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Abstract-- Today’s evolving power system contains an 

increasing amount of power electronic interfaced energy sources 
and loads that require a paradigm shift in utility operations. Sub-
synchronous oscillations at frequencies around 13-15 Hz, for 
instance, have been reported by utilities due to wind farm 
controller interactions with the grid. Dynamics at such frequencies 
are unobservable by most SCADA tools due to low sampling 
frequencies and lack of synchronization. Real-time or off-line 
frequency domain analysis of phasor measurement unit (PMU) 
data has become a valuable method to identify such phenomena, 
at the expense of costly power system data and communication 
infrastructure. This article proposes an alternative machine 
learning (ML) based application for sub-synchronous oscillation 
detection in wind farm applications. The application is targeted 
for real-time implementation at the ‘edge’, resulting in significant 
savings in terms of data and communication requirements. 
Validation is performed using data from a North American wind 
farm operator. 
 

Index Terms-- Power system disturbance; Wind farm; 
monitoring application; Deep Learning; Convolutional Neural 
Network; PMU; WAMS; Fog Computing. 

I.  INTRODUCTION 

    A)  Motivation 
Renewable energy’s rapid growth and penetration in today’s 

power system is creating new challenges: rapid voltage 
fluctuations, transient / sub-synchronous oscillations, damping 
degradation, and other operational issues. Low inertia power 
systems receiving a mixture of instantaneous non-synchronous 
renewables such as wind turbines and solar photovoltaics, are 
subject to transient stability issues that have already been 
studied [1]. While oscillations are always present in power 
systems and typically do not represent a major threat to power 
system stability, they can often indicate incipient instabilities or 
serious equipment problems. In some cases, forced oscillations 
can result in resonant interactions and equipment damage [2]. 
Forced oscillations arise from equipment malfunction or 
controller interactions, and can take on many forms including 
sinusoids, limit cycles, or just erratic signals; an example of 
recorded PMU measurements is shown in Fig.  1. 

Real-time monitoring of oscillations is critical to the reliable 
and safe power system operation. Devices called phasor 
measurement units (PMU) measure voltage and current 
phasors, and with these measurements, PMUs derive frequency 
estimates. These PMU measurements provide real-time grid 
data to operators, which helps them make decisions to prevent 
outages.  

Recently, transmission system operators have used PMUs to 
measure sub-synchronous oscillatory events resulting from 
interactions between wind farms at frequencies around 13-15 
Hz [3]. Oscillations reached the consumer level in the form of 
flicker  [4]. For many cities, new energy plans are leading to an 
increase in renewable and distributed energy resource 
penetration, rendering the detection and possible prevention of 
similar oscillations as critical. Ignoring such events is not an 
option due to the uncertainties of the changing energy 
landscape. 
 
    B)  Previous work 

Oscillation detectors have been around for 30 years. 
However, a system trigger for disturbance monitoring based on 
lowpass filters tends to occasionally miss an important 
disturbance that is just within the range of the monitor since the 
software will only issue an alarm based on the oscillation 
trigger if a threshold is attained for a predefined amount of time 
[5]. In [6] and [7], this algorithm is expanded to use PMU data 
and four different RMS energy filters. In these approaches, the 
software triggers an alarm if active power changes are large 
enough. Furthermore, the oscillation must also persist for a pre-
determined time for the application to issue an alarm. Also, in 
[8], a fast real-time oscillation detection preprocesses the data 
with outlier removal and down sampling using different filters 
(bandpass, highpass, and low pass) with trigger flags after level 
comparison. A LabVIEW based software allows us to set up the 
different threshold values and frequencies to survey.  

Together with detection, the classification of the type of 
disturbance that gives rise to oscillations is also of interest. In 
[9], a MATLAB-based software has been developed for 
disturbance classification and identification using a decision 
tree based on 30 seconds of dynamic recorded data and a 
hardcoded threshold. In [10] and [11], four types of 
disturbances are identified by processing PMU frequency data 
through deep neural networks, using real data from Brazil, with 
a time window of 20 seconds. In [12] supervised machine-
learning for event detection using FFT transforms PMU data 
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Fig.  1. Example of oscillation at 1.7Hz, duration 00:02:37, recorded 
by PMU, resulting from interactions between wind farms 
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and reduces its input dimensionality through the Principal 
Component Analysis process. 
 
