
Real-Time Data Mediation for Synchrophasor Application Development
Compliant with IEEE C37.118.2

Luigi Vanfretti1,2, Iyad Al Khatib3,4,5 and Muhammad Shoaib Almas1

1
 KTH Royal Institute of Technology, Sweden

2Statnett SF, R&D, Norway 3
iITC, R&D, Stockholm, Sweden

4
American University of Culture and Education (AUCE), Beirut, Lebanon

5
Politecnico di Milano (POLIMI), Milan, Italy

Abstract—This paper presents the design and

implementation of a IEEE C37.118-2-compliant real-time data
mediator, namely BableFish (BF), that facilitates synchrophasor
data-manipulation for smart grid applications. The mediator is
scalable by virtue of its modular software architecture , and is

capable of receiving concurrently synchrophasor data streams
from either Phasor Measurement Units (PMUs) or Phasor Data
Concentrators (PDCs). The different modules of the mediator

and their functional capabilities are discussed. Furthermore, the
performance of the mediator is analyzed through several
statistical performance stress tests. The mediator facilitates
prototyping of wide area power system monitoring and control

applications using real-time hardware-in-the-loop simulation, as
illustrated with examples in development at KTH SmarTS Lab.
Finally, the technical challenges associated with implementation

and integration of system-wide synchrophasor solutions for real-
time synchrophasor-based applications is discussed.

Index Terms— Synchrophasor Applications, Standard
Implementation, IEEE C37.118, Real -Time Data

I. INTRODUCTION

Power systems are becoming dependent on an increasing
number of software applications and data connections, which
are accompanied by complexity which can be largely
estimated during implementation phases. These applications
require data acquisition in real-time from new measurement
units and data collection systems, and this brings in a complex
set of challenges for software application designers [1]. Some
of these challenges are: divergent product life cycles, varying
scenarios of use, and increasing demand on real-time
performance. In the very specific case of synchrophasor data
collection in real-time, there could be large amounts of data
gathered even in short time periods, which makes the search
of data of interest very complicated, time consuming, and
requiring high computational abilities in hardware systems. At
the same time a specific application may not need all such data
to be available.

To address the challenge above and give each user the
data of interest, this article discusses the design and
development of a real-time synchrophasor data mediator that:
(i) connects to an arbitrary number of PMUs, PDCs, and other
IEEE C37.118.2 [2] compliant devices, (ii) gives the user the
ability to re-configure the choice of data to be used by a

particular application out of all available data, and (iii)
provides facilities to transmit the data-of-interest through any
network (e.g. the Internet Cloud). The third characteristic
allows to forward data to any remote unicast device or set of
multicast devices, which can receive the sent data for
presentation, monitoring, manipulation, and or processing it in
other applications. The end user can choose the tools to
receive data independently of platform, Operating System
(OS), computer language, and geographical location.

The synchrophasor data mediator presented in this paper is
named BableFish (BF), which receives real-time streams from
PMUs/PDCs and allows engineers, researchers, or SW
developers to implement PMU data applications. Thus, BF
allows researcher/engineer/general user to do fast prototyping
of new applications processing PMU measurements in their
chosen environment. BF is scalable, modular (to guarantee
easy future development), and capable of receiving several
PMU data coming from either PMUs or PDCs .

Previous work [3] dealing with the development of a
mediator (between PMUs or PDCs and an end user that may
need to manipulate a subset of synchrophasor data) have
focused on user interaction and validation of SW. This article
focuses on the design and implementation aspects of such
mediators.

The paper is organized as follows: Section II provides
information about IEEE C37.118.2 compliance requirements.
Different modules and functional capabilities of each are
detailed in Section III. Performance stress test results are
presented in Section IV, while integration of BF in SmarTS-
Lab and developed power system monitoring and control
applications are discussed in Section V. Finally in Section VI
technical challenges associated with developing such a real-
time data mediator are highlighted and conclusions are drawn.

II. COMPLIANCE WITH IEEE C37.118.2

The BF mediator has the ability to connect to multiple
PMUs or PDCs by using an Internet connection, regardless of
the underlying link layer used (which can be any kind of
wireless or wired link). The application layer protocol IEEE
C37.118.2 [2] is used for carrying configuration information
and real-time data over TCP or UDP. Fig. 1 shows the subset
of messages that are required from the IEEE C37.118.2

978-1-4799-1785-3/15/$31.00 ©2015 IEEE

Standard. To start the exchange of information between the
BF (as a client) and the PDC/PMU, the first step is to establish
a TCP connection between the two parties. Once the TCP
connection is established, the BF can send a command frame
to the PMU/PDC to either stop data transmission (Turn Off
Data) or ask for a configuration frame.

