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∗SmarTS Lab, KTH Royal Institute of Technology, Stockholm, Sweden

Email: {baudette, rssingh, vperic, luigiv}@kth.se
¶R&D Department, Statnett SF, Oslo, Norway, Email: luigi.vanfretti@statnett.no

Abstract—This paper presents an overview of the software
implementation of a real-time mode estimator application and
its testing. The application was developed to estimate inter-area
modes from both ambient and ring-down synchrophasor data
from multiple phasor measurement units (PMU). The software
application was implemented in LabVIEW using Statnett’s syn-
chrophasor software development kit (S3DK), to receive real-
time synchrophasor measurements. The different features of the
application were tested using two types of experiments presented
herein. The first experiment is performed using emulated sig-
nals from a simple linear model. The second experiment was
designed to use a linearized representation of the KTH-Nordic32
power system model. These experiments are used to carry out
quantitative analyses of the tool’s performance.

Index Terms—Mode estimation, inter-area oscillations, phasor
measurement units, synchrophasors.

I. INTRODUCTION

Inter-area oscillations are inherent to large power grids and

their monitoring is important for safe operation. Synchropha-

sors can aid in monitoring these oscillations [1]. Continuous

monitoring can be performed by applying signal processing

algorithms on real-time PMU data to identify critical system

modes (including frequency and damping ratio).

The development of new tools for Wide Area Monitoring

System (WAMS) should consider thorough testing procedures

before their implementation in a control center. Such testing

processes should show that the tool provides a reliable moni-

toring function, while withstanding the constraints of handling

real-time PMU measurements. Rigorous testing procedures

can be established by defining the requirements to fulfill and

combining different kinds of experiments. Experiments can

be classified into three main categories, in silico (computer

based), ex situ (in a lab environment), and in situ (in native

environment) [2].

This paper presents testing methodologies of a newly devel-

oped real-time mode estimator that combines two estimation

algorithms, one for ambient data and one for ring-down data.

The testing procedure chosen involves a group of in silico

experiments that serve to quantify the tool’s results.

This tool processes real-time PMU data by using Statnett’s

Synchrophasor Software Development Kit (S3DK) [3]. It is

built in LabVIEW using a modular architecture for further

refinements of the data handling routines, the estimation

algorithms and the graphical user interface.

The paper is organized as follows: Section II presents a

brief overview of the measurement-based estimation methods

implemented in the tool, while Section III introduces the tool

developed. The ‘in silico’ testings are presented in Section IV.

Finally conclusions are drawn in Section V.

II. MEASUREMENT-BASED MODE ESTIMATION

In power systems where synchrophasor technology has

been deployed, PMU devices are placed in numerous buses

of the system. Synchrophasor measurements are streamed

continuously and provide two types of data. During the normal

operation of the grid, the system is mainly disturbed by small

random load variations, which excite the system’s dynamics.

In this case, the measurements are referred to as “ambient”

measurements. In the case of large disturbances, such as faults,

the system’s modes are excited and oscillatory content will

be present in the measurements in the form of ring-downs,

provided that the modes are damped and the system is stable.

The methods for estimating the modes of the system differ

depending of the kind of measurements encountered. Exten-

sive documentation on these methods can be found in [4].

A. Ambient Measurements Analysis

Methods for ambient measurement analysis assume a sys-

tem disturbed by small random load variations. Here, the sys-

tem can be viewed as a transfer function, for which inputs are

the load variations and outputs the PMU measurements. Be-

cause the load variations are of small and random amplitudes,

they can be viewed as white noise. Thus, such measurements

include the modal response of inter-area oscillations.

Numerous signal processing techniques have been inves-

tigated for the extraction of the modes from ambient mea-

surements, most of which are presented in the second Chapter

of [4]. In this work, the method implemented is called stochas-

tic state-space subspace identification (SSSID) [5].

These methods usually use large parcels of PMU data to

improve estimation accuracy, but are executed continuously.

B. Ring-down Data Analysis

The methods for ring-down data analysis assume a linear

model of the system. They differ from the aforementioned

ones in that the input excitation is an impulse. The response

fitting process is therefore different depending on the selected

method. Details on these methods can be found in the first
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Chapter of [4]. In this work, the Eigensystem Realization

Algorithm (ERA) [6] is implemented.

