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Abstract—This paper presents the design and 

implementation of a IEEE C37.118-2-compliant real-time data 
mediator, namely BableFish (BF), that facilitates synchrophasor 
data-manipulation for smart grid applications. The mediator is 
scalable by virtue of its modular software architecture , and is 

capable of receiving concurrently synchrophasor data streams 
from either Phasor Measurement Units (PMUs) or Phasor Data 
Concentrators (PDCs). The different modules of the mediator 

and their functional capabilities are discussed. Furthermore, the 
performance of the mediator is analyzed through several 
statistical performance stress tests. The mediator facilitates 
prototyping of wide area power system monitoring and control 

applications using real-time hardware-in-the-loop simulation, as 
illustrated with examples in development at KTH SmarTS Lab. 
Finally, the technical challenges associated with implementation 

and integration of system-wide synchrophasor solutions for real-
time synchrophasor-based applications is discussed.     

           

Index Terms— Synchrophasor Applications, Standard 
Implementation, IEEE C37.118, Real -Time Data 

I. INTRODUCTION 

Power systems are becoming dependent on an increasing 
number of software applications and data connections, which 
are accompanied by complexity  which can be largely  
estimated during implementation phases. These applications 
require data acquisition in real-time  from new measurement 
units and data collection systems, and this brings in a complex 
set of challenges for software application designers [1]. Some 
of these challenges are: divergent product life cycles, varying 
scenarios of use, and increasing demand on real-time 
performance. In the very specific case of synchrophasor data 
collection in real-time, there could be large amounts of data 
gathered even in short time periods, which makes the search 
of data of interest very complicated, time consuming, and 
requiring high computational abilities in hardware systems. At 
the same time a specific application may not need all such data 
to be available.  

To  address the challenge above and give each user the 
data of interest, this article discusses the design and 
development of a real-time synchrophasor  data mediator that: 
(i) connects to an arbitrary number of PMUs, PDCs, and other 
IEEE C37.118.2 [2] compliant devices, (ii) gives the user the 
ability to re-configure the choice of data to be used by a 

particular application out of all available data, and (iii)  
provides facilities to transmit the data-of-interest  through any 
network (e.g. the Internet Cloud). The third characteristic 
allows to forward data to any remote unicast device or set of 
multicast devices, which can receive the sent data for 
presentation, monitoring, manipulation, and or processing it in 
other applications. The end user can choose the tools to 
receive data independently of platform, Operating System 
(OS), computer language, and geographical location. 

The synchrophasor data mediator presented in this paper is 
named BableFish (BF), which receives real-time streams from 
PMUs/PDCs and allows engineers, researchers, or SW 
developers to implement PMU data applications. Thus, BF 
allows researcher/engineer/general user to do fast prototyping 
of new applications processing PMU measurements in their 
chosen environment. BF is scalable, modular (to guarantee 
easy future development), and capable of receiving several 
PMU data coming from either PMUs or PDCs .  

Previous work [3] dealing with the development of a 
mediator (between PMUs or PDCs and an end user that may 
need to manipulate a subset of synchrophasor data) have 
focused on user interaction and validation of SW. This article 
focuses on the design and implementation aspects of such 
mediators.  

The paper is organized as follows: Section II provides 
information about IEEE C37.118.2 compliance requirements. 
Different modules and functional capabilities of each are 
detailed in Section III. Performance stress test results are 
presented in Section IV, while integration of BF in SmarTS-
Lab and developed power system monitoring and control 
applications are discussed in Section V. Finally in Section VI 
technical challenges associated with developing such a real-
time data mediator are highlighted and conclusions are drawn. 

II. COMPLIANCE WITH IEEE C37.118.2 

The BF mediator has the ability to connect to multiple 
PMUs or PDCs by using an Internet connection, regardless of 
the underlying link layer used (which can be any kind of 
wireless or wired link).  The application layer protocol IEEE 
C37.118.2 [2] is used for carrying configuration information 
and real-time data over TCP or UDP. Fig. 1 shows the subset 
of messages that are required from the IEEE C37.118.2 
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Standard. To start the exchange of information between the 
BF (as a client) and the PDC/PMU, the first step is to establish 
a TCP connection between the two parties.  Once the TCP 
connection is established, the BF can send a command frame 
to the PMU/PDC to either stop data transmission (Turn Off 
Data) or ask for a configuration frame. 