A note worth mentioning is that in the IEEE C37.118.2
standard, there are two configuration frames (“Configuration
Frame 1” and “Configuration Frame 2”), and for the mediator
(BF) to be compliant with the standard, it is only necessary to
send “Configuration Frame 2” from the client (mediator) to
the PMU/PDC. Once the PMU/PDC receives the IP packet
carrying a request from the BF client regarding the
configuration frame, it processes this request and accordingly
sends “Configuration Frame 2” to the client. Therefore, the
mediator needs only to receive “Configuration Frame 2” and
analyzing its data to be complaint with the standard.

After the mediator has all data needed for configuration, it
sends another command to the PMU/PDC requesting it to send
real-time data (Turn On Data). Consequently, when the
PMU/PDC receives the Turn On Data request, it starts sending
a continuous data stream to the mediator. Hence, the mediator
needs to be able to receive IEEE C37.118.2 data frames and
extract the data of every frame in real-time.

Fig. 1: Required messages to be compliant with the IEEE C37.118.2 protocol
for connecting the BabelFish (BF) mediator to a PMU/PDC.

III. FUNCTIONAL DESCRIPTION OF THE REAL-TIME DATA

MEDIATOR

The BabelFish mediator provides four main
functionalities:

 M1: real-time reading from PMU/PDC

 M2: interfacing the reading module to LabView
via ActiveX [5]

 LV M: LabView presentation layer and choice of
data to use

 M3: sending chosen data to a remote host on the

Internet in a simplified frame

Fig. 2 illustrates two major issues: (i) the interconnections

between the BF and external hosts (PMU/PDC & the
destination host), and (ii) the intra- connections between the
BF internal modules (M1, M2, M3 & LabView LV-M).

PMU

PMU

PDC
Destination

 / App
M

Labview
M

M1
Decoder

M2
Interface

IEEE C37.118.2
over TCP

M3
TCP/UDP
Sender

Software
Interface

TCP/UDP

BabelFish

Fig 2: BablelFish modules M1, M2, M3, and “ Labview (LV) M”. M1
connects to the PDC. M2 interfaces between M1 and the Labview M, which
is the presentation module showing the data on the screen. M3 gives the
capability for the user to transmit the chosen data on the Internet to a remote
destination (another user).

Module M1 and part of module M2 are in practice

implemented in one module called M (Fig 2). M1 is
responsible for connecting to the PDC/PMU(s) via TCP and
is compliant with the application protocol IEEE C37.118.2

[2] as discussed in Section II. Module M2 is capable of
reading real-time data from M1 and interfacing it with the
LabView module “LabView M” (LV-M). M2 is a SW

interface that consists of two parts: (1) one in M (as discussed
earlier) and (2) the other in the LV-M. Since the mediator

deals with real-time data, performance parameters such as
delay and packet loss are essential to study for choosing the
most suitable interface method for module M2. Experimental

tests were designed and performed to select the best
interfacing scheme. These experiments and relevant results
are discussed in section IV.

The LV-M allows the user to graphically choose the data
of interest in order to filter data streams in real-time.

Comparing this SW design with state-of-the-art applications
(from the points of view of use of HW, parallel SW modules,
and time spent on preparing and integrating tests), we note

that the proposed design allows performing real-time
monitoring and analysis with: (a) faster reading, (b) less
computational power from the processors, and (c) smaller

memory sizes. Such advantages seen from the beginning of
the design process help in providing scalability (i.e. adding

more PMUs and PDCs to be handled per machine or
mediator). This design concept opens the possibility to use
smaller electronic boards to run the same mediator, therefore,

decreasing cost and allowing for the use of PMU data in
diverse applications.

