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Abstract—Low-frequency, electro-mechanically induced, inter-
area oscillations have in the past, posed a serious threat to the
stability of interconnected power systems. Wide Area Monitoring,
Protection and Control (WAMPAC) systems based on wide-
area measurements can be exploited to address the inter-area
oscillation problem. This work develops a modular software ar-
chitecture for a prototype WAMPAC control system. A Compact
Reconfigurable Input Output (cRIO) controller from National
Instruments is used to implement the real-time prototype. This
paper presents the design process followed for the development
of the software architecture. The design method followed a
three step process of design proposal, refinement and attempted
implementation. Results from each iteration are used to improve
the next. The goals of the design, the challenges faced and the
refinements necessary are presented. The details of the final
implementation in LabVIEW are also documented.

I. INTRODUCTION

The growth of power system interconnections between
previously isolated areas has given rise to the phenomenon
of inter-area oscillations. These are low frequency (0.1-2 Hz.)
oscillations where the generators of one synchronous area
oscillate against those of another area. Damping for these
oscillations is generally poor and, if allowed to grow, can lead
to disconnection of the tie lines or a collapse of the power
system. A famous example of the latter was the August 1996
blackout of the WSCC system in the USA [1]. Although the
purpose of system interconnection was to increase stability, the
present situation of the power system incorporates renewable
energy sources and constrained power transfer corridors, both
of which impact system stability.

A. Previous Experiences

Locally available signals such as active power can be
used in stabilizing devices such as Power System Stabilisers
(PSS). While effective at damping intra-area modes with good
observability, these may not be as effective at damping inter-
area modes [2] [3]. A theoretical analysis of the advantages
of using wide-area signals as a damping input is presented
in [4]. Field-test experiences with WAPOD controllers from
Norway and China are presented in [2] and [5] respectively.
Although these initial field tests show promising results, the
wide-area control systems tested so far have been implemented

by extending the installed control system of an existing device
(e.g. an SVC, see [2]) to receive synchrophasor data, process
it and to then feed the control algorithm. To the knowledge
of the authors, there has not been any reported attempt at
designing a general purpose, wide-area control system, starting
from specifications and considering different hardware and
software constraints. Such an approach is attractive as it can
easily be adapted to different controllable elements thereby
reducing implementation costs and facilitating straightforward
development.

B. Contributions

The goal of this paper is to document the software architec-
ture development process and challenges faced in the real-time
implementation of a wide-area control system. The Phasor
Power Oscillation (Phasor POD) algorithm [6] was chosen
based on the operational requirements and control system
design constraints. The developed prototype is termed a Wide
Area Power Oscillation Damper 1 (WAPOD). For purposes of
comparison, the real-time SIMULINK implementation of the
Phasor POD algorithm in [8] is used as a benchmark. The
software architecture designed is implemented in LabVIEW
and is deployed on a real-time controller from National
Instruments. To test the developed controller, the two-area
four-machine model developed by Klein, Rogers and Kundur
[9] is used as a test-case and is modified to fit the requirements
of experimental testing. A Hardware-in-the-loop experiment
is constructed around the eMEGASIM real-time simulator
from OPAL-RT [10] with the two-area model running in real-
time, physical PMUs and a synchrophasor-based Phasor-POD
algorithm running on a cRIO (Figure 1).

C. Paper Outline

This paper is organised as follows. Section II outlines the
hardware and software components used together with an

1Historically, damping stabilizers have been termed WAPOD where the P
represents a measurement of active power through the line. In such context,
active power is used as a controller input signal. Although this term is not
accurate when other quantities are used as control inputs or feedback signals,
the term is used here to maintain consistency with existing literature.



MATLAB/
SIMULINK
Simulation

D/Ac
Conversion

A/DcConversion

PMU
V

I

PDC
V+

V−

T
C
P

TCP

SoftwarectocUnwrapc
PMUcStream

Concentratescseveral
PMUcStreams

T
C
P

FPGA
PC

IndicatescVariablecDelay

AnaloguecSignal
DigitalcSignal

A/Dc
Conversion

Real-Time
Simulator

Fig. 1. Data flow path with digital and analogue components indicated

overview of the Phasor POD algorithm implemented. Sec-
tion III examines the details of the architecture developed
for this controller and the various stages of refinement and
changes made to it. Section V details the different sections of
LabVIEW code written and finally conclusions are drawn in
Section VI.

