
Towards Automated Power System Model
Transformation for Multi-TSO Phasor Time Domain

Simulations using Modelica

Luigi Vanfretti,

M. Ahsan Adib Murad,
Francisco Gómez López

KTH Royal Inst. Of Tech.
Stockholm, Sweden

luigiv@kth.se, maamurad@kth.se,
fragom@kth.se

Gladys León,
Silvia Machado

Aplicaciones en Informática Avanzada
S. Cugat del Vallés, Spain

leonge@aia.es, machados@aia.es

Jean-Baptiste Heyberger,
Sebastien Petitrenaud

Résau de Transport d’Électricité
Paris, France

jean-baptiste.heyberger@rte-france.com,
sebastien.petitrenaud@rte-france.com

Abstract—Transmission system operators in Europe describe
their dynamic power system models using different simulation
tools, and due to the de-facto modeling philosophy used, these
descriptions are ambiguous between tools. In addition the
current CIM standard for dynamic model exchange does not
guarantee consistency when exchanging models. This poses a
challenge to perform pan-European dynamic security
assessment. This paper presents a method for transforming
power system model descriptions typically used by TSOs into a
consistent and unambiguous equation based modeling language.
As a result, this method allows performing simulations in
multiple tools supporting the standardized Modelica language.
The transformation method is validated by steady state and
dynamic simulations and comparing simulation outputs between
a reference tool (PSS/E or Eurostag) and a Modelica tool. It is
shown that the Modelica language can be used as a common
language to provide unambiguous model descriptions consistent
with those tools typically used by TSOs, without loss of
information and maintaining simulation fidelity.

Index Terms-- Modelica, Open source software, power system
simulation, dynamic security assessment, CIM.

I. INTRODUCTION
One of the major goals of the EU Framework Project

iTESLA [1] is to perform pan-European dynamic security
assessment, which requires executing time domain simulations
considering a large number of contingencies, in order to assess
the security of the grid including its dynamic performance.
However, each European TSO has its own dynamic model
usually expressed in the proprietary format of the software
tools used to run their own dynamic studies. As a
consequence, the utilization of a common and standardized
language for modelling power system dynamics is necessary
[2].

Beyond the exchange of parameter values, to provide
consistent simulation results in different software tools, power
system dynamic simulation requires unambiguous

mathematical models across different platforms. This is very
difficult to attain given the different model realizations and
limitations of existing proprietary data exchange formats. In
addition, the fact that CIM does not provide means to
exchange the models’ equations explicitly limits the means to
guarantee simulation consistency in different tools. This
makes the use of a common modelling language very
attractive to address the issues listed above. The iTESLA
project has chosen the Modelica [3] language for this purpose
because it offers a standardized modelling language suitable
for equation-based modelling of complex cyber-physical
systems. Other advantages include its maturity, the size of the
community that supports it, its open nature, its equation-based
approach that allows modelling of complex devices and the
availability of variety of simulation tools, i.e. both open source
and proprietary, which support the modeling language.

However, to adapt to different TSO’s need, it is necessary to
automatically generate Modelica models starting from
proprietary dynamic data exchange formats and other
information specific to each TSO. To address this need,
several software modules have been developed in iTESLA to
automatically transform power system models from different
proprietary software tools; and a Modelica library containing
mathematical models that have been implemented and
validated against domain-specific simulations tools (PSS/E
and Eurostag). This paper details the model transformation
process, the different software modules developed to automate
and integrate it in the iTESLA platform, and its validation.

The remainder of this paper is organized as follows. Section II
gives component model example. In Section III, the automatic
model transformation method is explained. In Section IV, two
power system test models are presented and their
transformation is validated through comparisons with PSS/E
and Eurostag. Finally, in Section V, conclusions are drawn
and future work is outlined. Links to the Open Source
Software implementation of the proposed method are provided
in the “Further Reading” section at the end of the paper.