A note worth mentioning is that in the IEEE C37.118.2 
standard, there are two configuration frames (“Configuration 
Frame 1” and “Configuration Frame 2”), and for the mediator 
(BF) to be compliant with the standard, it is only necessary to 
send “Configuration Frame 2” from the client (mediator) to 
the PMU/PDC. Once the PMU/PDC receives the IP packet 
carrying a request from the BF client regarding the 
configuration frame, it processes this request and accordingly 
sends “Configuration Frame 2” to the client. Therefore, the 
mediator needs only to receive “Configuration Frame 2” and 
analyzing its data to be complaint with the standard. 

After the mediator has all data needed for configuration, it 
sends another command to the PMU/PDC requesting it to send 
real-time data (Turn On Data). Consequently, when the 
PMU/PDC receives the Turn On Data request, it starts sending 
a continuous data stream to the mediator. Hence, the mediator 
needs to be able to receive IEEE C37.118.2 data frames and 
extract the data of every frame in real-time. 

 
Fig. 1: Required messages to be compliant with the IEEE C37.118.2 protocol 
for connecting the BabelFish (BF) mediator to a PMU/PDC. 

III. FUNCTIONAL DESCRIPTION OF THE REAL-TIME DATA 

MEDIATOR 

The BabelFish mediator provides four main 
functionalities: 

 M1: real-time reading from PMU/PDC 

 M2:  interfacing the reading module to LabView 
via ActiveX [5] 

 LV M: LabView presentation layer and choice of 
data to use  

 M3: sending chosen data to a remote host on the 

Internet in a simplified frame 
 
Fig. 2 illustrates two major issues: (i) the interconnections 

between the BF and external hosts  (PMU/PDC & the 
destination host), and (ii) the intra- connections between the 
BF internal modules (M1, M2, M3 & LabView LV-M).           
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Fig 2:  BablelFish modules M1, M2, M3, and “ Labview (LV) M”. M1 
connects to the PDC. M2 interfaces between M1 and the Labview M, which 
is the presentation module showing the data on the screen. M3 gives the 
capability for the user to transmit the chosen data on the Internet to a remote 
destination (another user). 

Module M1 and part of module M2 are in practice 

implemented in one module called M (Fig 2). M1 is 
responsible for connecting to the PDC/PMU(s) via TCP and 
is compliant with the application protocol IEEE C37.118.2 

[2] as discussed in Section II. Module M2 is capable of 
reading real-time data from M1 and interfacing it with the 
LabView module “LabView M” (LV-M). M2 is a SW 

interface that consists of two parts: (1) one in M (as discussed 
earlier) and (2) the other in the LV-M. Since the mediator 

deals with real-time data, performance parameters such as  
delay and packet loss are essential to study for choosing the 
most suitable interface method for module M2. Experimental 

tests were designed and performed to select the best 
interfacing scheme. These experiments and relevant results 
are discussed in section IV.  

The LV-M allows the user to graphically choose the data 
of interest in order to filter data streams in real-time. 

Comparing this SW design with state-of-the-art applications 
(from the points of view of use of HW, parallel SW modules, 
and time spent on preparing and integrating tests), we note 

that the proposed design allows performing real-time 
monitoring and analysis with: (a) faster reading, (b) less 
computational power from the processors, and (c) smaller 

memory sizes. Such advantages seen from the beginning of 
the design process help in providing scalability (i.e. adding 

more PMUs and PDCs to be handled per machine or 
mediator). This design concept opens the possibility to use 
smaller electronic boards to run the same mediator, therefore, 

decreasing cost and allowing for the use of PMU data in 
diverse applications. 

