
high order ARMA model between frequency and output power. 
Using the estimated ARMA model, a step response is applied 
to it to mimic a transient event. The resulting synthetic data is 
used to estimate the inertia parameter using conventional event 
data-based approaches. A similar approach is used in [7]. 
Meanwhile, in [8], the authors derive a relationship between the 
inter-area modes and effective inertia utilized for estimation. 
This derivation is obtained from [9] where it is used on large 
disturbance data.  

Overall, previous work assumes that for periods with 
negligible automatic generation control (AGC) and prime 
mover control actions, a linear input-output dynamic model can 
be estimated between generator power output and frequency, 
which inherently has the governor dynamics embedded in it. 
The mechanical input dynamics are a dynamic function of the 
power set point changes, generator speed, and the remote 
frequency signal’s feedback as part of the area control error in 
AGC. Because of this it is also doubtful that the mechanical 
input dynamics can be completely observed and therefore 
embedded by using only the frequency and real power output 
measurements.  The approach in this paper differs from 
previous works in that instead of attempting to estimate those 
dynamics, the goal is to focus on frequency ranges where those 
dynamics are negligible, i.e.  inertia governs the system 
dynamics. This is carried out by quantifying the mechanical 
input dynamics and then determining where they can be 
neglected. Furthermore, this paper explores the idea of defining 
inertia as a frequency domain response defined by a range of 
values as opposed to a single, constant value. 

The paper is organized as follows. In Section II, the inertia 
estimation problem is presented. Then, the problem is 
reformulated in the frequency-domain perspective in Section 
III. In Section IV results obtained are compared against 
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estimates gathered from a synthetic event. Finally, Section V 
discusses how the findings of this work affect future direction 
in this field.  

II. INERTIA ESTIMATION 
Traditionally, the inertial response, or simply the inertia 

constant, is defined as a scalar metric that links power 
imbalance in a system to ROCOF. For a single machine 
system, it can be modeled using the swing equation with 
damping effects ignored, as follows, 

 

𝑀𝑀𝑖𝑖
𝑑𝑑𝑓𝑓𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑚𝑚𝑖𝑖 − 𝑃𝑃𝑔𝑔𝑖𝑖  
(1) 

 
where 𝑀𝑀𝑖𝑖 = the estimated inertia constant metric defined on 
system base 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, 𝑃𝑃𝑚𝑚𝑖𝑖 = input mechanical power, 𝑃𝑃𝑔𝑔𝑖𝑖 = output 
electrical power in p.u. on system base, 𝑓𝑓𝑖𝑖 = frequency of the 
𝑖𝑖𝑡𝑡ℎ generator in per unit on a 60 Hz base. Meanwhile, the 
aggregate inertia constant of an area can then be approximated 
as, 

  𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑡𝑡

 = ∑ 𝑃𝑃𝑚𝑚𝑖𝑖𝑖𝑖 − ∑ 𝑃𝑃𝑔𝑔𝑖𝑖𝑖𝑖  (2) 

 
where 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = weighted average of frequencies in the area and 
𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = area inertial response.  

Traditionally, 𝑃𝑃𝑚𝑚𝑖𝑖 is assumed constant. This is only valid for 
very short periods, i.e. during first-swing dynamics. However, 
under other conditions, when a generator’s speed deviation is 
detected due to power imbalance at the terminals, it drives the 
error signal of the primary frequency controller (i.e. the 
governor system) and other control systems in the turbine to 
adjust 𝑃𝑃𝑚𝑚𝑖𝑖  values and restores the power balance.   

There is also a provision to change the generator power 
output setpoint in the turbine governor system. This is done 
through an outer control loop called the AGC. This is in charge 
of maintaining the overall system frequency, the correct value 
of power interchange between multiple areas, as well as each 
unit’s generation. This is an even slower integral type 
controller and the process is governed by slow timescale 
dynamics.  