II. POWER SYSTEM MODELING USING MODELICA
This work expands previous efforts [4] in building basic
electrical component models into the iTESLA Power Systems
Library (iPSL) [2] to provide consistent simulation results in
different software tools that support the Modelica language.
The library has been extended with new Three-Winding
Synchronous Generator models used in Eurostag and also
new models of other types of generators, governors,
stabilizers and excitation system models, taking as reference
their implementation in PSS/E, as well as models from other
tools. The development of equivalent PSS/E models in
Modelica required to understand the specifications from the
PSS/E reference models and implementation details presented
in [5]. This proved to be a challenging and a tedious work
because there are no explicit mathematical equations in most
of the model descriptions.

Different Modelica Integrated Development Environments
(IDE) allow to build power systems models using the
Modelica language [2]. Using Modelica, a power system
model can be implemented using explicit mathematical
equations or connecting models represented in block
diagrams, which can be either user defined or from the
Modelica Standard Library [6]. One sample model available
in iPSL, which correspond to PSS/E, the excitation systems,
IEEET1 shown in Fig. 1 and Modelica implementation is
shown is Fig. 2. Observe in Fig. 2 the use of the connect
statement, which binds each of the blocks shown in Fig. 1.
While instantiation and connection of models occurs
automatically by using the diagram view of a Modelica IDE,
initial equations for each model have to be manually defined
and are required during the initialization process. This
include, as shown in Fig. 2, the initialization of differential
equations, e.g. Efd0 = EFD0, as well as the computation of
values to initialize algebraic functions, such as saturation, e.g.
SE_Efd0 = SE(EFD0, SE1, SE2, E1, E2).

1
A

A

K

sT+

RMAX
v

RMIN
v

+
-

REF
v

S
v

1
F

F

sK

sT+

()EFD pu+

1

1
R

sT+
()

C
E pu åå å

-

1

E
sT

å
E

K

E E
V s EFD= ´

R
v

+

-

++ E
v

+

Note: SE is the saturation function

 Vs=VOTHSG+VUEL+VOEL

Fig. 1: Block diagram of the IEEET1 model [7].

The components available in the iPSL have been created
following the same naming convention found in the reference
software, i.e. PSS/E or other. Furthermore, the automatic
conversion requires that the components available in the iPSL
are modeled with the same naming convention, in order to
generate the equivalent Modelica model.

model IEEET1
parameter Real Ec0 "power flow node voltage";
parameter Real TR = 1 "Voltage input time const.,
s";
parameter Real KA = 40 "AVR gain, p.u";
…
initial equation
VT0 = Ec0;
Efd0 = EFD0;
SE_Efd0 = SE(EFD0, SE1, SE2, E1, E2);
(VRMAX0, KE0) = ini0(VRMAX, KE, E2, SE2, Efd0,
SE_Efd0);
VR0 = Efd0 * (KE0 + SE_Efd0);
…
Equation
…
connect(imIntegrator.n1, EFD);
connect(se1.VE_IN, imIntegrator.n1);
connect(V_Erro.u1, Vref.n1);
connect(EC, V_Erro.u2);
connect(VOTHSG, Vs.p1);
connect(VOEL, Vs.p2);
connect(VUEL, Vs.p3);
…
end IEEET1;

Fig. 2: Modelica implementation of the IEEET1 (partial code excerpt).

CIM Importer
CIM files
ENTSOE-

V1/2

Modelica
Dynamic Model

Proprietary
Software

Dynamic Data

Network Data
Model

Contingencies and
Action Database

Dynamic
Database (DDB)

Complementary
Database

Proprietary
Dynamic Data

Importers

IIDM

Initialization Dynamic
Simulation

Power Flow

Fig. 3: Workflow for generating a Modelica model from CIM and

proprietary data formats.

III. MODEL TRANSFORMATION AND INITIALIZATION
This section presents the automatic model transformation of
networks described by dynamic data from different
proprietary software (PSS/E and Eurostag) and CIM
snapshots into equivalent Modelica models for two different
test models. Three conversion tools developed for the whole
transformation process are: CIM to iTESLA Internal Data
Model (IIDM) converter, proprietary dynamic data importers
and IIDM to Modelica converter. The general workflow used
within the iTESLA toolbox is shown in Fig. 3.
A. CIM to IIDM converter
The CIM importer in Fig. 3 was implemented in Java and its
function is to convert CIM files into the iTESLA internal data
model. Network static data are made available in the IIDM
using this converter. The converter supports the first version
of the CIM ENTSOE profile. The second version will be
implemented in the future.

