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1)SuperGrid Institute SAS, 23 Rue de Cyprian, 69611 Villeurbanne, France
2)Laboratoire Ampère, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, Ecully, France

3)Centre National de la Recherche Scientifique (CNRS), France
4) Rensselaer Polytechnic Institute, 110 8th Street, Troy, United-States

5)Technical University of Munich, Lichtenbergstrasse 4a, 85748 Garching

Email: sjoerd.boersma@supergrid-institute.com

Keywords
�System Identification�,�Optimal Experiment Design�,�Power Systems�,�Damping Estimation�

Abstract
For real-time power system dynamic monitoring, it is important to provide accurate estimations of the
network’s critical electro-mechanical modes, which are time-varying frequency and damping values.
This paper employs a framework for designing a multisine probing signal that, when applied in the
control inputs of one of the power electronics-based grid actuators, is able to provide a damping esti-
mation with user specified variance. The employed framework is demonstrated through simulations in a
nonlinear simulator using models of varying complexity.

Introduction
Accurate monitoring of electromechanical oscillations in real-time is one of the most important func-
tions of a wide area monitoring system [1]. Oscillations are monitored by continuously estimating the
frequencies and damping ratios of dominant low-frequency electromechanical modes. These are referred
to as critical system modes and, in normal operation, are damped enough such that no instability occurs.
However, damping ratios of modes change over time due to time-varying operating conditions. It can
occur that these damping ratios become too low for the system to remain stable under large oscilla-
tions that may arise if a severe disturbance occurs [2]. Hence it important to continuously provide an
accurate mode frequency and damping estimation so that, when this crosses a specific lower bound, a
controller can be activated to increase this damping, thereby preventing major system instabilities [3].
Both estimation and control are key for a smarter grid.

Approaches described in literature that provide mode estimation can roughly be divided into two cat-
egories. The first category only uses ambient excitation while, in the second category, the network is
excited with a probing signal (generated by for example using a controllable power electronics device).
Ambient excitation primarily comes from random load changes. This type of excitation is always present
in a network and should therefore be accounted for in the damping estimation method. In general, ambi-
ent excitation is relatively low, which can easily result in estimations with relatively high variances.

The approach employed in this work is placed in the second category, i.e., the network is excited with
a probing signal. Results that belong to this category can be found in [4, 5, 6, 7]. In [4], injected



noise is produced by random load switching and a frequency domain identification technique is used to
estimate the network’s behavior. In [5], several kinds of standardized probing signals are injected in the
network and corresponding damping estimations are compared. The estimations are done via Subspace
Identification techniques. In [6], the authors illustrate that when applying a probing signal with frequency
content close to a critical network mode frequency, the oscillations can become dangerously large. This
indicates that the frequency content of the probing signal should be selected carefully. Literature on
probing signal design can be found in [8, 9, 10, 11, 12]. In [8, 9, 10], the probing signal is prefiltered
such that it contains specific frequency content before being injected it in the network. In [11], a multisine
probing signal is considered and the phases of the multisine are optimized to obtain a probing signal with
the smallest amplitude while having a user-defined power spectrum. The power spectrum of the probing
signal is indeed the quantity determining the damping estimate’s accuracy. Therefore, in [12], the authors
design the power spectrum of a multisine probing signal (i.e., the amplitudes of the different sinusoids)
in such a way that an user defined accuracy of the damping estimation is ensured. This accuracy is based
on the variance of the estimated damping. It is to be noted that the method in [11] can subsequently be
used to also optimize the phases of the optimal multisine.

This work builds further on the work presented in [12]. The main contributions of this work are 1)
the method is tested and simulated using a nonlinear power network model, 2) the optimized probing
signal is actually applied to the nonlinear simulator and 3) in one test network, a high voltage direct
current (HVDC) link is used to probe the network. The method employed in this work is based on the
idea of running experiments for system identification while minimizing its costs. This paradigm, which
has been used before in the control community [13], can be used in power system mode estimation [12].
A power spectrum of the probing signal is determined by solving an optimization problem with con-
straints. The objective function is defined as a weighted sum of the probing signal’s power and a level of
disturbance caused by probing the network. A desired level of the damping estimation’s accuracy is set
as a constraint. The time-domain realization of the obtained power spectrum is described by a multisine,
which would be the actual probing signal applied to the network.

The remainder of this paper is organized as follows. Firstly, the utilized system identification method
will briefly be described. From the estimated dynamical model, mode frequency and damping values can
be evaluated. The employed method demands for probing signal selection, which is the succeeding topic
in this paper. Next, the paper follows by presenting the simulation results and is then concluded.