 
III. FREQUENCY DOMAIN CHARACTERISTICS FOR INERTIAL 

ESTIMATION 

A. Data 
The first step in inertia estimation is to define areas that can 

be represented by a lumped equivalent inertia, i.e. buses that 
can be aggregated. These are mainly comprised of generators 
that are tightly coupled/coherent.  The 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 in (2) is taken as,  

 
  𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖  𝑖𝑖  (3) 

where the weights (𝑤𝑤𝑖𝑖) are determined according to the 
contribution of each bus/generator in determining the overall 
frequency. Traditionally, 𝑤𝑤𝑖𝑖  is set to 𝐻𝐻𝑖𝑖

∑𝐻𝐻𝑗𝑗
 for generator buses 

and 0 for all other buses. Here it is important to note that 
instead of using 𝑓𝑓𝑖𝑖 measurements directly obtained from phasor 

measurement units (PMU), bus voltage angles (𝜃𝜃𝑖𝑖) are used 
through the relation 𝑓𝑓𝑖𝑖 = 1

2𝜋𝜋×60
𝑑𝑑𝜃𝜃𝑖𝑖
𝑑𝑑𝑡𝑡

. This is because the 
frequency calculations inside a PMU may eliminate faster 
responses in the phase angles crucial for estimation. From (2), 
it is also necessary to measure the total generation in the area. 
Usually, utility companies and transmission systems operators 
prioritize measuring the generating stations before monitoring 
the loads. For this reason, such an assumption is valid.    
B. Frequency Domain Characteristics for Inertia Estimation 

The governing principle behind event-based approaches to 
inertia estimation is that following a large disturbance the 
governor takes a longer time to react (due to its longer time 
constants) than the duration of the event. Therefore, in the first 
few seconds of the data, 𝑃𝑃𝑚𝑚 can be assumed to be a constant 
and equal to 𝑃𝑃𝑔𝑔 at time zero and the frequency response to the 
power imbalance is only impacted by the inertia. This is easily 
estimated using (1). However, in ambient conditions, the 
system is continuously being perturbed. Bearing this in mind 
it is difficult to know when 𝑃𝑃𝑚𝑚 changes and when it does not. 
In those conditions, the overall generator plus frequency 
control system can be modeled as a linear system that enables 
frequency domain analysis.  

For a single machine, taking a Fourier transform of (1) 
results in, 

𝑀𝑀𝑖𝑖(𝜔𝜔)𝑗𝑗𝜔𝜔𝑓𝑓𝑖𝑖(𝜔𝜔) = 𝑃𝑃𝑚𝑚𝑖𝑖(𝜔𝜔) − 𝑃𝑃𝑔𝑔𝑖𝑖(𝜔𝜔) (4) 

where 𝑓𝑓𝑖𝑖(𝜔𝜔),𝑃𝑃𝑚𝑚𝑖𝑖
(𝜔𝜔), and 𝑃𝑃𝑔𝑔𝑖𝑖(𝜔𝜔) are Fourier terms 

corresponding to the frequency value (𝜔𝜔) and not to be 
confused with the power system frequency of ~60 Hz. Here, it 
is important to note that in reality, the generator’s response to 
power imbalance from disturbances cannot be a single, 
constant parameter value 𝑀𝑀𝑖𝑖 as seen in (1) for all types of 
disturbances. Consequently, 𝑀𝑀𝑖𝑖 in (4) is modeled as a 
frequency-dependent term, 𝑀𝑀𝑖𝑖(𝜔𝜔).  

In the existing literature, the single inertia value that is 
reported is one that captures the relationship between 
frequency and power imbalance for ideal (i.e. step type) 
disturbances. These are estimated only leading up to the 
frequency nadir (i.e. the first few seconds) where the plant’s 
response behaves as a high pass filter to eliminate the slow-
moving dynamics in the signals including the effect of 𝑃𝑃𝑚𝑚. 
Here it is important to understand that if the disturbance itself 
is dominantly slow-moving, it is impossible to define such a 
time window. Under these circumstances such analysis is 
better handled in the frequency domain. When extending the 
idea to inertia estimation of a local area inside a larger system, 
even if the initiating power imbalance is a discrete change, it 
does not result in a steplike signature because the tie lines 
respond to such change, and thus are involved in determining 
that area’s frequency. As a result, the value of knowing a single 
number that captures the relationship between the area’s 
ROCOF and a step disturbance dilutes.  

In contrast with existing literature, this work aims to 
characterize the frequency domain inertial response, i.e. a 
range of values that can capture the relationship between 
ROCOF and all possible power imbalances minus the slow 



frequency control loops.  In other words, the values of Mi at 
different ω help understand the behavior of a machine/area’s 
frequency for any given disturbance signature. This also helps 
to explain why different events can give different inertia 
estimates from (1). Moreover, this highlights why it is not 
sufficient to estimate a single inertia value, but rather we must 
determine the inertial response or a range of values that gives 
more insight into the dynamics.  