These methods also differ in that they require that the mea-

surement data contains ring-down profiles. As a consequence,

the processed data parcels are much shorter and should be

selected carefully to only contain ring-down profiles. This

results in data parcels that are usually around two to four

times the period of the inter-area oscillations of interest.

III. SYNCHROPHASOR-BASED REAL-TIME MODE

ESTIMATOR

A mode estimator application has been developed to take

advantage of both types of mode estimation methods. As

PMUs can be placed throughout an entire power system,

preliminary studies can help to select the measurement signal

types and location with high observability for each of the

modes of interest [7]. It was decided to adopt methods

that support multiple measurement sources to increase the

estimation accuracy.

The application adopts a modular architecture that fully de-

couples the data acquisition process from the signal processing

algorithms. This is achieved by using a buffer of data that

supports asynchronous data processing, and can deliver data

parcels of different size through a buffer handler. The complete

architecture is shown in Fig. 1.

Data 
Acquisition

Bu
ffe

r

Buffer 
Handler

Ambient 
Data

Analysis

Ring-Down 
Data

Analysis
Ring-Down ?

Yes

No

Discard 
Data

Detection Flags

Data Pre-
processing

Data Pre-
processing

Fig. 1. Modular architecture of the mode estimation application

A. Synchrophasor Data Acquisition and Pre-processing

The synchrophasor data acquisition is built using S3DK [3],

which provides LabVIEW tools for utilizing PMU measure-

ments in real-time. It implements the IEEE C37.118.2 standard

for synchrophasor data communication. This enables the inte-

gration with standard WAMS equipment, such as commercial

PMU devices and phasor data concentrators.

The SDK connects to a stream of data and lets the user pick

signals to be delivered in LabVIEW for further processing.

Using these tools, the developed application includes new code

to refine signal selection and let the user define more complex

signals, such as angle difference signals or other combinations.

The application also features code to pre-process PMU mea-

surements, which may contain bad data. The pre-processing is

carried out in three stages [8]; firstly the data is detrended with

a highpass filter set at 0.05 Hz, secondly the data is filtered

with a lowpass filter set at 2.45 Hz (anti-aliasing,) and finally

the data is down-sampled. It is implemented in two parallel

instances, one for each mode estimation algorithm to allow

different down-sampling factor for each algorithm.

B. ‘In Silico’ Testing: Emulation for Statistical Testing

The application was originally developed for handling real-

time PMU measurements. It was modified to perform studies

using emulated signals by changing the data acquisition mod-

ule, taking advantage of the application’s modular architecture.

In this specific case, an additional module was developed to

include the simulation of a state-space system, with variable

inputs. The state-space system is to be discretized using a time

step Ts = 20 ms. to emulate a synchrophasor with a reporting

rate of 50 samples per second.

The input can be configured to periodically alternate be-

tween white noise signals and step signals. Hence, the outputs

fed to the buffer contain a controlled amount of ring-downs.

These modifications were introduced to carry out statistical

testing as described below.

C. Combined Approach for Mode Estimation

The application includes a ring-down detection algorithm. It

works on fixed-size data parcels and computes the oscillatory

energy of the signal in the [0.1 - 2] Hz frequency range

using a method originally proposed by Hauer [9], previously

implemented by the authors in [10], and currently being

implemented by U.S.A researches [11].

The method requires predetermined thresholds that are set

with respect to the value obtained with ambient measurements,

to minimize the false positives. In this work, the calibration

is performed by computing the mean and standard deviation

of the energy calculated by analyzing ambient data during 10

minutes. The threshold was computed as the sum of the mean

and 10 standard deviations.

IV. TESTING METHODS USING EMULATED SIGNALS

The experiments were performed using synthetic data gen-

erated from simulating two different state-space models by

exciting the inputs with either white noise or an impulse.

The purpose was to systematically study the functional per-

formance of the two algorithms, as well as the detection of

ring-down signals. The application is configured to buffer 10

minutes of data (30000 samples) for the ambient algorithm and

16 seconds of data (800 samples) for the ring-down algorithm.

For the purpose of this study, both test models are discretized

with a time step of 0.02 s. corresponding to the reporting rate

for PMUs. First, a study is performed on a fully known simple

state-space system. Then a study is performed on a linearized

model of the KTH Nordic 32 model [7].