A. Architecture and choices for modularity

The BF modules in Fig. 2, are the same ones discussed in
this section (shown in detail in Fig. 3); however, Fig. 2
presents them from a SW point of view and considers
modularity while Fig. 3 presents the SW functional
architecture. For faster performance while reading real-time
data, module M1 was implemented in Visual C++. The C++
code in M1 includes an executable and two Dynamic-Link
Libraries (DLLs), which are responsible for connecting to,
sending frames to, and receiving frames/data from the PDC.
At the same time, the executable of M1 contains part of M2
(as shown in Fig. 3) and it utilizes ActiveX to send and
receive data to/from LV-M. This requires module M2 to be

implemented in two different computer languages: (i) the first
part in VC++ (inside M1 as discussed above) and another part
in a LabView programming language called Virtual
Instruments (VI) [4] for reading ActiveX variables. Finally,
the LV-M gets the user-chosen data (from the user GUI) in
order to present this data in real-time. The user may want to
send this chosen data to a remote destination via module M3,
which is also implemented in LabView VI. For the specific
implementation discussed in this paper, M3 utilizes UDP.
The use of TCP is planned for a later version of the software.

Main interface for RT Data
Handling and Selection

LabView VI

M3
Labview

Transmit chosen
data over TCP/IP to

other consumers

M2

AcitveX

Internet

M1
2DLLs & 1 EXE

Communications
, data sockets

(MST, VC++, TCP-
UDP/IP)

Graphical User
Interface

(Dialog Box)

Create Thread
CD MT

Data Management
VC++ (STL, PPL, Multi-

threading ATL, classes, and
objects)

Data Structures

GUI
DB

Create
Thread

DM

PMU/PDC
Data

Multi-threading
Architecture

(VC++)
TCP-UDP

DataSockets
Configuration

Data

Future

Create
Thread

Fig. 3: Modular software architecture of BabelFish.

B. Implementation of modules

The implementation of Module M1 shown in Fig. 3
divides the functionalities of the module to four sub-modules
that are fully within M1 and one sub-module (part of M2).
The sub-modules are: (1) the Communication Data (CD) that
is responsible of communicating with the PMU/PDC, (2) the
Multi-Threading (MT) sub-module that takes care of dividing
the tasks on different threads so that parallel functions are
executed simultaneously (such as reading real-time data from
the PDC while at the same time analyzing received data
frames and sending the data to ActiveX), (3) the Data
Management (DM) sub-module that takes care of the data
received from the PDC and sends it to M2, (4) the GUI sub-
module (see Fig. 4) that initializes the connection with the
PDC and asks for “Configuration Frame 2”, and (5) the part
of M2 that uses ActiveX for communication with LabView.

The GUI is an executable entitled PDC_Process_Dlg (see
Fig. 4). The other sub-modules are implemented in practice in
two DLLs that deal with contacting the IEEE C37.118.2
compliant device and filtering information. Therefore, when
PDC_Process_Dlg is executed, it calls upon functions from
the two DLLs, which are related to the sub-modules
presented in M1 as shown in Fig. 3. The second part of M2 is
integrated together with the LabView module (LV-M) in one
VI, but the M2 part is only responsible for ActiveX data
reading. The LabView module includes the presentation part
of the SW, and it is shown in Fig. 5 and Fig. 6. After having
connected with Module 1 (Fig. 4) using VC++, the LabView
VI (Fig. 5) shows the PMUs connected to the PDC, and it
allows the user to choose which PMU data are of interest
(down to the detail of choosing either the Magnitude or the
Angle of the synchrophasor of interest). The chosen data is
then displayed in a table in the lower left corner of the LV-M
(see Fig. 5).

Fig. 4: Visual Studio executable Dialogue window to connect the mediator to
the PDC, entitled “ PDC_Process_Dlg”. The user clicks on the
“ Configuration Frame2” button in order to start the event of sending a
command asking for ConfigFrame 2 of the IEEE C37.118.2 from the PDC .

The user can either save a configuration or load an older
configuration by using the “Save” and “Open” buttons. This
would save time for the user, who may be interested in
specific synchrophasor values for a particular application.
Then, by pressing the “Play” button, the VC++ code (Module
M1) knows by an event sent from the module (LV- M) that it
has to filter only the chosen data and accordingly send (via
M2 using ActiveX) the filtered real-time data values, which
get displayed in real-time also in the GUI lower tab, as show
in Fig. 5. In addition, the user can choose to send the real-
time filtered data to a remote destination by going to the
lower tab entitled “Output Cluster” and pressing on the
“Start” button (see Fig. 6). Consequently, the data will be sent
over UDP to a chosen host. The configuration of the remote
host is also chosen by the user in the upper right tab entitled
“Transport Info”. Fig. 7 shows the demonstration of a set of
chosen PDC data received in real-time at a remote host
running a UDP receiver. With this implementation, the users
at both, the BF side and remote destination, can use the data
of interest in real-time.