To understand the frequency content of 𝑃𝑃𝑚𝑚, the typical load 
frequency control dynamics can be modeled as,  

 
𝑃𝑃𝑚𝑚𝑖𝑖

(𝜔𝜔) = 𝐺𝐺𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇(𝜔𝜔)

× �
𝛺𝛺𝑖𝑖𝑖𝑖(𝜔𝜔)
𝑅𝑅

+ 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔)𝑓𝑓(𝜔𝜔)

+ 𝑃𝑃𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖(𝜔𝜔)�  

(5) 

where 𝑃𝑃𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖 = the generator output setpoint change, 𝑅𝑅 gives 
the droop rate, 𝛺𝛺𝑖𝑖  denotes the generator speed, 𝐺𝐺𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇(𝜔𝜔) is the 
lumped turbine and governor transfer function, 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔) is the 
AGC transfer function, and 𝑓𝑓 is the vector of frequencies at all 
buses participating in AGC. Finding upper bound on (5),  

 
�𝑃𝑃𝑚𝑚𝑖𝑖

(𝜔𝜔)� 

≤ �𝐺𝐺𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇(𝜔𝜔)� �
�𝛺𝛺𝑖𝑖𝑖𝑖(𝜔𝜔)�

𝑅𝑅 + |𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔)𝑓𝑓(𝜔𝜔)| + �𝑃𝑃𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖(𝜔𝜔)�� 

≤ �𝐺𝐺𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇(𝜔𝜔)� �
�𝛺𝛺𝑖𝑖𝑖𝑖(𝜔𝜔)�

𝑅𝑅 + ‖𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔)‖‖𝑓𝑓(𝜔𝜔)‖

+ �𝑃𝑃𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖(𝜔𝜔)��.  

(6) 

It is possible to show how the relatively slow nature of the 
dynamics at play determine the time scales of 𝑃𝑃𝑚𝑚𝑖𝑖 , and can 
result in tightly bounding the LHS at higher frequencies:  

1. It is known that the turbine plus governor dynamics are 
relatively slow i.e. ∃𝜔𝜔𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇  𝑠𝑠. 𝑑𝑑. �𝐺𝐺𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇(𝜔𝜔)� ≤
𝜖𝜖𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇 ∀𝜔𝜔 ≥ 𝜔𝜔𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇 for a small number 𝜖𝜖𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇. 

2. The generator speed dynamics 𝛺𝛺𝑖𝑖(𝜔𝜔) are also 
predominantly in the low-frequency range due to the 
stored kinetic energy in the rotating mass that arrests 
fast changes. Thus, ∃𝜔𝜔𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑  𝑠𝑠. 𝑑𝑑. |𝛺𝛺𝑖𝑖(𝜔𝜔)| ≤
𝜖𝜖𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑  𝑠𝑠. 𝑑𝑑.∀𝜔𝜔 > 𝜔𝜔𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑  for a small number 𝜖𝜖𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑 .  

3. The AGC, an integral type of control, results in an even 
slower secondary frequency control loop and response  
i.e. ∃𝜔𝜔𝐴𝐴𝐴𝐴𝐴𝐴  𝑠𝑠. 𝑑𝑑. ‖𝐺𝐺𝐴𝐴𝐺𝐺𝐴𝐴(𝜔𝜔)‖ ≤ 𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴  ∀𝜔𝜔 ≥ 𝜔𝜔𝐴𝐴𝐴𝐴𝐴𝐴  for a 
small number 𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴 .  

4. 𝑃𝑃𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖 is usually changed slowly when ramping the 
generator output to ensure stability. Thus, 
∃𝜔𝜔𝑠𝑠𝑎𝑎𝑡𝑡�𝑃𝑃𝑠𝑠𝑠𝑠𝑑𝑑𝑖𝑖(𝜔𝜔)� ≤ 𝜖𝜖𝑠𝑠𝑎𝑎𝑡𝑡  𝑠𝑠. 𝑑𝑑.∀𝜔𝜔 > 𝜔𝜔𝑠𝑠𝑎𝑎𝑡𝑡  for a small 
number 𝜖𝜖𝑠𝑠𝑎𝑎𝑡𝑡. 