    C)  Contributions of this paper 
The main contributions of this paper are: 
 
(i) To propose a new oscillation detection method that exploits 

raw PMU data without any need for specialized signal 
processing, such as noise removal and filtering, and 
without the need for hardcoded thresholds. 

(ii) To propose a software implementation that requires only 1 
sec of data for real-time application and that can be 
deployed at the edge of the network on a small Linux-based 
IoT device. 

(iii) To provide a comparison between different machine 
learning algorithms for purposes of oscillation detection.  

(iv) To propose the use of transfer-learning by generating the 
training data using a Modelica-based simulation model and 
determining the impact of injecting real data during the 
inference phase.  

II.  OSCILLATION DETECTION AND EVENT CLASSIFICATION 

Data from PMUs are transported via a communication network 
using the IEEE C37.118.2 protocol. In [13] a proposed 
implementation to extract voltage, current, frequency, Rate-Of-
Change-Of-Frequency, and other user-defined analog and 
digital state data is given. Fig. 1 shows the raw data from a PMU 
during a timeline of 10 minutes with a clearly visible oscillation 
in frequency, voltage, and current. Using 1 second of this data 
obtained during and outside the oscillation event, the frequency 
is plotted as shown in Fig. 2.  
  

  
      

 
 
 
 
 
Plotting voltage or current gives similar results. With a 
sampling rate of 30 samples per second, this particular 
oscillation is easy to distinguish. 
 

Machine learning in power systems has more than 20 years 
of history, it is being used in several sub-areas of power 
engineering, for example, load forecasting, but it is still not 
being used for power system operations in the production 
environment. The reasons for this lack of adoption are complex 
and include a lack of understanding on how to apply ML 
algorithms, the availability and pipelining of data, vendor lock-
in of software technology and its’ lack of fitness for deployment 
in modern computer hardware architectures for ML. 

With the rise of ML-capable IoT devices, like the Nvidia’s 
Jetson product line, image classification in real-time at the edge 
is becoming possible. The only difficulty remains in obtaining 
access to real data records to train and verify the ML model 
during the inference phase. For the problem addressed herein, 
sub-synchronous wind farm oscillation detection, modeling, 
and simulation software (Modelica/Dymola) allows us to 
generate precisely the data needed to train the ML model.  

Fig.  3. Workflow applied to the data: an array of raw frequency data 
is input to the Dense/LSTM model; an image of the frequency plotting 
for CNN model 

III.  METHODOLOGY 

In this section, we describe the methodology for oscillation 
detection using ML in two parts. Firstly, we describe the 
generation of training data and thereafter present the approach 
for applying ML algorithms. Our goal, as shown in Fig. 3, is to 
train a model with synthetic data, and then continue the training 
with a small proportion of real data. Depending on the type of 
model, the input will be an array of normalized frequencies or 
a picture of the frequency plot.  
 
    A)  Generating Training Data 

In Fig. 4 a simulation model to generate synthetic data like the 
one in Fig. 1 is presented.  Two ramps and a pulse signal are 
used to simulate a progressive increase and decrease of the 
amplitude of the signal, while a noise generator with a normal 
distribution is used to model the stochastic behavior. A sine 
signal with a defined frequency, activated by two switches in a 
specified time delta, is added to the input of a second-order 
transfer function which is used to represent low-frequency 
dynamics. The result from plotting one second of the generated 
signal is shown in Fig. 5 which shows that this approach allows 
the generation of seamlessly similar time-series of a sub-

Fig.  4. Modelica model diagram used in Dymola to generate the 
synthetic training data 

Fig.  2. Four examples of frequency plotting (one second each), 
during normal condition and during oscillation, from real PMU data. 
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synchronous wind farm oscillation observed on real data 
coming from a PMU.  