B. Proprietary dynamic data importers
Dynamic data importers were developed in order to insert
Eurostag and PSS/E dynamic data into the iTESLA platform.
These importers automatically import a .dd file (.dta chunk
for Eurostag), a .dyr file (for PSS/E) and a dictionary (CSV
file) containing the mapping between Eurostag or PSS/E
equipment identifiers and the IIDM equipment identifiers into
the dynamic database (DDB).

C. IIDM to Modelica Transformation
The IIDM to Modelica transformation was realized in a
software tool that takes the model description stored in the
IIDM and outputs the model description in the Modelica
language. To transform a power system network to Modelica,
the tool retrieves the systems’ data from different sources (see
Fig. 5). The network data and dynamic data are taken from
the network data model and DDB respectively within the
IIDM. The network data describes the topology of the system
to perform power flow computations.
Next the automatic model transformation method allows the
conversion from IIDM to a Modelica model. All models
generated with this tool (here on referred to as
IIDM2Modelica) are defined by initializing the models from
iPSL and connecting them using the connect keyword, as
shown in Section IV (see Fig. 5 and Fig. 8). This implies that
to transform a power system model to the Modelica language,
it is necessary to have all Modelica component models from
the iPSL as part of the internal dynamic database (DDB) of
the iTESLA platform. So, prior performing the
transformation, the iPSL should be available in the DDB. The
main steps involved in IIDM2Modelica are the following:
• Obtain a power flow solution using the Holomorphic

Embedding Load Flow (HELM) [8] to obtain initial
values.

• Identify the network components stored in the IIDM and
their parameters.

• Identify the dynamic components stored in the DDB and
their parameters.

• Identify the connections between different components
of the network to be converted.

• Write the model using the Modelica language; the system
is ready for dynamic simulation.

When generating the Modelica model the graphical layout of
the system will be provided. This can be supported in the
future by using the annotation keyword of the Modelica
language, however the original graphical layout definition
should be known and mapped into all of the component's
annotation fields.

D. Initialization
The general form for representing a power system can be
written as:

�̇̅�𝑥 = 𝑓𝑓(�̅�𝑥,𝑦𝑦�𝑑𝑑 ,𝑦𝑦�𝑛𝑛,ɳ� ,𝑢𝑢� , 𝑡𝑡) (1)
0 = 𝑔𝑔(�̅�𝑥,𝑦𝑦�𝑑𝑑,𝑦𝑦�𝑛𝑛, ɳ� ,𝑢𝑢� , 𝑡𝑡) (2)
0 = ℎ(𝑦𝑦�𝑛𝑛, ɳ� ,𝑢𝑢�) (3)

where, �̅�𝑥, 𝑦𝑦�𝑑𝑑 ,𝑦𝑦�𝑛𝑛, ɳ�, 𝑢𝑢� and 𝑡𝑡 are the vector of state variables,
algebraic variables of dynamic components (AVR reference
voltage etc.), algebraic variables of network (Voltage
amplitude and phases of network buses), parameters, discrete
variables and time respectively. The functions f(),g() and h()
represents differential equations, algebraic equations and
algebraic equations of network for power flow solution
respectively. Power system domain specific tools find the
solution for 𝑦𝑦�𝑛𝑛 by solving Eq. (3) then resulting values are
then used to solve for �̅�𝑥 and 𝑦𝑦�𝑑𝑑 by setting Eq. (1) zero, for
each individual component or a coupled subset of them. The
initialization procedure for custom built Modelica models is
described in [4] and for models generated using
IIDM2Modelica discussed next.