 

A.  Architecture and choices for modularity  

The BF modules in Fig. 2, are the same ones discussed in 
this section (shown in detail in Fig. 3); however, Fig. 2 
presents them from a SW point of view and considers 
modularity while Fig. 3 presents the SW functional 
architecture. For faster performance while reading real-time 
data, module M1 was implemented in Visual C++. The C++ 
code in M1 includes an executable and two Dynamic-Link 
Libraries (DLLs), which are responsible for connecting to, 
sending frames to, and receiving frames/data from the PDC. 
At the same time, the executable of M1 contains part of M2 
(as shown in Fig. 3) and it utilizes ActiveX to send and 
receive data to/from LV-M. This requires module M2 to be 



implemented in two different computer languages: (i) the first 
part in VC++ (inside M1 as discussed above) and another part 
in a LabView programming language called Virtual 
Instruments (VI) [4]  for reading ActiveX variables. Finally, 
the LV-M gets the user-chosen data (from the user GUI) in 
order to present this data in real-time. The user may want to 
send this chosen data to a remote destination via module M3, 
which is also implemented in LabView VI. For the specific 
implementation discussed in this paper, M3 utilizes  UDP. 
The use of TCP is planned for a later version of the software. 
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Fig. 3: Modular software architecture of BabelFish.  

B.  Implementation of modules 

The implementation of Module M1 shown in Fig. 3 
divides the functionalities of the module to four sub-modules 
that are fully within M1 and one sub-module (part of M2). 
The sub-modules are: (1) the Communication Data (CD) that 
is responsible of communicating with the PMU/PDC, (2) the 
Multi-Threading (MT) sub-module that takes care of dividing 
the tasks on different threads so that parallel functions are 
executed simultaneously (such as reading real-time data from 
the PDC while at the same time analyzing received data 
frames and sending the data to ActiveX), (3) the Data 
Management (DM) sub-module that takes care of the data 
received from the PDC and sends it to M2, (4) the GUI sub- 
module (see Fig. 4) that initializes the connection with the 
PDC and asks for “Configuration Frame 2”, and (5) the part 
of M2 that uses ActiveX for communication with LabView.  

The GUI is an executable entitled PDC_Process_Dlg (see 
Fig. 4). The other sub-modules are implemented in practice in 
two DLLs that deal with contacting the IEEE C37.118.2 
compliant device and filtering information. Therefore, when 
PDC_Process_Dlg is executed, it calls upon functions from 
the two DLLs, which are related to the sub-modules 
presented in M1 as shown in Fig. 3. The second part of M2 is 
integrated together with the LabView module (LV-M) in one 
VI, but the M2 part is only responsible for ActiveX data 
reading. The LabView module includes the presentation part 
of the SW, and it is shown in Fig. 5 and Fig. 6. After having 
connected with Module 1 (Fig. 4) using VC++, the LabView 
VI (Fig. 5) shows the PMUs connected to the PDC, and it 
allows the user to choose which PMU data are of interest 
(down to the detail of choosing either the Magnitude or the 
Angle of the synchrophasor of interest). The chosen data is 
then displayed in a table in the lower left corner of the LV-M 
(see Fig. 5). 

 

Fig. 4: Visual Studio executable Dialogue window to connect the mediator to 
the PDC, entitled “ PDC_Process_Dlg”. The user clicks on the 
“ Configuration Frame2” button in order to start the event of sending a 
command asking for ConfigFrame 2 of the IEEE C37.118.2 from the PDC . 

The user can either save a configuration or load an older 
configuration by using the “Save” and “Open” buttons. This 
would save time for the user, who may be interested in 
specific synchrophasor values for a particular application. 
Then, by pressing the “Play” button, the VC++ code (Module 
M1) knows by an event sent from the module (LV- M) that it  
has to filter only the chosen data and accordingly send (via 
M2 using ActiveX) the filtered real-time data values, which 
get displayed in real-time also in the GUI lower tab, as show 
in Fig. 5. In addition, the user can choose to send the real-
time filtered data to a remote destination by going to the 
lower tab entitled “Output Cluster” and pressing on the 
“Start” button (see Fig. 6). Consequently, the data will be sent 
over UDP to a chosen host. The configuration of the remote 
host is also chosen by the user in the upper right tab entitled 
“Transport Info”. Fig. 7 shows the demonstration of a set of 
chosen PDC data received in real-time at a remote host 
running a UDP receiver. With this implementation, the users 
at both, the BF side and remote destination, can use the data 
of interest in real-time. 