 
To be able to deploy the oscillation detector on an IoT device 

(like a Raspberry Pi, Beaglebone Black or Nvidia Jetson) at the 
edge of the power system infrastructure (Fog computing), the 
software needs to be executed on a Linux environment. The 
Python language was used for the whole development due to its 
convenience, built-in data structures and practicality. To 
manipulate the Modelica/Dymola model’s variable with Python 
and directly get the desired outputs, the model was first 
exported to FMU (Functional Mock-up Unit) and imported with 
the python library FMPy. The sinusoidal frequency is changed 
from 1Hz to 15Hz for each export, and the output is plotted on 
a time delta of 1 second. Exports of the events during oscillation 
are merged in the same folder so that ML training is done with 
only two folders of pictures (inside and outside event), as shown 
in Fig. 6. 

Fig.  6. Matrix of the two classes of data generated during and outside 
of an event. Oscillation sinusoid varies from 1Hz to 15Hz 

To apply machine learning methods to both simulation and 
real measurement data, we chose to use the Tensorflow and 
Keras frameworks. Among different methods, Convolutional 
Neural Networks (CNN) are classifiers that are known to have 
outstanding performances in the field of pattern recognition 

with an image input. In this work, the input is an image of the 
frequency plotting, with a size of 80x80 pixel. A similar 
approach was used for ECG arrhythmia classification, using 
data transformation and augmentation to feed a deep CNN, see 
[14] and [15] . Fig. 7 is an illustration of how CNN patterns are 
learned through translation: after learning a shape, a convnet 
can recognize it anywhere. The first convolution layer learns 
small local patterns; a second convolution layer will learn larger 
patterns made of the features of the first layers, and so on. 

 
Fig. 7.  Illustration of the action of a CNN over an image: segmentation 
and progressive merger. 

The CNN model architecture implemented for this work 
closely mirrors AlexNet’s architecture [16] with less depth. As 
shown in Table 1,  ReLU is the activation function used to bring 
non-linearity, and the final layer uses a sigmoid activation to 
output a probability between 0 and 1. Because oscillation 
detection is a binary classification problem, and the output of 
the network is a probability, a categorical cross-entropy loss is 
used [17] . 
 

Layer No. of channels Activation 
Convolution 2D 64 ReLU 
Convolution 2D 64 ReLU 
Batch Normalization   
Convolution 2D 64 ReLU 
Max Pooling 2D (2,2)  
Convolution 2D 64 ReLU 
Convolution 2D 
Batch Normalization 
Max Pooling 2D 
Convolution 2D 
Convolution 2D 
Convolution 2D 
Max Pooling 2D 
Dropout 
Flatted 
Dense 
Dense 
Dropout 
Dense 

64 
 
(2,2) 
32 
32 
32 
(2,2) 
0.3 
 
512 
256 
0.5 
2 

ReLU 
 
 
ReLU 
ReLU 
ReLU 
 
 
 
ReLU 
ReLU 
 
Softmax 

 
Table 1.  Layers and parameters of the Convolutional Neural Network 
designed 
 
We performed a comparison between the performance of the 
proposed CNN and that of other well-known architectures: 
MobileNet, ResNet and AlexNet. Thanks to the generated 
training data, an unlimited amount of data is available, and 
therefore, there is no need for data augmentation. To illustrate 
how an input  decomposes into the different filters learned by 
the network, we have shown a feature map of our second 
convolution layer in Fig. 8.  

2D image    Layer 1        Layer 2  Layer 3 

Outside event During event 

Fig.  5. On top (a): 300 seconds of Dymola output, 3 Hz oscillation 
from 120 to 200 sec. On bottom : 1 second zoom outside (b) and 
during oscillation event (c). 

