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Abstract—Traditional simulation tools for power system studies
are, in general, shipped with built-in and closed model libraries.
Typically, the models’ implementation is not thoroughly docu-
mented, preventing the user to gain a full understanding of
their implemented behavior. Previous efforts from the authors
have focused on the development of an open source software
library of power system components developed using Modelica:
the Open-Instance Power System Library (OpenIPSL), which
provides models that can easily be accessed and studied by the
user. Recent developments have focused on the implementation
of a software architecture facilitating collaborative developments
on OpenIPSL. Employing the latest technologies available in
the software development community, this paper details the
implementation of a continuous integration workflow, providing
automated testing and behavior verification of the library’s
models. This platform seeks to increase the library’s stability
and to provide more reliable models developed collaboratively
by multiple individuals. Moreover, this software architecture only
utilizes open source software, which can be fully tailored to the
specific needs of users and other library developers.

Index Terms—Modelica, continuous integration, testing, power
system modeling, power system simulation, model validation

I. INTRODUCTION

Today’s power systems are expanding, as grids of different
areas are interconnected to form larger geographically-spread
systems. The system complexity also increases as more re-
newable energy sources and power electronic-based devices
are connected to the grid. This sets higher requirements on
power systems dynamic studies using computer simulations.

The European Network of Transmission System Operators
for Electricity (ENTSO-E) is responsible for ensuring secure
and reliable operation of the interconnected European trans-
mission system [1]. They identified a need for coordination
between the TSOs, and made a substantial effort to comply
with the Common Information Model (CIM) and Common
Grid Model Exchange Standard (CGMES), to facilitate model
exchange between TSOs. However, in CIM v14 and v15, dy-
namic models are not adequately exchanged as only pictorial
block diagrams and their associated parameters are included.

A. Drawbacks of Conventional Power System Simulation Tools

The users of power system simulation tools have widely
accepted and used a few proprietary tools for phasor time-
domain simulations (i.e. “transient stability” simulations), such
as PSS/E, PSLF, DigSILENT PowerFactory and Eurostag [2].
These tools ship with pre-compiled model libraries, and thus,
much of the information related to their actual implementation

is inaccessible [3]. The modeling philosophy of these tools
is rarely questioned, and often overlooked when analyzing
simulation results [4].

Moreover, these traditional tools rely on legacy compu-
tational code that was written decades ago. Such function-
oriented code makes both models and solvers unnecessarily
complex, and hard to maintain and extend to fulfill new
requirements [5]. Most users of such tools often cannot
extend the model library by themselves without specialized
skills in dedicated and/or complex modeling language, e.g.
DIgSILENT Simulation Language [6] and PowerWorld’s dy-
namic link libraries (DLLs) [7]. These drawbacks make power
system models virtually inaccessible for proper scrutiny and
assessment [8].

B. OpenIPSL: Modelica for Power Systems

In an attempt to alleviate the aforementioned drawbacks,
a power system component library was developed as part
of the EU funded FP7 iTesla project [9]: the iTesla Power
System Library (iPSL) [3]. This library was developed using
Modelica [10], and was forked1 by the authors into the Open-
Instance Power System Library (OpenIPSL), currently under
further development in the OpenCPS ITEA3 project [11].

Modelica was adopted for these libraries, because it is
an open-source, object-oriented, multi-domain, and standard-
ized modeling language [10]. This equation-based language
provides a framework where each model is defined through
an explicit mathematical representation of its behavior or by
graphical block diagrams2. It further guarantees code scrutiny,
and decoupling from integration solvers [12], letting the user
pick a solver of choice from the ones available in a range
of Modelica-compliant Integrated Development Environments
(IDEs). Some of these IDEs are even free and open source
software (e.g. OpenModelica [13], JModelica [14]), encour-
aging the adoption of modern development practices into the
power system area.

The OpenIPSL provides a set of power system components
for phasor time-domain simulations. These components have
been validated against reference tools, mainly PSS/E and
PSAT [15], to facilitate the adoption of the library by over-
coming stringent social aspects of resistance to change [16].

1Forks are copies of a project, independently developed into a new software
2In Modelica, graphical models are only “a mask” to an underlying

equation-based definition that specifies the behavior and interconnection rules.



