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Abstract—This paper proposes two different methods to train
the DTs for voltage stability assessment, which in turn can aid in
deriving preventive actions that can be given as recommendations
to system operators or automatic load shedding schemes. In the
voltage stability indices method, the DTs are trained on contin-
gency cases that are classified based on voltage stability indices.
In the region classification method, the DTs are trained on a new
classification criterion that enlarges and generalizes the existing
security boundary method of “stable” and “unstable” regions to
a more granular operating space based on the distance from the
nearest Saddle-Node Bifurcation. Case studies were performed
using the Nordic 32 system for different contingency cases, several
operating conditions and different network configurations. The
ability to classify the degree of voltage stability of a multitude of
operation conditions could be useful to aid operators in selecting
and applying preventive measures to steer away the system from
unstable conditions or conditions that are close to breaching
operational requirements w.r.t. voltage stability.

I. INTRODUCTION

A. Motivation

During the recent years the challenge brought by the ongo-
ing energy transition has led electric utilities to operate closer
to their operating-limits which has made voltage instability a
major concern for power systems. One of the great challenges
for electric utilities and regional transmission organization
is being able to meet system-wide voltage security. Voltage
stability is the ability of a power system to sustain acceptable
voltage at all buses under the normal condition after being sub-
jected to a disturbance [1]. Voltage instability usually occurs
in power systems that are heavily loaded or that experience
reactive power shortages.

Broadly speaking, two types of situations may lead to
voltage instability. The first type is associated with the demand
not being met by the available generation due to transmission
or reactive power limitations. This situation may result from
unexpected large load increase and/or an earlier weakening of
the system, such as low voltages and increased losses. The
second type of incident is a major event affecting the gener-
ation or transmission system in such a way that the demand,
which is the pre-fault consumption, cannot be satisfied with
the available generation or transmission capacity.

Voltage Stability Indices (VSI) were developed to deal with
the first type of situation. These indices help to foresee unac-
ceptable effects of load increments. Moreover, this anticipation
capability along with inherent delay (in some cases) of load

increments (because of the type of behaviour of certain loads)
gives the operator some time to take remedial actions such as
switching capacitor banks, changing the generator voltage set
points, etc. However, the picture is quite different for voltage
instabilities that can follow major incidents such as outage of
a large capacity generator that is producing its maximum rated
power or the disconnection of heavily loaded transmission
lines. The time left to take remedial actions for this second
type of situation is relatively shorter than the first. This short
time is very important and early detection of a critical state
can prevent the system from collapsing.

These above considerations motivate the development of
approaches that can help in early identification of voltage
instability and suggest remedial actions to bring back the
system to stable state. Machine learning techniques like Deci-
sion Trees (DTs) can offer useful tools to handle the early
identification of voltage instability by performing off-line
analysis of thousands of potential operating conditions ahead
of time.

B. Literature Review

Identification of the voltage stability boundary (VSB) plays
a vital role in the reliable operation of a power system.
Although the voltage stability margin depends on numerous
possible system conditions, in practical real-time applica-
tions, only several selected stress directions are computed
and checked, especially, real-time static or dynamic security
assessment (DSA) tools [3]. However, with the increasing
variability and uncertainty in today’s power systems, it is be-
coming increasingly clear that the stability margin assessment
should be broadened to multiple types of system strain, cover-
ing various sources and ranges of uncertainty and variability.
Therefore, an accurate and fast estimation of the available
voltage stability margin is of paramount importance for the
secure operation and control of electric power systems.

The voltage stability boundary surrounds the region of
feasible and stable operating points in power system parameter
space. These operating points cannot cross the VSB without
losing their stability [4]. The voltage stability region (VSR)
is a safe region for guaranteeing local stability at the equilib-
rium under slow parametric variations [5]. Voltage stability
conditions are usually considered as power flow feasibility
conditions; and the VSB is associated with singularity con-
ditions of the power flow Jacobian matrix and saddle-node



bifurcation (SNB). References [4] and [5] provide a compre-
hensive discussion on feasibility boundaries and regions in
state and parameter space in the power system domain and
summarize some recent development on the stability analysis
of large-scale systems. Some publications that address the
voltage stability problems include [6]–[9].