Each experiment is performed in two steps, aimed at testing

each of the estimation algorithms. In the first step, the ambient

data algorithm is tested, therefore the input signals for the

model are set to continuous white noise with specified standard

deviation. This ensures the synthesized measurement data is

ambient. In the second step, only the ring-down data algorithm

is tested, the inputs are alternated regularly between white

noise and a step to generate ring-down data periodically. The
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TABLE I
MODAL CONTENT OF THE TEST SYSTEM

Mode Eigenvalue Frequency (Hz) Damping (%)

I a = 0.985± j0.0988 0.8 10

II b = 0.977± j0.110 0.9 15

III c = 0.973± j0.185 1.5 5

data synthesizer is configured as such that only one ring-down

is present in the data buffer, and to allow for a sufficiently large

settling time for the system to return to a steady state before

applying the next perturbation.

The experiments produced a large number of estimates that

are analyzed in MATLAB, in a similar manner for all tests

described in this Section. First, the estimates must be sorted

into the expected modes range, this is done by measuring the

distance between the estimated and the expected frequency,

and sorting according to the smallest distances. The estimates

corresponding to each expected mode are placed in a vector

of estimates. Second, the number of zeros in each vector of

estimates is computed and the zeros are removed from the

distribution fitting process (the count of zeros is used to check

the efficiency of the estimation). Finally, statistical metrics are

computed from the distribution best fitting the empirical data,

and also from the empirical data itself.

The performance of the ring-down detection is also assessed

by computing the delay between two triggers. Because the

step perturbations are periodically applied, this delay can be

compared to the period of the perturbations. In this paper,

ring-down detection is considered successful if the delay is

kept under one and a half period (to take into account the

buffering between acquisition and processing of the data).

A. Simple State-Space Model

The first experiment considers a linear time-invariant state-

space model (ẋ = Ax+Bu, y = Cx+Du), where eig(A) =
{a, b, c} as shown in Table I with the corresponding modes.

Note that B and C have rank(B) = rank(C) = 2 and their

elements are non-zero. The model also includes a non zero

feed-through matrix (D �= 0), to model measurement noise

in the output. Note that this system is purely synthetic, it was

built to have the specified modal content, without representing

any specific physical system. Thus, the perturbations applied

were arbitrarily chosen to have an amplitude ratio of 500.

For the first run, the input is configured as white noise with

standard deviation of 1, and the acquisition is set to gather

about 5000 estimates. The resulting estimates are shown on

Fig. 2. The results have been analyzed as described above and

statistical metrics are presented in Table II, the data presented

was taken from the distribution with best fit.

The results presented are globally of good performance, it

should also be noted that after the mode sorting, there was

less than 1 % of missing estimates, except for Mode II for

which that number was 5.4 %. It can also be noticed that the

estimation performances for Mode II are of lower precision,

this can be explained because Mode I and II are very close in
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Fig. 2. Frequency and damping estimation from the ambient data algorithm
for mode I, respectively (a) and (b), mode II, respectively (c) and (d), and
mode III, respectively (e) and (f)

TABLE II
STATISTICAL METRICS FROM AMBIENT DATA ESTIMATES

Mode
Frequency (Hz) Damping (%)

μa σb μ σ

I 0.80 Hz 0.024 Hz 9.14 % 2.35 %

II 0.89 Hz 0.060 Hz 10.62 % 3.40 %

III 1.49 Hz 0.055 Hz 5.08 % 1.66 %

aμ: mean
bσ: Standard deviation

the frequency domain. Therefore, the estimation process can

fail to detect that there are two modes when there are close,

and also the sorting process performed in the analysis was only

based on the frequency, leading to some errors during sorting.

This can be observed on Figs. 2a and 2c, where the sorting

seems to have swapped estimates. It can also be noticed that

using the distribution fit for statistical analysis, the influence

of the swapped estimated is contained.

The same process is repeated for the ring-down data algo-

rithm, where the input was repeatedly alternated between a

step of amplitude 500 and white noise of standard deviation
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TABLE III
STATISTICAL METRICS FROM RING-DOWN DATA ESTIMATES

Mode
Frequency (Hz) Damping (%)

μ σ μ σ

I 0.80 Hz 0.017 Hz 9.77 % 0.72 %

II 0.90 Hz 0.014 Hz 14.19 % 1.99 %

III 1.50 Hz 0.008 Hz 4.87 % 0.24 %

of 1. The experiment was set to produce about 900 estimates.