Evaluating (6) at 𝜔𝜔 ≥ 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚 =
max�𝜔𝜔𝑔𝑔𝑇𝑇𝑇𝑇 ,𝜔𝜔𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑 ,𝜔𝜔𝐴𝐴𝐴𝐴𝐴𝐴 ,𝜔𝜔𝑠𝑠𝑎𝑎𝑡𝑡�, 
 

 �𝑃𝑃𝑚𝑚𝑖𝑖
(𝜔𝜔)� ≤ 𝜖𝜖𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇 �

𝜖𝜖𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠
𝑅𝑅 + 𝜖𝜖𝐴𝐴𝐺𝐺𝐴𝐴‖𝑓𝑓(𝜔𝜔)‖ + 𝜖𝜖𝑠𝑠𝑠𝑠𝑑𝑑� . (7) 

From (4), 𝑀𝑀𝑖𝑖(𝜔𝜔) linearly depends on 
𝑃𝑃𝑚𝑚𝑖𝑖(𝜔𝜔)

𝑗𝑗𝜔𝜔𝑓𝑓𝑖𝑖(𝜔𝜔)
. Hence, 

dividing (7) by |𝜔𝜔𝑓𝑓𝑖𝑖(𝜔𝜔)|, 
 
�𝑃𝑃𝑚𝑚𝑖𝑖

(𝜔𝜔)�
�𝜔𝜔𝑓𝑓𝑖𝑖(𝜔𝜔)�

≤
𝜖𝜖𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇

|𝜔𝜔| �
𝜖𝜖𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑
𝑅𝑅�𝑓𝑓𝑖𝑖(𝜔𝜔)�

+
𝜖𝜖𝐴𝐴𝐺𝐺𝐴𝐴‖𝑓𝑓(𝜔𝜔)‖
�𝑓𝑓𝑖𝑖(𝜔𝜔)�

+
𝜖𝜖𝑠𝑠𝑠𝑠𝑑𝑑
𝑓𝑓𝑖𝑖(𝜔𝜔)�. 

(8) 

From the above equation, it can be seen that the upper bound 
given by the RHS is fairly restrictive for higher frequencies. 
Since 𝑃𝑃𝑔𝑔𝑖𝑖(𝜔𝜔) is a function of voltage magnitude and angles, it 
observes both fast and slow dynamics in the system and as 

such, 
�𝑃𝑃𝑚𝑚𝑖𝑖(𝜔𝜔)�

�𝜔𝜔𝑓𝑓𝑖𝑖(𝜔𝜔)�
 becomes almost negligible when compared to 

�𝑃𝑃𝑔𝑔𝑖𝑖(𝜔𝜔)�

|𝜔𝜔𝑓𝑓𝑖𝑖(𝜔𝜔)|
 for 𝜔𝜔 ≥ 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚 . This allows us to approximate (4) by 

the following model to recover a subset of the inertial response 
values in the frequency domain from data, where both 𝑓𝑓𝑖𝑖 and 
𝑃𝑃𝑔𝑔𝑖𝑖  are measured, 

𝑀𝑀𝑖𝑖(𝜔𝜔) = −
𝑃𝑃𝑔𝑔𝑖𝑖(𝜔𝜔)
𝑗𝑗𝜔𝜔𝑓𝑓𝑖𝑖(𝜔𝜔)  ∀𝜔𝜔 ≥ 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚 . 

(9) 

This approach can easily be extended to (2). However, it is 
important to note that the governor effect is significant for 𝜔𝜔 <
𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚  and therefore, without correctly measuring or estimating 
𝑃𝑃𝑚𝑚 from data, the power imbalance and consequently the 
inertial response cannot be estimated. The corresponding 
frequency value in Hz is denoted by 𝐹𝐹𝑚𝑚𝑖𝑖𝑚𝑚 = 𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛

2𝜋𝜋
.   

 
IV. RESULTS 

To illustrate the proposed approach, a one-machine infinite-
bus-test system is used, as shown in Fig. 1. The machine can be 
thought of as an area connected to the rest of the power grid 
(infinite bus). The line connecting the machine to the infinite 
bus has 𝑋𝑋 = 0.1 𝑝𝑝𝑝𝑝. The infinite bus is modeled using a 
classical machine model GENCLS with a high inertia value of 
𝑀𝑀 = 1000 pu on a 100 MVA system base in PSS/E.    