The conventional methods for calculating SNBs tradition-
ally employ iterative procedures. An extensive review of these
methods is provided in [10]. The two commonly used iterative
methods are Continuation Power Flow (CPF) and Direct
methods [11]. The purpose of CPF is to find a series of power
flow solutions for a given load/generation change scenario
[12]. The CPF method provides reliable convergence due to its
predictor-corrector approach but is computationally intensive.
Direct methods were proposed for assessing the VSB, in which
augmented power flow equations are solved [13]–[16]. These
methods provide the left or right eigenvectors corresponding
to the zero Jacobian matrix eigenvalue at the point of voltage
collapse. Direct methods are sensitive to the initial guess, i.e.,
the initial guess affects the speed of convergence and may even
cause divergence of the iterative process [16]. This iterative
process requires a considerable number of calculations to find
a single VSB point. To obtain the full VSB, the computational
effort becomes prohibitively significant for large-scale power
systems. Computational time becomes critically important for
real-time analyses, massive contingency screenings, and time-
domain simulations.

Machine learning techniques, such as Decision Trees (DTs),
clustering algorithms, neural networks and statistical methods
have been considered for voltage stability assessment [17],
[18]. These methods can create/use a model, which is based
on the knowledge of the operator past decisions or historical
data. The DT is a white-box model that can be applied when
functioning/working of a system is unknown or complex,
but there is plenty of data available. These models do not
explicitly model the physical system but establish a mathemat-
ical relationship between many input-output pairs measured
from the system. The mathematical relationship is a model
of the system, which can be computed numerically from the
measurements or simulated outputs. The accuracy of the model
may vary depending on accuracy of the simulated outputs
replicating the behaviour of original system. The investigation
of DTs for voltage security assessment sparked interest in
the early 90s. The DT based approach for power system
security assessment was presented in [19], [20]. Due to the
wide deployment of phasor measurement units (PMUs) in the
recent years, real time security assessment combining DT and
synchrophasor measurements became possible [21]–[27].

C. Paper Contributions

This paper proposes two different methods to train the DTs
for voltage stability assessment, which in turn can aid in deriv-
ing preventive actions that can be given as recommendations
to system operators or automatic load shedding schemes. Two
different methods are adopted and tested on the test system.

1) Voltage Stability Indices method: The idea behind this
approach is to use voltage stability indices to classify
the contingency cases to generate security rules using
DTs that could provide recommendations to system
operators. This approach is adopted from iTesla platform
[28].

2) Region classification method: The idea behind this ap-
proach is to propose a new classification criterion that
enlarges and generalizes the existing security boundary
method of “stable” and “unstable” regions to classify the
operating space based on the distance from the near-
est Saddle-Node Bifurcation (SNB); thus, allowing to
consider operational requirements w.r.t. voltage stability
[35].

The remainder of the paper is organized as follows. Section
II explains the details of the methodology, classification prin-
cipal and sampling adopted for both the methods. Section III
presents the simulation results of both the methods on a test
system. Conclusions are drawn in Section IV.

II. VOLTAGE STABILITY ASSESSMENT USING DTS

A Decision Tree (DT) is a form of inductive learning.
For a given data set, the objective is to build a model
that captures the mechanism that gave rise to the data. The
process of constructing the model is a “Supervised learning”
problem because the training is supervised by an outcome
variable called the target. Decision Trees are grown through
a systematic method known as recursive binary partitioning;
where the successive questions with yes/no answers are asked
in order to partition the sample space [19].

In this paper, two different methodologies adopted to train
the DTs for voltage stability assessment are described next.