The resulting estimates are shown on Fig. 3, and their metrics

presented in Table III, where the data is also taken from the

distribution with best fit.
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Fig. 3. Frequency and damping estimation from the ring-down data algorithm
for mode I, respectively (a) and (b), mode II, respectively (c) and (d), and
mode III, respectively (e) and (f)

The results presented are of better performances than the re-

sults obtained from the ambient data. In addition, the detection

rate is nearly 100 % for all three modes. The performance of

the ring-down detection achieves 100 % with the calibration

of the threshold as described in Section III-C.

B. Linearized KTH Nordic 32 Model

Following the success of the experiment presented in the

previous Section, a second experiment was designed to use

TABLE IV
MODAL CONTENT OF THE NORDIC 32 SYSTEM

Mode Frequency (Hz) Damping (%)

I 0.499 3.5

II 0.732 3.18

a power system model. This experiment uses a linearized

model of the KTH Nordic 32 power system. In this model,

the inputs of the state space system represent the active power

and reactive power deviations at each bus, and the outputs

are the voltage magnitude and angle deviations at each bus.

The knowledge from previous studies on this model [7] was

used to choose the output signals that provide the highest

observability on the respective dominant path for each of the

two most critical modes. For the purpose of this study, the

voltage magnitude at buses 38, 40, 44, and 49 were selected

as input for the mode estimator application.

The “true modes” of this system were determined from

calculating the poles of the state-space description of the

system. The two most critical modes are shown in Table IV.

In the first test, the inputs of all 32 buses were set to white

noise with standard deviation of 0.2, and the experiment was

set to produce about 9000 estimates. The resulting estimates

are shown on Fig. 4, and their metrics are presented in Table V,

where the data is taken from the distribution with best fit.
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Fig. 4. Frequency and damping estimation from the ambient data algorithm
for mode I, respectively (a) and (b), and for mode II, respectively (c) and (d)

The results show excellent performances of the tool, high-

lighting the importance of the study of dominant paths and

observability computations. In addition, the detection rate is

nearly 100 % for all three modes.

The same process is repeated for the ring-down data algo-

rithm, where the inputs of all 32 buses were set to white noise
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TABLE V
STATISTICAL METRICS FROM AMBIENT DATA ESTIMATES

Mode
Frequency (Hz) Damping (%)

μ σ μ σ

I 0.498 Hz 0.004 Hz 3.78 % 0.79 %

II 0.728 Hz 0.008 Hz 3.67 % 1.39 %

TABLE VI
STATISTICAL METRICS FROM RING-DOWN DATA ESTIMATES

Mode
Frequency (Hz) Damping (%)

μ σ μ σ

I 0.498 Hz 0.0015 Hz 3.43 % 0.37 %

II 0.732 Hz 0.0013 Hz 3.18 % 0.32 %

of standard deviation 0.2, except for bus 40 and 44 where the

inputs were repeatedly alternating between a step of amplitude

250 (and length of 2 time-steps) and white noise as in the other

inputs. The experiment produced about 1000 estimates, shown

on Fig. 5, and their analysis is presented in Table VI.
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Fig. 5. Frequency and damping estimation from the ring-down data algorithm
for mode I, respectively (a) and (b), and for mode II, respectively (c) and (d)

The results presented are of better performances than the

results obtained from the ambient data, as for the previous

experiment, the ring-down data provides much better damping

estimates than the ambient data. Here, again, the ring-down

detection rate achieved 100 % thanks to good calibration.

V. CONCLUSIONS

This paper introduces a newly developed tool combining

two algorithms for mode estimation, that use different types

of signals. Such tool can enhance mode estimation results by

providing continuous estimation using ambient data, but at the

same time, detect ring-down data and provide more accurate

estimation using it. The testing showed that both algorithms

perform well, but the ring-down data based algorithm provides

better estimation accuracy. An additional component of the

experiments was to evaluate the method for determining the

detection threshold for the ring-down detection. The current

method achieved nearly 100 % of detection rate in both

experiments, validating it for further use.

A. Future Work

Considering the results obtained in these ‘in silico’ exper-

iments, it appears natural to continue the testing by building

an ‘ex situ’ experiment. This experiment will be part of

our future work to test the application in the SmarTS Lab

environment [12], where power system models are simulated

in a real-time digital simulator that can be connected to PMU

devices in a hardware-in-the-loop (HIL) setup.

This allows to go beyond functional testing of the tool,

toward end-to-end testing by including the entire mesurement

data acquisition chain; thus allowing to evaluate its impact and

to compare it with ‘in silico’ results.
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