IV. PERFORMANCE 

The mediation scheme presented requires Quality of 
Service (QoS) checks since it deals with real-time data. The 
SW presented here was designed after QoS tests were made 
for three different scenarios to interact between VC++ and 
LabView. In order to maintain the interaction between these 
two environments without delay, a relatively fast common 
interface is needed. Three different interfaces were evaluated: 
text-based or Data Base (DB), streaming, and ActiveX. The 
results from 100 statistical performance tests are presented in 
Table 1. These results suggest that ActiveX is the most 
suitable environment for real-time implementations in 
Windows 7 OS since its delays are significantly different and 
it shows no packet loss.  

    The performance of the real-time reading module in 
VC++ depends on the computational power of the HW used. 
Stress tests could not show the limit. The tests were 
performed on a PC with Intel Core i5 CPU with 4GB RAM 
using Windows 7 OS (only 3.7 GB RAM effectively 
available). For the stress test, a PDC with more than 6 PMUs, 
each with more than 4 parameters to transmit was used; the 
performance was not affected. The total end-to-end delay was 
in the millisecond range, and no glitches were observed out of 
100 statistical tests. Hence an open issue remains: to have as 
many PMUs connected to check the limit on performance.  



 

Fig. 5: LabView Module (LV-M) for choosing data of interest by the user and displaying the real-time stream of chosen data. The top tab shows the list 
of PMUs that are connected to the PDC, the synchrophasors per PMU, and the “ OK” buttons to choose the Magnitude(s) and Angle(s) of interest from 
each synchrophasor. The part on the right shows the network configuration tabs, and the one presented is for the IP address, Port, & ID Code of the 
PMU/PDC. The lower tab on the left shows the Chosen Data. When the user presses Play, the synchrophasor real-time information is displayed 
continuously: Phasor Time Stamp, Phasor Values, FREQ, DFREQ, Analogs, and Digitals. 

 

Fig. 6: Labview Module presenting the chosen data in the lower part in the tab entitled “ Output Cluster”, where each Phasor data set is clustered in one column 
and ready to be sent to a remote destination when the “ START” button is pressed (see sent data in Fig. 7). 
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Fig. 7: Sending a set of chosen PDC data from the LV Module to a remote destination over the Internet. The destination shows a UDP receiver waiting for the 
clustered data (from Fig. 6) to be read at port 58432 (chosen by the users via an agreement on both sides) and the data is presented in the scroll down box. 



TABLE I 

QOS TESTS FOR 3 DIFFERENT SCHEMES (DELAY VALUES ARE IN ms) 

Parameter Text Based Streaming ActiveX 

Average Delay 2.54 1.49 0.2 

Min. Delay 0 0 0 

Max. Delay 8 13 1 

Std. Deviation 1.17 1.34 0.40 

V. REAL-TIME EXECUTION OF BABELFISH 

The developed BF is integrated in SmarTS-Lab [6] to 
provide effortless implementation of synchrophasor based 
monitoring, protection and control applications. The 
workflow for real-time hardware-in-the-loop execution of BF 
is shown in Fig. 8. The three phase voltage and current 
signals of the desired buses of a power system model are 
accessed from Opal-RT’s eMEGAsim Real-Time simulator 
[7] and are fed to the PMUs. These PMU streams are time 
aligned and concentrated by the Phasor Data Concetrator 
(PDC) and are received by BF executing in a workstation. 
The user selected raw synchrophasor data through BF is 
further transmitted to different power system monitoring, and 
control applications using UDP thus facilitating platform 
independency for developing these synchrphasor based 
applications. The bottom half of Fig. 8 shows the prototype 
applications being developed using BF where; (i) is the 
simple UDP client on either a remote workstation or smart 
phone / tablet to receive user selected synchrophasor data for 
visualizing power system trend, (ii) is an external controller 
based on National Instruments Compact Reconfigurable I/O 
Controllers (NI-cRIO) receiving selected raw synchrophasors 
from BF as UDP and utilizing these measurements in real-
time for power oscillation damping algorithm, and (iii) shows 
a power system monitoring application developed in 
LabView to visualize frequency, voltage/current magnitudes 
and phase angles as selected by user in BF. A more detailed 
application example is presented in [8].  