II. BACKGROUND

A. Phasor POD Algorithm

This algorithm [6] was selected due to its wide applicability
and the fact that it does not depend on the network model or
updated knowledge of the network topology. Typical model-
linearisation based damping algorithms rely on computer-
intensive calculations and are often valid for a particular net-
work operating point. In contrast, the Phasor-POD algorithm
only requires knowledge of the inter-area oscillation frequency,
which is generally known from system studies or can be
determined from synchrophasor measurements [7]. Consider
Equation (1), which represents a general signal s(t), as an
average valued component and an oscillating component.

s(t) = savg +Re
{→
s ph · ejwt

}
(1)

where
→
s ph is a complex phasor, rotating at the frequency ω

[6]. The Phasor-POD algorithm uses the known oscillation
frequency to set up a co-orindate system rotating at this
frequency and continuously extracts a phasor representing the
oscillation [6]. The implementation of the algorithm used here
is based on the SIMULINK implementation in [8].

B. Hardware

1) Real-Time Controller: The real-time implementation of
the Phasor-POD algorithm in this work is specific to the Com-
pact Reconfigurable Input Output (cRIO) controller platform
from National Instruments. Specifically, the cRIO 9081 is
used to implement the algorithm. It has an on-board Field
Programmable Gate Array (FPGA) in addition to a 1.06 GHz.
Intel Celeron processor for real-time control applications [11].

2) Phasor Measurement Units: The inputs to the real-
time controller were taken from an IEEEC37.118-compliant
synchrophasor data stream. Measurement data for this stream
was generated by two PMU’s which monitor three-phase
currents and voltages at different points on the power network.
In this work, two cRIO9076 real-time controllers [11] were
deployed as PMUs [12].

3) Real-Time Simulator: The eMEGASIM real-time simula-
tor from OPAL-RT [10] was used for simulating the two-area
network in real-time. Figure 1 presents the entire signal path
including the external, closed-loop controller.

III. ARCHITECTURE DEVELOPMENT PROCESS

Before beginning the development process, a software de-
velopment methodology was adopted with the aim of stream-
lining the process2. The approach followed here is based on
the Waterfall method detailed in [15]. The approach broadly
includes the four steps from [15]

Fig. 2. General Iterative Revision Flow Diagram

1) Initial Investigation
2) Requirements Definition
3) Architecture Design
4) Coding and Implementation
5) Experimental Testing to validate requirements
An additional fifth step could be avoided thanks to the avail-

ability and use of HIL testing. The linear waterfall method was
modified to be iterative so as to account for various constraints

2There are many software development methods that could be adopted.
However, for this specific application (i.e a PMU-based WAPOD), none of
them have been reported and used in available literature. The process here
was favoured over the others due to the availability and limitations of the
hardware-in-the-loop experimental testing facilities available at the SmarTS
Lab [14].



and to also account for revisions in the initial definition caused
by these constraints. This iterative process is illustrated in
Figure 2 and is realised for the specific application here, as
illustrated in Figure 3. Several reasons were behind the choice
of an iterative design approach. Chief among them was the
cRIO hardware itself. As an implementation on this hardware
had not been attempted earlier, the limitations of the hardware
were not fully understood. Based on the limitations faced
during an implementation attempt, the design and features
incorporated would be revised to fit within the limitations of
the hardware.

A. Constraints

Before defining requirements, the possible constraints at
each stage of the test set-up were considered. The test set-up
shown in Figure 1 is used to illustrate the constraints faced.

Differing Loop Rates: The power system simulation running
on the real-time target was executed at a loop rate of 50
µs. This meant that the simulator generated new values for
currents and voltages every 50 µs. and would also expect data
from the HIL system every 50 µs. The constraint here was the
data reporting rate of the PMU’s used which was a maximum
of 50 samples per second or one sample every 20 ms. This
was much slower that the 50 µs. loop rate of the real-time
simulator.