A. Voltage Stability Indices method

In this method, the three-layer severity index from [29]
is used to classify the output of the contingency cases. The
workflow used to compute security rules follows the triptych
anticipate – analyze – classify as shown in Fig. 1. This
approach is adopted from iTesla offline workflow provided
in [28].
(i) Anticipate: To compliment historical data, a large number
of additional plausible network states is built (sampled), using
the historical data. Uncertainties such as demand or wind
power production are also modeled. (ii) Analyze: for each
sampled network state, dynamic simulations are performed
to quantify the impact of various contingencies (overloads,
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Fig. 1. Offline security assessment workflow, adapted from [28]



Fig. 2. Classification of operating points based on indexes

transient instability, etc.). (iii) Classify: machine learning algo-
rithms are used to compress the results from the analysis stage
into a set of security rules (threshold values) discriminating
stable from unstable network states. These rules are used by
the online platform to quickly classify unseen network states
as safe/unsafe against a contingency.

The output simulations are classified by the voltage stability
index as safe and unsafe as explained in [28]. These safe or
unsafe cases are used to train the DTs to generate the security
rules. Examples of a classification is shown in Fig. 2. Note that
a security rule is obtained for each contingency and security
phenomenon.

These security rules (boundary) are mapped against phys-
ical variables (active power, reactive power, voltage, etc.),
which are predominantly influenced by the set of contin-
gencies/security index pairs considered. Security rules are
expressed as DTs [19], [30], which have the advantage of
being easy to interpret and suitable for integration as linear
constraints into optimization tools. In this work, DTs are
generated by the “DataMaestro” software [31] that was inte-
grated in the iTesla platform. These DTs help to characterize
the power system security for pre-defined contingencies and
minimize the amount of network simulations. Two approaches
are used to generate DTs in the offline workflow for each
contingency/security index pair. In the Worst-Case Approach
(WCA), the set of candidate attributes of the DT can only
be related with computed power variables. While in the
Monte Carlo Like Approach (MCLA), the set of candidate
attributes of the DT can also consider other type of network
variables (e.g. voltage). Further details about these approaches
is available in [28], [32].

B. Region Classification method

In this method, the DTs are trained on the data from
power system network models. The workflow (i.e. algorithm)
proposed in this work to build a decision tree for the selected
network is shown in Fig. 3. For each topology, such as the
base case and for different contingency cases (n), a database
is created with the power flow results for different load
power consumption. These databases are then used to train
the decision trees that are used to predict the voltage stability
of the considered system using measured load powers and
voltages.

Fig. 3. Proposed workflow for the creation of decision trees

The DTs are created w.r.t. every load bus for different
network configurations. The number of DTs created is there-
fore proportional to number of load buses and topologies
considered. The number of branches for a tree increases
with an increase in data. Creating one tree for a network
configuration increases the size of the tree that further compli-
cates interpretation. Moreover, creating one tree for a network
configuration increases the computational burden and lookup
time. For these reasons every network configuration will have
a tree w.r.t. every load bus. Next, a Continuation Power Flow
(CPF) is carried out for different network configurations with
several load variations that are then used to train and test the
decision tree for those network configurations.

Initially, SNB points are calculated using CPF [12]. The
purpose of CPF is to find a series of power flow solutions
for a given load/generation change scenario. The CPF method
provides reliable convergence due to its predictor-corrector ap-
proach but is computationally intensive. Therefore, in order to
lessen the computation burden, this paper proposes the use of a
direct method to calculate the SNB points. Direct methods are
sensitive to the initial guess [13], [14]. Consequently, the SNB
direct method is initialized by running a CPF routine once to
provide good initial guess [16]. Direct methods provide the
left or right eigenvectors corresponding to the zero Jacobian
matrix eigenvalue at the point of voltage collapse.

The conditions for a SNB point are as follows:

g (y, λ) = 0, g (y, λ) = 0 and |v| = 1 (1)

or, alternatively,

g (y, λ) = 0, gTy w = 0, and |w| = 1 (2)

where v and w are the right and left eigen vectors.
In this paper, instead of running CPF method for all the

operating points to trace the unstable boundary, the CPF is
executed to provide good initial guess for the direct method.
The direction of load variations in CPF is fixed and it is along
the load bus of interest (note that this would be repeated for
every bus of interest). Initially, the CPF method is run for the
load bus of interest (load P1 as shown by the blue marker).
The CPF method finds the SNB bifurcation point. The direct
method uses this SNB and set direction as initial guess to