1) Initializing Models in iPSL
For Modelica power system models that contain components
from any other reference tool other than Eurostag (i.e. PSS/E,
PSAT, etc.), the initialization of dynamic models is the same
as the one used by any other Modelica library [9]. Thus, the
procedure finds a solution for the resulting set of non-linear
algebraic equations (1), (2), (3) when setting (1) equal to
zero. This requires that each of the components used in the
network model define which variables have to be initialized,
within the “initial equation” section of the Modelica
model, as shown in Fig. 2 for the IEEET1 Excitation control
system. Although this approach is supported by the Modelica
language standard, and Modelica tools have efficient methods
to solve the initial value problem [10] [11], this is still a
difficult non-linear problem for solvers and optimizers [12].
Therefore, the common practice adopted to initialize iPSL
models is to define as parameters the values
corresponding to a power flow solution and other static
equipment variables, like exciter saturation parameters,
maximum and minimum values of the limiters for helping the
solver in use to calculate the initial conditions of a simulation.

2) Initializing Models from Eurostag in iPSL
Eurostag equivalent models in iPSL are comprised by two
parts: (a) model containing all model equations, and (b)
initialization models that contain the initial equations
necessary to find the initial state of each corresponding
dynamic model. Because of this, Eurostag equivalent models
in iPSL do not contain “initial equation” statements
as all other models do. Instead, these models make use of
variable attributes in order to control the initialization of each
of the component's variables. This is carried out by using the
start attribute in conjunction with the fixed attribute
All of these start values are computed through the
execution of the auxiliary file that defines the specific
initialization equations and procedures. Thus, after obtaining
a power flow solution for the network model, the automatic
conversion tool stores the solution for algebraic, continuous
and discrete variables into the DDB, i.e. the solution of Eq.
(3). Then to solve for Eq. (1) and (2), each dynamic
component is initialized separately, i.e. by solving a subset of
Eq. (1) and (2) for example, 𝑓𝑓𝑖𝑖 and 𝑔𝑔𝑖𝑖 for all i=1...n (n is the
number of dynamic components). In order to carry out this
step the component represented by 𝑓𝑓𝑖𝑖 and 𝑔𝑔𝑖𝑖 for all i=1...n

must have a corresponding initialization model. For example
in Fig. 4, M1S_1_init.mo and Reg1_init.mo to RegN_init.mo
are the initialization network model represented by different
subsets of Eq. (1) and Eq. (2). After that, the initialization
network model is simulated to calculate the steady state
values, and the obtained values are inserted in the
corresponding components. This procedure has been achieved
by using the OpenModelica API for JAVA [13]. The initial
values are provided to the full network model, which is now
ready to perform dynamic simulations.
The reasons to adopt this approach were (a) to maintain
consistency with the original Eurostag source code, which
contains an initialization model separate from a dynamic
model, and (b) due to a lack of knowledge during the initial
stages of the iTESLA project of the technical reasons why
Modelica offers the initial equation construct and
how to properly utilize it [14]. Note that the risk of using
attributes [15], even when utilizing the start in conjunction
with the fixed attribute, is that Modelica tools may choose
to add equations to solve as constraints during the
initialization process, and thus, the solution that the Modelica
tool will yield and provide initial values are different than
those specified in the start attribute.

Reg1_init.mo

Reg2_init.mo

RegN_init.mo

M1S_1_init.mo

M1S_1_init

Machines and regulators
initialization values

OMC-JAVA
API

System.mo

Fig. 4: Model initialization procedure.

E. Dynamic data conversion
TSOs work with proprietary software, which have their own
proprietary data format. In order to adapt the TSOs models
into the iTESLA project, a revision and update of the existing
models in the iPSL was necessary to guarantee that the
automatic conversion performed as required. For the Nordic
32 test system (shown in Section IV), this required to add
parameters into existing controls and other minor
modifications. Moreover, the library has been extended with
new components from PSS/E reference models. These
models [5] have been used for the implementation of the
Nordic 44 test system. In the process of developing new
Modelica models, the IIDM has to provide the correct names
and parameters for the components of any proprietary data
format and units, so the conversion can handle easily the
translation into the internal database and to instantiate the
appropriate models in Modelica.