System Identification
The prediction error method [14] is used herein as the system identification technique. Here, the net-
work’s response y(t) (for example the angle difference between two buses) is assumed to be made up
of the superposition of two responses (ambient and forced). The ambient system response (Ĥ(z)e(t))
(with discrete time t) can be described by a monic transfer function Ĥ(z) excited by white noise e(t),
where the white noise represents random load changes. As stated earlier, this ambient response is always
present in power networks since there are always random load changes. The forced response (Ĝ(z)u(t))
is a result of exciting the network with the probing signal u(t) (for example the voltage error in a SVC).
Note that Ĥ(z), Ĝ(z) will be assumed linear for the design of the probing signal. However, as mentioned
in the introduction, the designed probing signal will be applied to a non-linear simulator to validate the
approach.

Since both Ĥ(z), Ĝ(z) can be derived from the same state-space model of a power system, it is reasonable
to assume that both transfer functions have the same denominators. This defines the ARMAX model
structure of the system:

y(t) =
b(z,θb) · z−nk

a(z,θa)︸ ︷︷ ︸
Ĝ(z)

u(t)+
c(z,θc)

a(z,θa)︸ ︷︷ ︸
Ĥ(z)

e(t), (1)

with a(z,θa),b(z,θb),c(z,θc) polynomials in z ∈ C, θ• the parameter vectors that are found by the iden-



tification method and nk a delay. The poles of the ARMAX model can be found by solving a(z,θa) = 0
for z and it is assumed that all poles are inside the unit circle. Let these poles be:

ℵ = {z1,z2, . . . ,znr ,znr+1, z̄nr+1, . . . ,znr+ni , z̄nr+ni}, (2)

with •̄ the complex conjugate, nr the number of real valued poles and ni the number of complex pole
pairs. Then define p as a subset of ℵ:

p = {|z1|, |z2|, . . . , |znr |,znr+1,znr+2, . . . ,znr+ni}. (3)

To illustrate, consider that the poles of the ARMAX model are ℵ= {−0.1,0.2,0.2,0.1+0.2i,0.1−0.2i},
then p1 = 0.1, p2 = 0.2, p3 = 0.2, p4 = 0.1+0.2i with i the imaginary number. The damping ratios and
natural frequencies can then be evaluated as:

ζi =

∣∣Re{ln(pi)}
∣∣

| ln(pi)|
and ωn,i =

∣∣ ln(pi)
∣∣

h
, ∀pi 6= 0,1, (4)

with h the sample period. If pi = {0,1} then ζi = 1. However, the parameter vector θa does not contain
the damping ratios although this is necessary, as will be explained later. Therefore, a new parameteriza-
tion of the polynomial a(z,θa) will be introduced:

a(z,θζ) =
ni

∏
i=1

(
z2−2e−ζiωn,ih cos(ωn,i

√
1−ζ2

i h)z+ e−2ζiωn,ih
) nr

∏
j=1

(
z− sign(z j)e−ωn, jh

)
, (5)

with z j the real valued pole location and ωn, j its corresponding natural frequency. The natural frequency
and damping coefficient that correspond to each complex pole pair are defined as ωn,i and ζi, respectively.
Note that a(z,θa) in (1) is equal to a(z,θζ) in (5), but only parameterized differently. The number of
parameters in each polynomial is equivalent. As shown below, using system identification, the parameter
vectors a(z,θa),b(z,θb),c(z,θc) are found, hence a dynamical model that estimates the network can be
defined (see (1)). The damping ratios and natural frequencies of this model can be found using (4) and
subsequently, the newly parameterized polynomial a(z,θζ) in (5) can be evaluated. A new parameter
vector is defined as:

ρ =
(

θT
b θT

c θT
ζ

)T
∈ Rnb+nc+nζ . (6)

In order to perform system identification, the network needs to be excited. This is carried out via the
white noise signals e(t) and probing signal u(t). The former cannot be chosen as it represents unknown
random load changes, however, the probing signal u(t) can be designed. In the following section, a
method for doing so will be summarized.

Probing Signal Design Method
In this work, we adopt a multisine parameterization for the probing signal u(t) and its power spectrum
Φu(ω):

u(t) =
M

∑
r=1

Ar cos(ωrt +ϕr), Φu(ω) =
π

2

M

∑
r=1

A2
r

(
δ(ω−ωr)+δ(ω+ωr)

)
, (7)

with δ(•) the Dirac function and ω the frequency. Furthermore, Ar,ωr,ϕr,M are the user-defined magni-
tude, frequency and phase of the rth sinusoidal component, respectively, and M the number of frequency
components taken into account in the optimization problem. Note that in [11], the authors find ϕr to
improve estimation accuracy. The framework used in this work will determine the amplitudes Ar in an
optimal way, while the ϕr will be chosen randomly.