Fig. 4. Illustration of the applied method

calculate the eigen vectors (as shown by the blue arrows).
From here, the direct method is applied sequentially in the
same direction to calculate and trace the SNB boundary (as
shown by the blue crosses and the orange dots). Thus, the
direct method calculates the boundary of SNB points as shown
in the Fig. 4. Using equations eqn3 and eqn4, the workflow
Fig. 3 is modified to sample a reduced number of operation
conditions are obtained when exploring the operational space
used to train the decision trees, instead of using the entire
space.
Initially, the Euclidean distance is calculated for the given load
operating point i wrt load bus a (considering loads at bus a, b,
c. . . .k) (Pai, Pbc. . . ki) from nearest unstable point (PanSNB ,
Pbc. . . .knSNB) using

di = {(PanSNB − Pai)2 + (PbnSNB − Pbi)2
+ . . .+

(PknSNB − Pki)2}1/2
(3)

The margin is calculated as given by

Margin =
di

Pai + Pbi + ...+ Pki
(4)

The nearest unstable point (PanSNB , Pbc. . . knSNB) is se-
lected based on the distance calculated to all the unstable point
on the boundary. If eqmargin is less than a given percentage
(e.g. 25%), then the region of operation is classified as a
“marginally stable” region. If the available margin is greater
than or equal to the given percentage (e.g. 25%) with voltages
at all the load buses being greater than a given threshold (e.g.
0.95 pu), then the region is classified as “stable within grid
limits” region, otherwise it is classified as “stable outside grid
limits” region. If the given load operating point is the saddle
node bifurcation point or it exists further away from the given
saddle node bifurcation point, then the region is classified as
being in the “unstable” region.

The fact that the margins can be customized depending on
the power system and how conservative an operator makes
these criteria general. The classification criteria are visualized
in Fig. 4. The given power flow outputs are classified into the

Fig. 5. Proposed Classification Criteria

regions based on the conditions explained above. The trained
decision trees are tested with the test set and the accuracy of
the classification is calculated.

III. CASE STUDIES AND RESULTS

The main objective of the studies herein was to demonstrate
the use of decision trees for voltage stability assessment. The
proposed workflows in Fig. 1 and Fig. 3 and the sampling
method described in the previous sections was implemented.
This proposed approach was tested on the KTH Nordic 32 bus
system [33]. The KTH Nordic-32 Bus test system is an equiv-
alent representation of the Nordic grid (Sweden, Norway and
Finland) as shown in Fig. 6 and was originally implemented in
PSAT [34]. It consists of 32 buses, 21 generators with various
control systems (exciter, turbine, governor and stabilizer), 52
transmission lines (400kV, 200kV and 135kV) and 10 loads.
The time domain simulations of 32 bus system were carried
out for different loading conditions and network configurations
using PSAT. The simulations in PSAT were automated by a
MATLAB script.

A. Voltage Stability Indices method

In this method, 10 different contingencies were created
and simulated using the KTH Nordic 32 bus system in the
iTesla offline platform. These DTs are generated by the “Data-
Maestro” software that was integrated in the iTesla platform.
These DTs help to characterize the power system security
for pre-defined contingencies and minimize the amount of
network simulations. These contingencies were applied to
1000 snapshots and each snapshot indicates the operating
point. The outputs from the contingencies were computed from
a simulation program available in the platform. The selected
contingencies contain transmission lines whose average load-
ing is more than 65% of their nominal rating. The workflow
is explained in detail with one contingency.



Fig. 6. Single Line Diagram of the KTH Nordic 32 Model [34]

Fig. 7. Location of the selected transmission line (orange)

N-1 Bus 40 to Bus 38: This transmission line is in the central
region of the network as shown in Fig. 7. For this contingency,
the voltage stability index in the platform reported the voltage
instability in 11 snapshots of the available 1000 snapshots. The
DTs generated from the offline workflow is shown in Fig. 8. It
can be observed from the figures that the size of DTs is same
for both approaches, but the MCLA DT clearly differentiates
safe and unsafe operating points; while the WCA DT classifies
as safe operating points in the unsafe region (green shaded
region in the orange box in Fig. 9). So, in the sequel, only the
DT generated by the MCLA approach is considered.