(a) 

(b) (c) 
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Our proposed CNN utilizes 2D convolutions, extracting 2D 
patches from image tensors and applying an identical 
transformation to every patch. It is possible, in the same way, 
to use 1D convolutions to extract local 1D patches 
(subsequences) from sequences. 1D convnets can be 
competitive with RNNs on sequence-processing problems at a 
considerably cheaper computational cost. Recently, 1D 
convnets have been used with great success for audio 
generation and machine translation [17] . In addition to these 
specific successes, it has long been known that small 1D 
convnets can offer a fast alternative to RNNs for simple tasks 
such as timeseries forecasting. Our Conv1D model is composed 
of two Conv1D of 64 channels, one MaxPooling1D followed 
by a Dropout, then one Dense layer of 100 channels (Table 2). 
Detection accuracy is almost identical to the CNN, but 
computational resources are divided by two. 
 

Layer No. of channels Activation 
Convolution 1D 64 ReLU 
Convolution 1D 64 ReLU 
Max Pooling 1D (2)  
Dropout 0.5   
Flatten 
Dense 
Dropout 
Dense 

  
100 
0.5 
2 

  
ReLU 
  
Softmax 

 
Table 2.  Our proposed 1D convnet 

IV.  RESULTS 

To evaluate the performance of the proposed oscillation 
detector, we have used recordings of real data coming from 
PMUs from a wind farm in North America. From the entire 
dataset of events, several records have clearly visible 
oscillations with a sufficiently long time duration, which allows 
us to distinguish it from a false positive event, as shown in Fig. 
9 .  

The PMU’s data used can contain up to 446 different terminals, 
each one geographically placed on a different transmission line, 

leading to 2 Gb of data per csv file. Some of the transmission 
lines do not reflect the oscillations at all. To assess accuracy, 
we manually selected and used for training one transmission 
line that exposes clear oscillations. The results are shown in 
Table 3. Accuracy is the number of good predictions (any class) 
divided by the total number of samples (size of dataset). To 
avoid having a biased result by having more normal events than 
oscillation events, we truncated the dataset used so as to contain 
exactly 2 minutes of normal events and 2 minutes of oscillation 
events (Fig. 10).  

 
Table 3.  Accuracy and performance comparison between our CNN / 
Conv1D and other well-known architecture. ( (2) = with ImageNet 
weights loaded before inference) 
 
 

 
Fig.  10. Conv1D predicting on 4 minutes of datas: 2 min of normal 
followd by 2 min of oscillation. Sliding window of 1 second. 
 

To test the Dense, stacked LSTM and Conv1D architecture, 
instead of using an image as an input, an array of 30 normalized 
raw frequency values (real data have a sample rate of 30 
samples per second), are passed to the model. The Dense 
architecture is composed of a Dense layer with 256 and 64 units 
with a dropout in the middle. The LSTM model is a stack with 
the shape of 512-256-128-64-32 units. Both models have a 
SoftMax activation and a sparse categorical loss function.  
 
The proposed CNN architecture shows a global accuracy of 
97.41% and the proposed Conv1D shows an accuracy of 
98.06% . The time to make a prediction is the average based on 
1000 predictions made on different hardware. During 
development, a Windows PC with a Core i7-8700 CPU and 
Nvidia 1080ti graphics card with Tensorflow 2.0-GPU was 
used, while two other IoT devices were used to compare edge 
device performance as summarized below (Table 4).  
 

Model Accuracy False-
positive 

Missed 
event 

Time for 1 
prediction 
(sec) 

Proposed 
CNN 

97.41% 2 6 0.0047 

Proposed 
Conv1D 

98.06% 0 6 0.0027 

MobileNet 97.74% 2 5 0.0074 

MobileNet2  98.71% 0 4 0.0074 

AlexNet 94.51% 12 5 0.0098 

ResNet-50 97.42% 4 4 0.0174 

Dense 94.19% 6 12 0.0026 

Stacked 
LSTM 

94.19% 2 16 0.0054 

Fig.  8. Visualization of the intermediate activations displaying the 
feature maps that are produced by the second convolution of the 
proposed CNN 

Fig.  9. Proposed CNN Model (trained using simulated and real 
data) predicting each second if the frequency inputted (coming from 
a real PMU recording) is an oscillation event or not : 1 if normal 
event and 0 if oscillation event. 
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Table 4.  Average mean inference time based on 1000 samples 
 
Even on a small device without GPU computational capabilities 
like the Raspberry PI 3, the model can predict an output under 
a second, allowing its use as a real-time monitoring application 
on cost-effective devices deployed at the edge.  
 