IV. PERFORMANCE

The mediation scheme presented requires Quality of
Service (QoS) checks since it deals with real-time data. The
SW presented here was designed after QoS tests were made
for three different scenarios to interact between VC++ and
LabView. In order to maintain the interaction between these
two environments without delay, a relatively fast common
interface is needed. Three different interfaces were evaluated:
text-based or Data Base (DB), streaming, and ActiveX. The
results from 100 statistical performance tests are presented in
Table 1. These results suggest that ActiveX is the most
suitable environment for real-time implementations in
Windows 7 OS since its delays are significantly different and
it shows no packet loss.

 The performance of the real-time reading module in
VC++ depends on the computational power of the HW used.
Stress tests could not show the limit. The tests were
performed on a PC with Intel Core i5 CPU with 4GB RAM
using Windows 7 OS (only 3.7 GB RAM effectively
available). For the stress test, a PDC with more than 6 PMUs,
each with more than 4 parameters to transmit was used; the
performance was not affected. The total end-to-end delay was
in the millisecond range, and no glitches were observed out of
100 statistical tests. Hence an open issue remains: to have as
many PMUs connected to check the limit on performance.

Fig. 5: LabView Module (LV-M) for choosing data of interest by the user and displaying the real-time stream of chosen data. The top tab shows the list
of PMUs that are connected to the PDC, the synchrophasors per PMU, and the “ OK” buttons to choose the Magnitude(s) and Angle(s) of interest from
each synchrophasor. The part on the right shows the network configuration tabs, and the one presented is for the IP address, Port, & ID Code of the
PMU/PDC. The lower tab on the left shows the Chosen Data. When the user presses Play, the synchrophasor real-time information is displayed
continuously: Phasor Time Stamp, Phasor Values, FREQ, DFREQ, Analogs, and Digitals.

Fig. 6: Labview Module presenting the chosen data in the lower part in the tab entitled “ Output Cluster”, where each Phasor data set is clustered in one column
and ready to be sent to a remote destination when the “ START” button is pressed (see sent data in Fig. 7).

Sender (LV M+M3) Destination (UDP Receiver)

Cloud Network

Fig. 7: Sending a set of chosen PDC data from the LV Module to a remote destination over the Internet. The destination shows a UDP receiver waiting for the
clustered data (from Fig. 6) to be read at port 58432 (chosen by the users via an agreement on both sides) and the data is presented in the scroll down box.

TABLE I

QOS TESTS FOR 3 DIFFERENT SCHEMES (DELAY VALUES ARE IN ms)

Parameter Text Based Streaming ActiveX

Average Delay 2.54 1.49 0.2

Min. Delay 0 0 0

Max. Delay 8 13 1

Std. Deviation 1.17 1.34 0.40

V. REAL-TIME EXECUTION OF BABELFISH

The developed BF is integrated in SmarTS-Lab [6] to
provide effortless implementation of synchrophasor based
monitoring, protection and control applications. The
workflow for real-time hardware-in-the-loop execution of BF
is shown in Fig. 8. The three phase voltage and current
signals of the desired buses of a power system model are
accessed from Opal-RT’s eMEGAsim Real-Time simulator
[7] and are fed to the PMUs. These PMU streams are time
aligned and concentrated by the Phasor Data Concetrator
(PDC) and are received by BF executing in a workstation.
The user selected raw synchrophasor data through BF is
further transmitted to different power system monitoring, and
control applications using UDP thus facilitating platform
independency for developing these synchrphasor based
applications. The bottom half of Fig. 8 shows the prototype
applications being developed using BF where; (i) is the
simple UDP client on either a remote workstation or smart
phone / tablet to receive user selected synchrophasor data for
visualizing power system trend, (ii) is an external controller
based on National Instruments Compact Reconfigurable I/O
Controllers (NI-cRIO) receiving selected raw synchrophasors
from BF as UDP and utilizing these measurements in real-
time for power oscillation damping algorithm, and (iii) shows
a power system monitoring application developed in
LabView to visualize frequency, voltage/current magnitudes
and phase angles as selected by user in BF. A more detailed
application example is presented in [8].