This is consistent with the operational rule that shows that the
power flow of the region is limited. This import flow is heavily
correlated with this variable as long as the underlying 400kV
topology does not change. The generated rule’s performance
is satisfactory when applied to the learning dataset, as shown
in Fig.9 and Fig.10.

Fig. 8. Monte Carlo Like Approach (MCLA) DT and Worst Case Approach
(WCA) DT

Fig. 9. Accuracy of the trained DTs w.r.t selected contingency

B. Region Classification method

In this method, DTs are trained on the data generated
by CPF and direct method as explained in section II. The
simulations in PSAT were automated by a MATLAB script.
Later, the machine learning toolbox available in MATLAB was
used to train and test the decision trees on this simulation



Fig. 10. Superimposed histograms of acceptable cases (green) and unaccept-
able cases (red) for the learning dataset

Fig. 11. Predicted states by the trained DTs w.r.t load bus i=42

results obtained from PSAT. Finally, a MATLAB script was
written to validate the created decision trees by generating
random load powers.

It can be observed that the trained DTs predicted the states
of the operating points with 99% accuracy. It can be observed
from Fig.10 that the DTs incorrect prediction is confined to
boundary regions. Increasing the sampling of the data at the
boundary region can reduce this problem but this will be the
computational intense.

The performance of the trained DTs shown below in Fig.11.
It can be observed that the operating points in “Stable” region
are predicted with 100% accuracy but the operating points in
“Outside grid limits” (99.58%), “Marginally stable” (99.14%)
and “Unstable” (99.76%) regions are predicted with bit less
accuracy. It can be observed from Fig. 10 that misclassification
occurs in the boundary region because of the decimal values
of the load powers and voltages. This misclassification can be
reduced by increasing the sampling in the boundary region.
Further details provided in [35].

Fig. 12. Accuracy of the trained DTs w.r.t load bus i=42

IV. CONCLUSIONS

This paper proposes two different methods to train the DTs
for voltage stability assessment, which in turn can aid in deriv-
ing preventive actions that can be given as recommendations
to system operators or as an input to automatic load shedding
schemes. The main differences between the two methods are
summarized in Table I, and discussed below.

TABLE I
COMPARISON OF THE TWO PROPOSED METHODS

VSI Method Region Classification Method
Computationally less intensive
because it uses only the se-
lected contingencies to train
the model

Computational more intensive
because it trains on all the net-
work scenarios

Takes less time to train the
model

Takes more time to train the
model

The trained model is less ac-
curate

The trained model is more ac-
curate

The prediction accuracy of the
trained model is lower for the
fault on the sections of the net-
work that are not considered in
the training set

The prediction accuracy of the
trained model is lower on the
boundary of classification re-
gion

For the VSI-based method, the results for a given set of
contingencies applied to KTH Nordic 32 power system model
and the generated DTs for different network operating condi-
tions were verified. It was observed that the generated DT’s are
consistent for the given set of operating conditions. However,
it should be noted that DT’s can become more efficient and
consistent if they are trained on diverse scenarios (i.e. well-
defined contingencies and a large learning set). Hence, it
would be beneficial to determine how the rules generated from
DT’s with less data vary from the rules generated with more



data. This could help in validating the generalization capability
of the generated trees.

For the region classification method, the average accuracy
of classification by the created decision trees for random time
domain simulations was 99.06 %. It was observed that most
of the misclassified operating points lie on the boundary of
regions. Therefore, more operating points are required in the
boundaries of the regions when training the decision trees
in order to reduce the misclassification of operating points
at the boundary. The idea of this approach to use decision
trees to classify the operating regions (“unstable”, “outside
grid limits”, “marginally stable”, “unstable”) based on distance
from the nearest SNB point has proved it to be fruitful in
training the DTs, providing excellent prediction accuracy. The
proposed time domain simulation-based verification can be of
great value for DT accuracy verification in such cases.
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