 
Figure 1. Single  machine infinite bus test system 

A load is added to the generator bus, which is perturbed in 
the simulations to emulate events and ambient conditions. This 
unit represents a 771 MVA combined cycle plant extracted 
from the Eastern Interconnection model, and modeled in PSS/E 
using the following models: GENROU— generator, IEEEG1– 
governor, AC7B—exciter, and PSS2B—power system 
stabilizer. The parameters are given in the appendix. The value 



of the generator inertia constant as given in the PSS/E model is 
𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2 × 3.17 × 771

100
= 48.9 pu. Note that 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  cannot be 

confused with the inertia constant defined in (1), which will be 
seen later. 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  mainly represents the stored kinetic energy in 
the spinning mass and satisfies the generator swing equation, 

𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑑𝑑𝛺𝛺
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑔𝑔 − 𝐷𝐷𝛺𝛺 (10) 

where 𝐷𝐷 is a damping coefficient.  

To emulate a generator tripping event inside the area, the 
load at bus 1 𝑃𝑃𝑙𝑙𝑇𝑇𝑎𝑎𝑑𝑑  is stepped up from 0 to 0.5 pu (50 MW). The 
frequency and 𝑃𝑃𝑔𝑔 plots from the steady-state up to the frequency 
nadir at ~0.25s are shown in Fig. 2. It can be seen that the 
generator sees a step increase in loading at its terminal 
immediately following the event. However, this change does 
not stay constant because the unit (area) starts to slow down 
thereby reducing the power flow at the machine’s terminal and 
helps stabilize it. Also, 𝑃𝑃𝑚𝑚 stays fairly constant in that time 
window and thereby the frequency control dynamics are 
eliminated from the estimate. For this particular event, using 
linear regression on (1), 𝑀𝑀 is estimated to be 56.4 pu, which is 
much more than 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . Because of this, the overall generator 
inertial response has an effect of generator controls in addition 
to the mechanical energy. Next, the proposed approach to 
estimate the inertial response over a range of frequency (𝜔𝜔), 
illustrates why the estimated value is valid for a range of 
frequencies.     

 
Figure 2. Synthetic event test data 

 
Figure 3. Synthetic ambient data 

To emulate ambient conditions, the load is modeled as 
white noise with 𝑃𝑃𝑙𝑙𝑇𝑇𝑎𝑎𝑑𝑑~𝑁𝑁(0,0.01) pu 
and 𝑄𝑄𝑙𝑙𝑇𝑇𝑎𝑎𝑑𝑑~𝑁𝑁(0,0.002) pu. The load values are sampled at 
10 Hz. As a result, the ambient perturbation has a flat spectrum 

up to 30 Hz. The frequency and the generator output 𝑃𝑃𝑔𝑔 for a 
20-minute window used for analysis are plotted in Fig. 3. 

To gain better insight into the frequency content that 
various variables underplay and determine the frequency 
response of the generator, the power spectral density (PSD) is 
estimated for 𝑃𝑃𝑔𝑔,𝑃𝑃𝑚𝑚, and 𝑑𝑑𝑓𝑓

𝑑𝑑𝑡𝑡
 in Fig. 4. These PSDs are 

calculated using Welch’s method [10] with an FFT window 
size of 2 minutes, a 50% overlap, and a Hanning window. Note 
that the difference in energy of 𝑃𝑃𝑔𝑔 and 𝑃𝑃𝑚𝑚 signals increases 
significantly beyond 0.5 Hz owing to the slow nature of the 
turbine governor dynamics. Moreover, 𝑃𝑃𝑔𝑔 has higher frequency 
content, this is a result of  𝑃𝑃𝑔𝑔 being influenced by the voltage 
control loop that is affected by the white-noise-type variation 
of the load. This energy difference becomes even wider 
beyond 1.03 Hz. At this point 𝑃𝑃𝑚𝑚 reaches a local maximum and 
begins to roll off. Accordingly, it is safe to assume that the 
proposed model in (9) is valid for estimating the inertial 
response 𝑀𝑀(𝜔𝜔) for 𝜔𝜔 ≥ 2𝜋𝜋 × 1.03  or 𝐹𝐹 ≥ 𝐹𝐹𝑚𝑚𝑖𝑖𝑚𝑚 = 1.03 Hz. 
Another thing to note is that the frequency 𝑓𝑓 = 1

2𝜋𝜋
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

 also has 

high frequency dynamics and therefore 𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

 starts resembling 𝑃𝑃𝑔𝑔 
at those frequencies, which we take advantage of in this work.   
      