VI. CONSLUSIONS AND DISCUSSION ON IEEE C37.118.2  

TRANSFORMATION TO REAL-TIME  

Transforming a textual written standard for a protocol into 
a coded application within a networking environment, while 
considering the large amount of growing networking 
protocols (and versions of protocols) and data link types (e.g. 
Wireless LANs, 2.5G, 3G, 4G, wired links, etc.), a set of 
challenging issues that could hinder the process of a suitable 
design of solution (and modules) naturally emerges. The 
major challenge was to be able to account within the design 
process for all possible combinations of Operating System 
differences, platforms, TCP versions, TCP/IP suite 
implementations, graphical design issues and their use of 
available HW resources, parallelization of the different 
modules and what comes before/after what while the protocol 
is interacting with clients and servers. These issues were 
learnt over the process of implementation, and one learning 
from this work is that they better be taken into consideration 
from the beginning of the solution design. In this work a co-
design process considered the issues mentioned above and 
specific tests for every issue of interest were designed and 
performed in order to make choices on HW and SW. For 
instance, the results in Table 1 lead to the choice of ActiveX 
as an interaction module due to the fact that the solution was 
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Fig. 8: Utilization of BF in SmarTS-Lab to develop platform independent 
wide area monitoring and control applications.  

built for real-time utilization, i.e. delay is a sensitive 
parameter. In this regard, one important result is the threshold 
on the delay that the solution can handle. This delay is a 
function of the HW specifications (presented in Section IV), 
the SW parallel modules, and the network environment, and 
the interface modules (e.g. text, streaming, or ActiveX). The 
result is that the only critical parameter is the end-to-end 
delay. Hence, during the design and implementation phase, it 
was important to make integral tests for the delay of each 
module, as shown in Table 1. However, after the whole 
implementation is finalized, a check is necessary to determine 
if the delay from the PDC to the BF and to the remote user 
are within real-time limits. 

VII. REFERENCES 

[1] E. Santacana, G.  Rackliffe, L. Tang, and F.  Xiaoming “ Getting 
Smart”, IEEE Power and Energy Magazine,  Vol. 8, No. 2, pp. 41 – 48, 
April 2010. 

[2] IEEE C37.118.2-2011, IEEE Standard for Synchrophasor Data Transfer 

for Power Systems, IEEE Power and Energy Society, Dec. 2011 
[3] L. Vanfretti, V. H. Aarstrand, M. S. Almas, V. S. Perić and J. O. Gjerde 

, “ A Software Development Toolkit for Real-Time Synchrophasor 
Applications”, IEEE Powertech 2013, Grenoble, France, June 2013 

[4] National Instruments, “ Labview-System Design Software”, 
documentation available online: http://www.ni.com/labview/ 

[5] Microsoft, “ Component Object Model – ActiveX”, documentation 
available online: http://www.microsoft.com/com/default.mspx 

[6] M.S. Almas, M. Baudette, L. Vanfretti, S. Løvlund and J.O. Gjerde, 
“ Synchrophasor Network, Laboratory and Software Applications 
developed in the STRONg2rid project”, IEEE PES General Meeting,  
Washington DC, USA, July 2014 

[7] Opal-RT, “ eMEGAsim PowerGrid Real-Time Digital Hardware in the 

Loop Simulator,” available on-line: http://www.opal-rt.com/.  
[8] L. Vanfretti, M. Baudette, I. Al-Khatib, M. S. Almas, and J. Gjerde, 

“ Testing and Validation of a Fast Real-Time Oscillation Detection 
PMU-Based Application for Wind-Farm Monitoring”, Black Sea 

Conference on Communications and Networking, Georgia,  July 2013 


		2015-06-22T11:21:51-0400
	Certified PDF 2 Signature