IV. VALIDATION
Two models, the Nordic 32 test system with reference
Eurostag, and the Nordic 44 test system with reference
PSS/E, are transformed into Modelica using the approach in
Section III. The resulting Modelica models are simulated
using Dymola [16] to obtain their dynamic response when
subjected to different perturbations. The simulation outputs

from the Modelica tool are validated against each reference
software package.
A. Quantitative Assessment
The validation against each reference software package was
carried out both graphically and numerically. The numerical
assessment is carried out using the Root Mean Square Error
(RMSE) [6] and Mean Square error (MSE). The RMS and MS
value of the errors are calculated using the following
equations:

𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛

[(𝑥𝑥1 − 𝑦𝑦1)2 + ⋯+ (𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)2] (4)

𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝑛𝑛

[(𝑥𝑥1 − 𝑦𝑦1)2 + ⋯+ (𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)2] (5)

where, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are the discrete measurement point at time
𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 for software package (a) and 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 are the
discrete measurement points at time 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 for software
package (b). 𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅 is the RMSE and MSE value of
the of Z variable. The chosen assessment metric is that 𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
and 𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅 will yield values ≤ 1× 10-3 and 1× 10-6 respectively,
in order to accept the result as valid.

B. Case1: Nordic 32 test system
The KTH Nordic 32 test system is a conceptualization of the
Nordic Grid. It is composed by 52 buses, 20 synchronous
machines, 28 fixed-ratio transformers, 22 voltage-dependent
loads, 11 reactor banks and different excitation systems. The
model description used herein originated from [17]. It was
implemented in Eurostag and used as reference. The
automatic generated Modelica code obtained using the
proposed transformation approach is shown in Fig. 7.

model Nordic32
parameter Real SNREF = 100.0;
PowerSystems.Connectors.ImPin omegaRef;
// BUSES
// LINES
// FIXED TRANSFORMERS
// LOADS
// CAPACITORS
// GENERATORS
// REGULATORS
// EVENT
PowerSystems.Electrical.Events.PwFault pwFault
(R = 0.1, X = 0.1, t1 = 20, t2 = 150);
equation
omegaRef "sum of omega from all generators";
connect(pwGeneratorM2S.omegaRef, omegaRef);
…
// Connecting REGULATORS and MACHINES
connect(htgpsat3.pin_CM,pwGeneratorM2S.pin_CM);
…
// Connecting LINES
connect(bus.p, pwLine.p);
…
// COUPLING DEVICES
// Connecting LOADS
connect(bus.p, pwLoadPQ.p);
…
// Connecting Capacitors
connect(bus.p, pwCapacitorBank.p));
// Connecting GENERATORS
connect(bus.p, pwGeneratorM2S.sortie);
…
// Connecting FIXED TRANSFORMERS
connect(bus.p, pwTransformer.p);
…
//Connecting FAULT
connect(bus.p, pwFault.p);
…
end Nordic32;

Fig. 5: Modelica model of the KTH Nordic 32 system generated using the
proposed transformation method (partial code excerpt).

Fig. 6: Dynamic response from both Eurostag and Dymola simulators.

Next, the simulation outputs of the Modelica model are
validated against the Eurostag reference model. In this case,
both the Eurostag model and the Modelica model are
simulated to obtain their response due to a fault on bus
N1014, at time 20s (see Fig. 6). The comparison is given in
Table 1. Minor discrepancies seen in Fig. 6, and the
acceptable RMSE and MSE values that are beyond the given
numerical solver tolerance assure that the proposed
transformation method is valid for models whose original
reference is Eurostag.
C. Case 2: Nordic 44-Bus test system
The second model used for validation is the Nordic 44-Bus
test system. This is an equivalent of the Nordic Grid
developed within the iTESLA project. This system is
comprised of 44 buses and 61 generators with different
models for excitation systems, turbine governors and
stabilizers. The system is converted from its original
reference in PSS/E. The simulation result with a bus fault is
shown in Fig. 7 and the numerical results for assessment are
given in Table 1. Contrasting the traces in the Fig. 7 and the
RMSE and MSE values in Table 1, indicates that the
transformation process is valid for models whose original
reference is PSS/E.
D. Case 3: Nordic 44 custom-built vs automatically-built
The aim of this validation case is to demonstrate that the
converter tool can generate accurate models from external
sources, in the same way an engineer can model a network by
checking directly the reference model and do manual tests.
For this purpose, the Nordic 44 model was manually
implemented (MI). This means that the connections and
model initialization has been done by hand, checking values
and connections directly from the PSS/E model reference (i.e.
through direct human intervention). The power flow values
have been taken from the power flow solution provided by
PSS/E.