C. Software Development Practices

Software engineering has been advancing substantially of-
fering constantly evolving and new technologies, and im-
proved development methods when compared to those of the
power system community. These improvements seek to ensure
the traceability of code changes, code quality and continuous
shipment of revisions to the users. In particular, in recent
years, software testing has emerged as a core component of the
development of high quality code by systematically carrying
out different types of trials [17]. It is these technologies
and practices, which are not currently adopted in the power
system community, that the authors seek to leverage in the
development of the OpenIPSL.

D. Paper Contributions and Organization

This paper presents the methodology, software architecture,
and prototype implementation that are used in the proposed
continuous integration workflow in OpenIPSL. The paper is
organized as follows: Section II discusses the development
process and the issues encountered that motivated the work
presented herein. Section III presents a brief overview of the
tools comprising the software architecture and the detailed
workflow for model testing. A use case using an exciter model
is presented in Section IV. Conclusions are drawn in Section V.

II. DEVELOPMENT WORKFLOW AND IDENTIFIED ISSUES

The development of the iPSL began with the iTesla project.
At the time, the development group had very little knowledge
about Modelica, it grew organically, and there was no well-
defined collaboration strategy. Most of the team members
worked independently, delivering the work upon completion;
there was no version control system in place, which resulted in
many copies of the library, all at different development stages.
Each newly developed model was validated only once through
a software-to-software (SW-to-SW) validation procedure and
integrated into the library [15]. Considering the simultaneous
developments by different members, some models or sub-
components could be changed, without the team noticing it.
Overall, the development process was slow and cumbersome.

As the library grew in terms of its number of implemented
models and their complexity, and as the Modelica knowledge
of the development team improved, it was decided that this
library would be used in several other research projects that
required power system simulation. Thus, if the library was to
continue growing with additional models, the code would need
re-factorization, and further developments would need to be
done following an open source approach. Rapidly, the need for
forking the original iPSL project appeared, and the OpenIPSL
project was created to facilitate independent development of
the original library with a research oriented focus.

The development workflow for the OpenIPSL was fully
revamped to focus more on incremental changes to the library.
As such the following practices were introduced:

• Version control system: To facilitate collaborative and
simultaneous development within the team and with

external actors, the library was moved to a git repository
(explained later in the text) hosted on Github.

• Feature-branch: The development of new features in the
library (new models, code re-factorization, etc.) is done
in separate branches. Upon completion, the branch can
be merged back into the stable branch (master branch).

• SW-to-SW validation: The library will now include a test
system for each component to check the validation when
changes are made to it or its subcomponents.

The new workflow allowed to speed up the library develop-
ment by involving more people, and by delivering smaller,
incremental changes, their integration was facilitated. The
continuous integration of new features brings, however, the
challenge of systematically testing the models in order to as-
sess the impact, of proposed changes, on the models’ validity.
The aim of this paper is to present the solution implemented
by the authors to address this point.

III. CONTINUOUS INTEGRATION SOLUTION

The facilities that perform automated checking and vali-
dation code tests are referred to as continuous integration
services. The solution implemented by the authors sought to
automate the methodology previously used in manual proce-
dures, and depicted in Fig. 1. The task automation allows the
project members to merge changes in confidence that these
won’t negatively impact the library’s stability.

Developer

Model 
Check

Model 
Simulation

Compute Metric

e < ! 

Display Errors *.mo

Modelica Model

*.raw

Reference Model

Reference 
Simulation

*.csv

Reference 
Traces

Succesful 
Test

Fail

Fail

Pass

Pass

1

23

4

5

Fig. 1. CI Methodology

A. Testing and Validation Methodology

The procedure for testing and validating the models in the
OpenIPSL is comprised by the following steps (see Fig. 1):
1) Test system: A small-scale test system using the compo-

nent model to be tested is implemented in both Modelica and
in a reference tool (e.g. PSS/E).



2) Reference trace: The model in the reference tool is
simulated and the simulation output (i.e. trace) is recorded
and stored for later assessment of the Modelica model.
3) Model check: In the first stage of the procedure, com-

pliance with the Modelica syntax is checked for each model.
The procedure also checks whether a model is under/over-
determined (unbalanced in the number of independent vari-
ables and equations) [18]. In case a model fails at this stage,
the procedure is aborted and an error message is returned.
4) Model validation (behavior verification): In the second

stage of the procedure, a SW-to-SW validation is performed
by comparing the simulation output of the Modelica model to
its reference trace. The two datasets are time-aligned and re-
sampling is applied w.r.t. the reference trace. The comparison
is carried out on a preselected set of variables by computing
the Root Mean Square Error (RMSE), see Eq. 1, where n is
the number of data points, xi and yi are the simulation and
reference data points at the time instant i. The RMSE serves
as a quantitative metric to validate the model: below a chosen
threshold, the model is considered validated.