The following optimization problem is solved to determine the amplitudes Ar of the probing signal u(t):

min
A2

r (r=1,2,...,M)

c1

2

M

∑
r=1

A2
r +

c2

2

M

∑
r=1

A2
r |G(iωr,ρ)|2,

subject to
(

ηi eT
i

ei P−1

)
> 0, for i = 1,2, . . . ,ni,

A2
r ≥ 0, for r = 1,2, . . . ,M,

(8)

with the weighted (weight c1) first term in the cost representing probing signal’s power and the second
weighted (weight c2) term the power in the measurement. The latter is also important to be taken into
account because the network should not be excited at its critical modes, as it could lead to large oscilla-
tions. Hence, the objective of the optimization procedure is to find the power spectrum that minimizes
the system disturbance induced by the probing signal as well as the power in the probing signal. The con-
straints A2

r ≥ 0 are to ensure positivity for the probing signal’s power (see (7)) and the other constraints
are to ensure an user defined upper bound ηi on the variance of the damping ratios, i.e., variance(ζi)< ηi.
Furthermore, i is the index of the critical mode of interest and ei is a unity vector whose ith element is
equal to one. Using the Schur complement, the constraint in (8) is equivalent to eT

i Pei < ηi. If P repre-
sents the covariance matrix of the identified parameter vector ρ, the latter expression is indeed equivalent
to variance(ζi) < ηi. The optimization problem (8) is a convex optimization problem since, as shown
in [12, 13, 14], the inverse P−1 of the covariance matrix of the parameter vector ρ is an affine function
of A2

r , the to-be-determined amplitudes. It is necessary to parameterize the identified Ĝ(z), Ĥ(z) in ρ

(see (6)) due to the constraints on the variance of ζi, i.e., ζi should be contained in ρ. The reader is
referred to [12] for more background information on the optimization problem defined in (8).

As shown in [13, 14], the expression of the covariance matrix P used in (8) requires an initial estimate of
the parameter vector ρ. Hence, firstly, a model will be identified from a first batch of data by selecting
a manually chosen probing signal. The found Ĝ(z), Ĥ(z) can subsequently be used to solve (8) and the
outcome, an optimized probing signal u(t), can then be injected in the network to improve the damping
ratios estimation for the following batch. This process can be repeated automatically so that the probing
signal will be updated according to the time-varying network.

Simulation Results
The employed software includes routines developed in Matlab (for system identification) and the Mod-
elica tool Dymola in combination with the OpenIPSL library [15] (for power system modeling). The
studied networks are:

• A modified version of the IEEE 14-bus test network, where a STATCOM is installed in bus 14.

• A modified version of the Klein-Rogers-Kundur’s two-area systems. A high voltage direct current
(VSC-HVDC) link is connected between buses 7 and 9.

A choice has to be made for probing and measurement locations in the network. For example, the probing
signal can be the modulation of the voltage control loop of a static VAR compensator, which results in a
modulated reactive power injection [16]. A measurement can be the phase angle difference between two
chosen buses in the network as in the case when considering the use of phasor measurement units [17].
There are methods that allow to intelligently choose these locations [18], although in this work, these are
determined empirically.

In order to demonstrate the proposed method’s effectiveness, two simulation experiments are performed
and discussed in the following.

a) Base Experiment

The first simulation contains one experiment that takes t2 seconds (see Fig. 1). Here, the probing sig-
nal ubase(t) is chosen manually such that identified (and validated) Ĝbase(z), Ĥbase(z) are obtained and
corresponding damping coefficients can be evaluated.



b) Optimal Experiment

The second simulation contains two experiments (batches) and its objective is to obtain an equivalent
variance on the damping estimation as obtained during the first (base) experiment, though with less
disturbance in the network (less power in the probing and measurement signals). The two experiments
in this simulation each take t1 seconds, with t2 = 2t1 (see Fig. 1). The following summarizes the optimal
experiment:

1. During the first batch, the probing signal ubase(t) for t = t0, t0 + 1, . . . , t1 is applied (denoted as
u1(t)).

2. The collected measurements y(t) until t1 are then used to identify Ĝ1(z), Ĥ1(z) so that consequently
P1 can be evaluated.

3. The problem given in (8) is solved with η
−1
i =

(
eT

i Pbaseei
)−1−

(
eT

i P1ei
)−1 for i = 1, . . . ,ni, result-

ing in an optimized probing signal uopt(t).