Fig. 7: Dynamic response from PSS/E and Dymola simulators.

In this case, the validation of the automatic-built (AB) model
and the hand-built model is performed by obtaining the
response for (a) a permanent fault and (b) a fault at time 20 s
with duration of 0.2 s. The simulation results are shown in
Fig. 9 and the quantitative assessment is given in Table 1.
Both figures and quantitative values in the table indicate
indiscernible numerical differences. Hence, it can be
concluded that the transformation process for models whose
reference is PSS/E is consistent with traditional/artisanal
engineering practice.

model Nordic44
parameter Real SNREF = 100.0;
// BUSES
// TAP CHANGER TRANSFORMERS
// LINES
// LOADS
// CAPACITORS
// GENERATORS
// REGULATORS
// EVENT:FAULT
PowerSystems.Electrical.Events.PwFault_fault(X = 0.5, R = 0.5, t1 =
20, t2 = 100);
equation
// Connecting REGULATORS and MACHINES
connect(stab2a.PELEC, gENROU.PELEC);
…
// Connecting REGULATORS and REGULATORS
connect(stab2a.VOTHSG, ieeet2.VOTHSG);
…
// Connecting REGULATORS and CONSTANTS
connect(ieeet2.VOEL, const.y);
…
// Connecting LINES
connect(_bus.p, pwLine_2.p);
…
// COUPLING DEVICES
// Connecting LOADS
connect(bus.p, pwLoadVoltageDependence.p);
…
// Connecting Capacitors
Connect(bus.p, pwCapacitorBank.p);
…
// Connecting GENERATORS
connect(bus.p, gENROU.p);
…
// Connecting DETAILED TRANSFORMERS
connect(bus.p, pwPhaseTransformer.p);
//Connecting FAULT
connect(bus.p, _fault.p);
end Nordic44;

Fig. 8: Automatically generated Modelica model of the Nordic 44-Bus
system partial code excerpt.

Fig. 9: Dynamic response of Nordica 44-Bus system. [in red: manually
implemented model, in blue: automatically generated model], with a
permanent fault at 20s (left) and with a fault from 20 s to 20.2 s (right).

Table 1: Quantitative Assessment for Validation.

Test System Variable RMSE MSE
Nordic 32 V2032 9.2378e-04 8.53382e-07
Nordic 44 V3020 9.0215e-05 8.13877e-09
Nordic 44
(Test 1)

V3020 3.0426e-06 9.25789e-12

Nordic 44
(Test 2)

V3020 5.2357e-06 2.74131e-11

V. CONCLUSIONS AND FUTURE WORK
During the course of this work, several lessons about

modelling and simulation with Modelica have been learnt.
Previous work [4] showed preliminary results of modelling
different Modelica models and test networks. The present
paper expands this by proposing a method to automatically
transform them from their native dynamic description
(Eurostag and PSS/E) and CIM steady state snapshot. The
main differences found in the larger networks considered here
with respect to previous work are: a) different initialization
schemes; b) new types of generator models and regulation
schemes voltage and frequency controls and c) these systems
were generated automatically. The use of the iTESLA Power
System Library (iPSL), makes the automatic conversion from
a proprietary data format into the iTESLA Internal Data
Model possible (with some effort) for TSOs who want to
utilize the iTESLA platform. The main effort would be to
populate iPSL with models used by a TSO which are not
available there, to develop the corresponding proprietary
dynamic data importer if the TSO tool is different from PSS/E
or Eurostag.

Another option, not explored in this work, would be to
develop a self-contained transformation tool that could use as
input a given ‘data format’ used by a TSO (e.g. CIM) and
output a Modelica-compliant model. The effort to develop
such tools is difficult to estimate, as there are many software
design and implementation issues that need to be considered.
One of them is that it would require to populate the iPSL with
any models that are not available for the conversion process.