VI. CONSLUSIONS AND DISCUSSION ON IEEE C37.118.2

TRANSFORMATION TO REAL-TIME

Transforming a textual written standard for a protocol into
a coded application within a networking environment, while
considering the large amount of growing networking
protocols (and versions of protocols) and data link types (e.g.
Wireless LANs, 2.5G, 3G, 4G, wired links, etc.), a set of
challenging issues that could hinder the process of a suitable
design of solution (and modules) naturally emerges. The
major challenge was to be able to account within the design
process for all possible combinations of Operating System
differences, platforms, TCP versions, TCP/IP suite
implementations, graphical design issues and their use of
available HW resources, parallelization of the different
modules and what comes before/after what while the protocol
is interacting with clients and servers. These issues were
learnt over the process of implementation, and one learning
from this work is that they better be taken into consideration
from the beginning of the solution design. In this work a co-
design process considered the issues mentioned above and
specific tests for every issue of interest were designed and
performed in order to make choices on HW and SW. For
instance, the results in Table 1 lead to the choice of ActiveX
as an interaction module due to the fact that the solution was

Real-Time
Simulator

BabelFish

Substation Clock
Arbiter Model 1094 B

GPS Antenna

Voltage and
Current

Amplifiers

Protection Relays
and PMUs

SEL – 487 E

ABB RES-670

IR
IG

-B

Communication
Network

(Managed Ethernet
Switch)

PMU Stream

Phasor Data
Concentrator (PDC)

User selected synchrophasor
data through BF being used in a
power system monitoring
application

Selected synchrophasor
data being received in
National Instrument
controllers using UDP for
performing power system
control applications

To external controllers

Remote UDP clients on
different programming
platform using user
selected synchrophasor
data from BF for further
data manipulation

Remote UDP Clients

Legend

GPS Signal

Hardwired

PMU stream

PDC stream

Feedback Signal

Feedback Signal

1 2 3

Fig. 8: Utilization of BF in SmarTS-Lab to develop platform independent
wide area monitoring and control applications.

built for real-time utilization, i.e. delay is a sensitive
parameter. In this regard, one important result is the threshold
on the delay that the solution can handle. This delay is a
function of the HW specifications (presented in Section IV),
the SW parallel modules, and the network environment, and
the interface modules (e.g. text, streaming, or ActiveX). The
result is that the only critical parameter is the end-to-end
delay. Hence, during the design and implementation phase, it
was important to make integral tests for the delay of each
module, as shown in Table 1. However, after the whole
implementation is finalized, a check is necessary to determine
if the delay from the PDC to the BF and to the remote user
are within real-time limits.

VII. REFERENCES

[1] E. Santacana, G. Rackliffe, L. Tang, and F. Xiaoming “ Getting
Smart”, IEEE Power and Energy Magazine, Vol. 8, No. 2, pp. 41 – 48,
April 2010.

[2] IEEE C37.118.2-2011, IEEE Standard for Synchrophasor Data Transfer

for Power Systems, IEEE Power and Energy Society, Dec. 2011
[3] L. Vanfretti, V. H. Aarstrand, M. S. Almas, V. S. Perić and J. O. Gjerde

, “ A Software Development Toolkit for Real-Time Synchrophasor
Applications”, IEEE Powertech 2013, Grenoble, France, June 2013

[4] National Instruments, “ Labview-System Design Software”,
documentation available online: http://www.ni.com/labview/

[5] Microsoft, “ Component Object Model – ActiveX”, documentation
available online: http://www.microsoft.com/com/default.mspx

[6] M.S. Almas, M. Baudette, L. Vanfretti, S. Løvlund and J.O. Gjerde,
“ Synchrophasor Network, Laboratory and Software Applications
developed in the STRONg2rid project”, IEEE PES General Meeting,
Washington DC, USA, July 2014

[7] Opal-RT, “ eMEGAsim PowerGrid Real-Time Digital Hardware in the

Loop Simulator,” available on-line: http://www.opal-rt.com/.
[8] L. Vanfretti, M. Baudette, I. Al-Khatib, M. S. Almas, and J. Gjerde,

“ Testing and Validation of a Fast Real-Time Oscillation Detection
PMU-Based Application for Wind-Farm Monitoring”, Black Sea

Conference on Communications and Networking, Georgia, July 2013

		2015-06-22T11:21:51-0400
	Certified PDF 2 Signature