4. During the second batch, uopt(t) for t = t1+1, . . . , t2 is applied and the collected measurements are
used to identify Ĝ2(z), Ĥ2(z) so that consequently P2 can be evaluated.

It should be clear that the upper bound ηi in the third step is set to a value, which will ensure that the
optimal experiment combining the manually chosen (during first t1 seconds) and the optimized probing
signal (during last t1 seconds) yields the same variance as the one obtained in the base experiment (Pbase).

Figure 1 schematically depicts the base and optimal experiments.

{Optimal

{Base

Fig. 1: Schematic representation of the two simulation experiments that are performed in order to show
the effectiveness of the proposed probing design method. The objective is to obtain an equivalent variance
during both experiment, though with less disturbance in the network during the optimal experiment.



IEEE 14-bus network

Reactive power u(t) will be injected at bus 12, the random load changes e(t) with standard deviation
0.01 in bus 14 and the measurement y(t) is chosen to be the angle difference between bus 1 and bus 8.
Hence the objective is to identify a model that estimates the dynamical behavior between reactive power
injected at bus 12 and angle difference between the buses 1 and 8. The IEEE 14-bus test network is
schematically depicted in Fig. 2.

Fig. 2: Schematic representation of the IEEE 14-bus test network.

Table I provides the parameters that are used during the simulations. The parameters nζ,nb,nc,nk,h are
empirically found such that an identified and validated Ĝbase(z) and Ĥbase(z) are found. The parameter N
represents the number of used data samples for identifying the model in the base experiment. Hence this
parameter is for each batch in the optimal experiment N/2.

Table I: Parameters that are used in the IEEE-14 test network.

Parameter t0 t1 t2 N h nζ nb nc nk M ωr c1 c2

Value 0 120 240 1200 0.1 8 4 4 0 30 [0.1 3] (Hz) 1 0

The manually found probing signal ubase(t) contains empirically found amplitudes Ar = 0.02. A linear
spaced ωr ∈ [0.1 3] (Hz) with M = 30 (see (7)). In general, this frequency range must be chosen such
that it contains the dominant modes. This knowledge is generally known for a network from simulation
models or spectral analysis on measurements. For this experiment, which takes t2 = 240 seconds, Ĝbase
and Ĥbase (see (1)) are estimated and consequently, the variance Pbase can be evaluated.

In the first t1 = 120 seconds of the optimal experiment, the same probing signal as used in the first base
experiment is applied to the network. The collected measurement until t1 = 120 seconds are then used to
identify Ĝ1 and Ĥ1. The estimated model is then used to solve (8) with ωr ∈ [0.1 3] (Hz) with M = 30.
The upper bounds ηi are set to a value, which will ensure that the experiment combining the manually
chosen signal (during first 120 seconds) and the optimal signal (during last 120 seconds) yields the same
variance as the one obtained in the first experiment (manually chosen probing signal during 240 seconds).
From t1 = 120 to t2 = 240, the found optimal probing signal is applied and measurements are collected.
At t2 = 240, the pair (Ĝ2, Ĥ2) is identified from which the damping is again evaluated.

The second (optimal) experiment results are depicted in Fig. 3. Here, the first subplot depicts the mea-
surement y(t) (blue) and the simulation output from the estimated ARMAX model (ŷ(t)) (red). The



depicted “fit” value is a measure of how well (ŷ(t)) matches with (y(t)) and it is evaluated as:

fit =

1−

√
∑

N
t=1 |y(t)− ŷ(t)|2√
∑

N
t=1 |y(t)− y|2

 , (9)

with y the mean over time of the measurement y(t).

The second subplot shows the probing signal u(t). Note that there is a difference in probing between
t0 = 0 until t1 = 120 (manual probing) and t1 = 120 until t2 = 240 (optimal probing). In the third and
fourth subplot, the minimum estimated damping (ζ̂min) and its corresponding natural frequency (ω̂min)

Fig. 3: Identification results obtained with manually chosen (first 120 seconds) and optimal (last 120
seconds) probing signal. The estimated values are indicated in red, while the “true” values obtained from
linearizing the simulated model in Dymola (considered as the reality in this work) are indicated in blue.
The units of u(t) are in MW.



are depicted, respectively. These estimations are given in red dashed, while the minimum damping and
its corresponding frequency obtained from linearizing the simulation model in Dymola, are depicted in
blue (ζmin,ωmin). These are regarded as the network’s true values.