FURTHER READING: OPEN SOURCE SOFTWARE DISTRIBUTION
The software implementation of the proposed method is
available as Open Source Software in the following Github
repository: https://github.com/itesla/ipst , where the specific
portion for the automated model transformation process can

be found at https://github.com/itesla/ipst/tree/master/modelica-
export
The iPSL Modelica library can be obtained in the following
repository: https://github.com/itesla/ipsl, while improvements
on the library made are being made by the research team of
the first author are in a fork of the library called OpenIPSL
that can be found in the following repository:
https://github.com/SmarTS-Lab/OpenIPSL

ACKNOWLEDGMENTS
This work was supported in part by the EU-funded FP7 iTESLA project
under grant agreement n283012 The authors are in debt to many iPSL and
OpenIPSL model contributors of KTH SmarTS Lab that have participated in
iTESLA.

REFERENCES
[1] iTesla: Innovative Tools for Electrical System Security within Large

Areas. [Online] http://www.itesla-project.eu/
[2] T. Bogodorova, M. Sabate, G. Leon, L. Vanfretti, M. Halat, J.B.

Heyberger, P. Panciatici, "A modelica power system library for phasor
time-domain simulation," in Innovative Smart Grid Technologies
Europe (ISGT EUROPE), 2013 4th IEEE/PES , vol., no., pp.1-5, 6-9
Oct. 2013.

[3] Modelica® and the Modelica Association.
http://www.modelica.org/

[4] G. Leon, M. Halat, M. Sabate, J.B. Heyberger, F.J. Gomez, L.
Vanfretti, "Aspects of power system modeling, initialization and
simulation using the Modelica language," in PowerTech, 2015 IEEE
Eindhoven, pp.1-6, June 29 2015-July 2 2015.

[5] M. Zhang, M. Baudette, J. Lavenius, S. L_vlund, L. Vanfretti,
''Modelica Implementation and Software-to-Software Validation of
Power System Component Models Commonly used by Nordic TSOs
for Dynamic Simulations'', in: 56th Conf. Simul. Model. (SIMS 56).

[6] M.A.A. Murad, F.J. Gomez, L. Vanfretti, "Equation-based modeling of
FACTS using Modelica," in PowerTech, 2015 IEEE Eindhoven, pp.1-6,
June 29 2015-July 2 2015.

[7] PSS®E 33.5, "Model Library", Technical report, Siemens PTI Ltd,
October 2013.

[8] A. Trias, "The Holomorphic Embedding Load Flow method," in Power
and Energy Society General Meeting, 2012 IEEE , pp.1-8, 22-26 July
2012.

[9] P. Fritzon, ''Principles of Object-Oriented Modeling and Simulation
with Modelcia 3.3: A Cyber-Physical Approach, Wiley-IEEE Press",
2nd Edition, April 2015.

[10] C. Pantelides, "The consistent initialization of differential-algebraic
systems." SIAM J. Sci. Stat. Comput. 9:2, 213–231, 1988.

[11] S.E Mattsson, G. Söderlind, "Index reduction in differential–algebraic
equations using dummy derivatives." SIAM J. Sci. Comput. 14(3),
677–692 (1993).

[12] B. Bachman, W. Braun, L. Ochel, V. Ruge, "Symbolical and Numerical
Approaches for Solving Nonlinear Systems, Annual OpenModelica
Workshop", February 2015.

[13] M. Sjölund, P. Fritzson. "An open modelica java external function
interface supporting metaprogramming." 7th International Modelica
Conference; Como; Italy; 20-22 September 2009. Linköping University
Electronic Press, 2009.

[14] M. Tiller, "Modelica by Example" [On-line]
http://book.xogeny.com/behavior/equations/initialization/

[15] M. Tiller, "Introduction to Physical Modeling with Modelica", The
Springer International Series in Engineering and Computer Science,
2001,

[16] Dymola: Tool for modeling and simulation of integrated and complex
systems. A commercial product from Dassault Systemes.
http://www.3ds.com

[17] Y. Chompoobutrgool, W. Li, L. Vanfretti, "Development and
implementation of a Nordic grid model for Power System small-signal
and transient stability studies in a free and open source software,"
Power and Energy Society General Meeting, 2012 IEEE , pp.1-8, 22-26
July 2012.