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2 (1)

B. Architecture

The goal was to setup an automated system that would carry
out the aforementioned methodology. To achieve the desired
functionality, several free open source tools and services were
combined. The resulting architecture is depicted in Fig. 2.

1) Technologies : A brief description and context for each
employed technology are given below.

Git is the distributed version control system used for the de-
velopment of the OpenIPSL. It allows to keep track of changes
made to the source code, even in scenarios with developments
made in separate branches, and provides the facility to merge
several development branches together. GitHub is a hosting
platform for git repositories used for the OpenIPSL project.
It facilitates collaborative developments by providing a central
facility accessible to team members and the rest of the GitHub
community. Moreover, such environment provides additional
facilities for documentation and issue tracking also accessible
to the entire Github community. Travis CI is a web-based
continuous integration (CI) platform integrated with GitHub.
It can be configured to trigger testing routines every time
a developer pushes 3 to the repository, or creates a pull-
request 4 to the master branch. The result of the test is
reported back to GitHub. Docker is an open-source program
that lets users package an application and its dependencies into
a standardized unit (i.e. container). With Docker, developers
can create, run and ship applications in a lightweight package
that will execute on any Linux machine. The authors have been
using the “Docker Hub” service to host a pre-configured image
with Python and OpenModelica installations used to generate
the container necessary to execute the testing routines.

3operation by which a developer uploads a set of changes to the repository.
4operation to request the merge of a set of changes in the chosen branch.

2) Workflow: It was decided to build a CI service that
would trigger for every commit and pull-request sent to the
master branch of the OpenIPSL repository. The automated
process depicted on Fig. 2 is described as follows:
α) A pull-request is created on the OpenIPSL repository,

triggering the code testing script on Travis CI.
β) Upon start, the Travis CI platform clones the submitted

code from the GitHub repository.
γ) The Travis CI also pulls the image from Docker Hub

and the reference traces to be used later for validation
purposes from a local FTP server at SmarTS Lab.

δ) Within the Docker container, Python scripts will start
OpenModelica, execute the model checks, and carry out
the SW-to-SW validation procedure.

ε) In the case that a model does not pass the tests, the Python
script and Docker container will exit with the flag “1”,
meaning that the test failed. Vice versa, they exit with the
flag “0” when all of the models pass the tests.

ζ) Test results are reported back to GitHub and, depending
on the test result, the pull request will be allowed or
blocked. Travis CI also preserves a snapshot of the
process, which can be used to diagnose potential failures.

IV. ILLUSTRATIVE EXAMPLE

In this Section, errors will be intentionally introduced in the
code of one exciter model of the library to demonstrate how
the CI can support the code reviewing steps by automatically
detecting errors in the code submitted.

A. Test Model and Testing Case

The errors will be introduced in the Modelica code of the
IEEEX1 excitation system. This component was originally
implemented following the specifications given in the PSS/E
manual [19], and in the IEEE standard [20]. The implemen-
tation of the excitation system is shown on Fig. 3.

The model was originally validated against PSS/E by using
a small-scale power system network5 depicted on Fig. 4. In this
Single Machine Infinite Bus (SMIB) test power system model,
the IEEEX1 excitation system is connected to a generator. In
order to excite the dynamics of the system, a three phase-to-
ground fault is applied at the FAULT bus at t = 2 s for 150 ms.
The following set of variables will be evaluated: generator
excitation and terminal voltage, and active and reactive powers
produced by the generator.

B. Synthetic Testing

For illustrative purposes, a set of errors will be introduced
intentionally in the IEEEX1 model. First, a syntax error is
introduced in the form of erroneous parameter naming. In the
instantiation of the IEEEX1 model, the code of the modifiers
will erroneously attempt to declare the value of the exciter’s
gain using the name KA (the correct name is K_A). This error
is expected to be detected in the first stage of the workflow.