 
Figure 4. PSDs 

Since 𝑃𝑃𝑔𝑔 is also influenced by 𝑃𝑃𝑚𝑚 through generator 
mechanical dynamics, 𝑃𝑃𝑔𝑔 also observes the same roll-off and 
allows us to quantify the threshold 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚 from measurements 
to remove the turbine plus governor dynamics from the signals.  
The value of 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚  changes depending on the underlying 
frequency control dynamics in the turbine governor for the 
generators under study. The typical ranges for different plant 
types will be explored in future work.       

 
Figure 5. Inertial response estimates 



Next, 𝑀𝑀(𝜔𝜔) values are estimated from data using the 
proposed model in (9) and plotted in Fig. 5. For comparison, 
the estimates obtained using (4) (assuming full knowledge of 
𝑃𝑃𝑚𝑚) are plotted along with the PSS/E model value (red) and the 
estimate from event data (blue). The first observation is to note 
that 𝑀𝑀(𝜔𝜔) (the actual inertial response values) capture the 
relationship between power imbalance and frequency and 
significantly varies in the frequency domain. This implies that 
depending on the signature of the disturbance seen by the plant, 
different values are obtained. If a disturbance event results in 
the excitation of the frequency in the range of 3-5 Hz, the 
estimated inertia value would be fairly close to that of the step 
change event studied previously.   

It is also evident that 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is lower than the inertial 
response of the unit for disturbances up to 10 Hz. This is also 
the range in which the voltage control loop (AVR and PSS) 
dynamics are active. That is why only taking into account 
generator statuses can significantly underestimate the inertial 
response. For faster disturbances of >8 Hz, the inertial response 
declines steadily, i.e. the generator and its controls stop playing 
a role in frequency regulation.    

Next, it can be seen that beyond 𝐹𝐹𝑚𝑚𝑖𝑖𝑚𝑚 = 1.03 Hz, (when 𝑃𝑃𝑚𝑚 
dynamics start becoming negligible in comparison to 𝑃𝑃𝑔𝑔, as seen 
previously) the 𝑀𝑀(𝜔𝜔) estimates from the proposed model in 
(9), shown in Fig. 5, closely match the ones from the original 
model (4). This confirms that the effect of governor dynamics 
(not accounted for in the inertial response) can be separated.  

V. DISCUSSION AND FUTURE WORK 
It is known that the effect of frequency control in generators 

through the turbine governor imposes a challenge when 
attempting to estimate the inertial response because of the 
variations in the unmeasured input mechanical power. In this 
work, we prove that the effect of these control loops can be 
filtered out in the frequency domain owing to longer time 
constants involved. This is especially helpful for continuous 
monitoring of inertia from ambient data, where unlike event 
data, there is no clear separation of the different control loop 
dynamics or between time windows with and without the 
influence of 𝑃𝑃𝑚𝑚. Additionally, we take a step back and revisit 
the concept of inertial response or inertia as a constant value. 
It is shown that the value estimated depends on the nature of 
the disturbance and consequently, it is better to treat inertia as 
a frequency domain response (e.g. as if it is a transfer function) 
as opposed to a single value.      

For future work, the proposed approach will be tested on 
multi-machine systems with different turbine characteristics, 
governor models, and AGC. Furthermore, tests will be 
performed on real-world PMU data collected from Dominion 
Energy’s synchrophasor network.     
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APPENDIX 
Model – GENROU, Machine Base – 771 MVA 
Parameter Value Parameter Value 
T'do (> 0) 
T''do (> 0) 
T'qo (> 0) 
T''qo (> 0) 
H, Inertia 

D, Speed Damping 
Xd  

3.9580 
0.0290 
0.5400 
0.0530 
3.1710 
0.0000 
1.7080  

Xq 
X'd 
X'q 

X''d = X''q 
Xl 

S(1.0) 
S(1.2) 

1.6360 
0.2760 
0.4610 
0.2320 
0.1840 
0.1060 
0.4530 

 
Model – IEEEG1 

Parameter Value Parameter Value 
K 

T1 
T2 

T3 (> 0) 
Uo 

Uc (< 0.) 
PMAX 
PMIN 

T4 
K1 

 

20.0000 
0.1500 
0.2000 
0.2000 
0.2700 
-0.2500 
0.9000 
0.0000 
0.2500 
0.3000 

K2 
T5 
K3 
K4 
T6 
K5 
K6 
T7 
K7 
K8 

0.0000 
8.2900 
0.2500 
0.0000 
0.4000 
0.4500 
0.0000 
0.0000 
0.0000 
0.0000 
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