Depending on the selected transmission line, the impact of 
adding real data during the training phase of the model (transfer 
learning) may lead to substantial prediction improvements. For 
example, in Fig. 11, the model trained only on synthetic data 
performs remarkably well. On another dataset of real PMU 
data, several misclassifications during the oscillation are 
present, as shown in Fig. 12 . 
 

This implies that it is necessary, for certain measurement 
locations, to train the model with real data. Training the model 
with real data is made with 3 selected terminals, from 3 different 
CSV files corresponding to 3 different days where oscillation is 
visible. To be able to isolate the impact of injecting real data 
during the model training phase, 73 terminals with clearly 
visible oscillations were selected. However, we observe that 
some of the false-positive event detected by the CNN may be 
actual oscillation events. A comparison of the accuracy during 
the oscillation event between a model trained on synthetic data 
only and a model trained using both synthetic and real data is 
shown in Fig. 13. 

 
 
 

 

Fig. 13. Accuracy of the oscillation detection method with a model 
trained on synthetic data only (blue) and a model trained on real + 
synthetic data (orange). Each point is a different terminal 
(transmission line). 

The transfer learning approach shows better results than 
using synthetic data only. The average prediction accuracy 
measured on 73 terminals for the model trained with simulation 
data only is 93.94%, and for the model trained on simulation + 
real data, it is 96.79%. The simulation dataset consists of 11964 
files for the training and 2991 files for validation (25% ratio). 
The real data contains 967 samples (equivalent to 15% of the 
synthetic dataset). 

 

Fig. 14. Global accuracy measured on 73 terminals for CNN 
(Conv2D) vs Conv1D 
 
Experimentation shows a very small advantage for 2D CNN, 
most of the time with a global accuracy of 96.79% for Conv2D, 
over 96.19% for Conv1D (2 minutes of normal events then 2 
minutes of oscillation events) as shown in Fig. 14. 
 

V.  SUMMARY AND FUTURE WORK 

We have presented an approach for fast detection of forced 
oscillation using one second of buffered PMU data with a deep 
CNN and a 1D convnet machine learning approach. The 
software can be deployed on low cost Linux based devices, and 
only utilizes open-source publicly available libraries. 
Experimental results indicate that we were able to achieve high 
accuracy oscillation event detection running in real-time on 
cost-effective hardware. Our current model classifies its input 
into two classes (normal condition and oscillation event). An 
additional useful feature would be to estimate the exact 
frequency of the oscillation.  Training the model to distinguish 
each oscillation frequency, from 1Hz to 15Hz, and have 16 
outputs instead of only 2 has resulted in preliminary positive 
results. Identifying the exact oscillation frequency with high 
precision using a regression estimator will be studied in future 
work. We modeled this oscillation detection as a classification 
task, future work could also model it as a "temporal detection" 
task in order to avoid the few misclassified points by learning 
from the surrounding context information, that is similar to 
approaches using in video understanding research [18].  

Hardware Time for 1 
prediction with 
CNN 

Time for 1 
prediction with 
Conv1D 

Windows PC  
Core i7 8700 – Nvidia 1080Ti 

0.0049 sec 0.0022 sec 

Nvidia Jetson Xavier 0.0357 sec 0.0170 sec 

Raspberry Pi 3 0.4698 sec 0.0114 sec 

Fig.11. Our CNN Model trained on Dymola’s data only predicting 
with a sliding window of 1 seconds. 

Fig. 12.  Model trained on synthetic data only predicting with a 
sliding window of 1 second: there is a lot of false positive event. 
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