5Observe that power system tools can only simulate components when
embedded in a network. Note that this is not required for Modelica models.
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Fig. 2. Architecture of the proposed continuous integration methodology

Fig. 3. IEEEX1 excitation system model

Fig. 4. SMIB test system for the IEEEX1 exciter model (highlighted in red)

In a second test, a model error is introduced in the IEEEX1
model by changing the operator of the feedback loop in the
model. In the original model, the excitation field voltage (EFD)
is subtracted to the reference voltage, instead, it will be added
(a “+” will replace the “-”) . This error is expected to only be
detected at the second stage of the validation workflow.

C. Synthetic Testing Results

The errors described in the previous Section were succes-
sively pushed to the OpenIPSL repository to trigger Travis CI.
The results received from the CI server are shown next.

In the first stage of the workflow, all the models of the
library are checked. When the CI server checks the IEEEX1
model with a syntax error, it produces the console output
shown in List. 1. Note that the error can easily be identified
from the error message displayed in the console output.

In the second test, the IEEEX1 model containing a model
error is pushed to the repository. The first validation stage is
passed, as there are no syntax errors. In the second stage of the
workflow, the model does not pass the SW-to-SW validation
test. As shown in List. 2, the RMSE values exceed the chosen
threshold of 10−3. In particular, the RMSE of the excitation

Listing 1. CI output for a syntax error test
[/OpenIPSL/OpenIPSL/Examples/Controls/PSSE/ES/IEEEX1.mo

:26:3-41:80:readonly] Error: Variable iEEEX1_1: In
modifier (KA = 75), class or component KA not found
in <OpenIPSL.Electrical.Controls.PSSE.ES.
IEEEX1$iEEEX1_1>.

===================== Check Summary =====================
Number of models that passed the check is: 265
Number of models that failed the check is: 1

Listing 2. CI output for a modelling error test
[TEST]: OpenIPSL.Examples.Controls.PSSE.ES.IEEEX1
Simulation time: 1.092331523
Signal RMSE values follow:
Q - 0.283342688434
P - 0.100032711858
ETERM - 0.190655371519
EFD - 3.94786543302

field voltage stands out in terms of magnitude. This type of
metric can help developers locate the source of errors.

For illustration purposes, a comparison between the ref-
erence trace and the Modelica simulation was plotted from
the available signals (see Fig. 5). Figure 5a shows the traces
associated with the model error test. It can be observed that the
large difference in the two signals is reflected in both RMSE
value and their plot. Especially, it is very far from the results
obtained when the model is free from errors (see Fig. 5b).

When the tests are carried out on the CI platform, the results
are reported back to GitHub. In the current configuration, a
successful test is required to merge the changes in the master
branch. Therefore, in case of unsuccessful test, GitHub will
prevent the merging and encourage the developer to submit
corrections to the faulty code, as illustrated in Fig. 6a.

On the other hand, when all changes submitted to the
repository pass the validation tests, the CI platform will send
a green light back to GitHub, as illustrated on Fig. 6b. The
developer can then merge the changes in confidence.

V. CONCLUSIONS

The increasing size of power systems and complexity of
their component models require new modeling and simulation
technologies that will aid engineers gain common under-
standing of the overall system behavior. Currently available
simulation tools do not allow for unambiguous dynamic model
exchange. In addition, they do not explicitly ensure repeata-
bility of simulation results nor a consistent behavior of their
models from one version to the next.
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Fig. 6. GitHub interface with the Travis CI showing test results

The methodology and software architecture for continuous
power system model development presented in this paper is an
attempt to bridge the gap in software development practices
found in software engineering and those commonly used for
power system modeling and simulation. The systematic ap-
proach for model checking, verification and validation will not
only contribute to eradicating common development mistakes,
but also allow to engage the community in contributing to
the development of the OpenIPSL library by facilitating the
integration of other’s work.

In the future, the development and testing of Modelica
models may become of great importance because it could
affect simulations of power systems on multi-TSO, regional
and even continental level, especially now that Modelica has
been adopted as the language to be used in the definition of
dynamic models in the CGMES v2.5 standard [21].

A. Future Work

The proposed architecture is a prototype implementation yet
to be fully deployed on the OpenIPSL. Upon deployment,
other functionalities will be considered, e.g. automated test

case generation, new validation metrics, etc. The configuration
files for the testing infrastructure are stored in the same
repository, inviting further developments from the community.
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