The probing signal’s and measurement average power are in the optimal experiment approximately 5%
and 20% lower, respectively, compared to the base experiment. Additionally, the manually chosen and
optimal probing signals are both applied for 50 batches in order to verify if the estimation’s accuracy
is ensured (model validation). Over these 50 batches, both types of experiments yield estimates with a
sample variance that is very close to the desired one (the differences are among other factors due to the
non-linearity of the simulated model).

Kundur network with HVDC link

The probing signal u(t) is the active power that is injected via the VSC-HVDC link in the network. The
angle difference between bus 7 and 9 is defined as the measurement y(t) and the random load change e(t)
with standard deviation 5 ·10−4 is applied in bus 2. The objective is to identify a model Ĝ(z) between the
active power of the HVDC link and the angle difference between bus 7 and 9, and a noise model Ĥ(z)
from which the damping coefficients can be evaluated.

The parameters that are used in the Kundur case are given in Table II. Recall that the parameter N is the
number of used data samples for identifying the model in the base experiment. Hence this parameter is
for each batch in the optimal experiment N/2.

Table II: Parameters that are used in the Kundur case study with HVDC link.

Parameter t0 t1 t2 N h nζ nb nc nk M ωr c1 c2

Value 0 60 120 2400 0.05 4 4 2 1 30 [0.1 3] (Hz) 1 0

The manually found probing signal ubase(t) contains empirically found amplitudes Ar = 0.03. A linear
spaced ωr ∈ [0.1 3] (Hz) with M = 30 (see (7)). For this experiment, which takes t2 = 120 seconds, Ĝbase
and Ĥbase (see (1)) are estimated and consequently, the variance Pbase can be evaluated.

As in the previous case, a manually chosen multisine is applied in the first t1 seconds of the optimal
experiment. Using this data up to t1 seconds, a model pair (Ĝ1, Ĥ1) is identified, which is used to solve
the problem given in (8). The outcome is a new set of amplitudes for the multisine that is applied in the
second part of the optimal experiment. The empirically found multisine amplitudes and the optimal ones
can be found in Fig 4.

The optimal experiment time-domain results are depicted in Fig. 5. Here, just as in the previous case, the
first subplot depicts the measurement y(t) (blue) and the simulation output from the identified ARMAX
model (red). The second subplot shows the optimal probing signal u(t), which is the active power
injected through the HVDC link. In the third and fourth subplot, the minimum estimated damping (ζ̂min)
and its corresponding natural frequency (ω̂min) are depicted, respectively. These estimations are given in
red dashed, while the minimum damping and its corresponding frequency obtained from linearizing the
simulation model in Dymola, are depicted in blue (ζmin,ωmin). These are regarded as the network’s true
values.

The probing signal’s and measurement average power are in the optimal experiment approximately 90%
and 15% lower, respectively, compared to the base experiment. In this test case, the identified models are
validated by ensuring that the 1-standard deviation value of the estimated parameters is below the 5% of
its nominal value. This value is given by the present.m function in Matlab.



Fig. 4: The amplitudes Ar of the multisine signal (7) that is used in the first part of the optimal experiment
(blue), and that is used in the second part of the optimal experiment (red). Note that the amplitudes plotted
in red are found by solving the optimization problem given in (8). The vertical dashed line indicates the
frequency of the true inter-area mode.

Fig. 5: Identification results obtained with manually chosen (first 60 seconds) and optimal (last 60 sec-
onds) probing signal. The estimated values are indicated in red. The “true” values, that are obtained
from linearizing the simulated model in Dymola (considered as the reality in this work), are indicated in
blue. The signal u(t) has MW as units and its value is plotted around an equilibrium value.



Conclusions
Oscillations that may lead to instabilities in a power network can potentially be circumvented when
having an accurate damping coefficient estimation that helps in guiding corrective actions or to employ
closed-loop damping control. The idea is that, when the estimated damping is below a certain threshold,
damping control has to be activated in order to increase the damping value. This work presented a method
that provides damping estimations with guaranteed accuracy, while minimizing the perturbations in the
network. The method combines system identification and optimal probing signal design. An identified
model is used to evaluate an optimal probing signal, which is then applied. This paper shows that,
for two simulated networks in Dymola, the estimation’s accuracy can be ensured. At the same time,
the perturbation introduced in the network can be significantly reduced compared to the case where no
probing design method has been used. In future work, power hardware in the loop experiments are
planned to further test the proposed framework. In addition, the optimal probing design optimization can
be explored more by investigating the effect of the tuning variables c1,c2. Also, it is planned to test the
framework on larger networks such as the Nordic 44 model.
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