FPGA Accuracy: While the exact role of the FPGA in this
implementation was not known in advance, it brought with
it some limitations. Chief among these was the limitation on
data accuracy due to the fact that all calculations together with
circuit logic would be implemented in hardware.

IV. ARCHITECTURE IMPLEMENTATION AND REFINEMENT

Figure 2 shows the three-stage design process with design
proposal, implementation and revision. To begin with, only the
controller specifications were available. These were used to
draft a design proposal. An implementation attempt was made
using this draft proposal. When the additional limits imposed
by the software and hardware platforms were included, some
goals of the original implementation needed to be revised.
With these limitations, the original design was modified to
generate a revised design. An attempt was then made to
implement this revised design. As further limitations were
encountered, the design was further modified. This iterative
process was repeated till a working implementation was de-
rived.

1) Initial Design: Initially, an autonomous, independent
controller was envisaged. Such a controller would be able
to receive IEEE C37.118 synchrophasor data directly over
the communication network and extract measurement data.
The architecture block diagram is shown in Figure 3. This
controller was completely autonomous, with automated signal
selection and processing. This design also incorporated two
control functions, a wide area control function and a local
control function. The wide area control function selected for
implementation was the phasor-based oscillation damping con-
trol algorithm [6]. The local control function would use locally

available data in a manner similar to a Power System Stabiliser
(PSS). Automatic switching between the two functions and
automated input signal selection was also considered. If the
signal to noise ratio in the wide area signal deteriorated or
if the signal delay became prohibitively high, the controller
would automatically switch to the local signal or another
wide-area signal. The principal consideration in this design
was the limited resources available on the FPGA and the
complexity of the algorithms to be implemented. This required
implementation of all algorithms and computation sections on
the RT section of the cRIO with the FPGA being used for
interpolation only.

Challenges: This design was faced with a problem of
differing loop rates. The real-time simulator runs at a 50 µs
time step while the PMUs reported data every 20 ms. The
fastest that the RT controller could run was 1ms. Data would
thus be generated faster than the RT controller could process.
The second problem was producing control output at the rate
expected by the real-time simulator. The speed constraint of
the RT controller meant that it would not be possible to use
it to generate a control signal. To address this issue, this
architecture envisaged using the FPGA to perform interpo-
lation between successive data points. The FPGA would run
at a loop rate of 50µs, to match the real-time simulator. The
region between successive data points would be interpolated
using a suitable interpolation algorithm. Data generated by
the FPGA would be sent over the communication network
back to the real-time simulator for use in the simulation. This
design needed to be changed due to limitations of different
components.
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Fig. 3. Initial Software Architecture

One, no software was available to receive a synchrophasor
stream and extract measurement data directly on the RT
controller. This process had to be performed on a desk-
top computer running a real-time data mediator (Statnett’s
Synchrophasor Software Development Toolkit, S3DK [16])
and LabVIEW. Once measurement data from the synchropha-
sor stream was available, it could be streamed to the real-
time controller over the TCP/IP network using LabView’s
Shared Network Variables. Two, data generated by the FPGA
could not be sent to the real-time simulator directly over
the communication network. Though theoretically possible,
further work is required. Also, for each successive data point
received by the real-time controller, the FPGA would generate
400, interpolated, data points. Synchronising the process of
generating the control signal and the use of the generated data
on the real-time simulator is a far too complex task. Three, the
process of data interpolation on the FPGA is computationally
intensive. To achieve results better than with a simple linear



interpolation, a history of past data points is required. This
process is, in itself, complex and introduces further delay. It
is, however, simpler than implementing the damping control
algorithm on the FPGA. At this stage, FPGA limitations were
the principal factor behind choosing to implement the Phasor-
POD algorithm on the RT controller.

Four, an algorithm for automated signal selection based on
observability indices had not been developed. In principle,
this too, is possible and can be implemented on the real-time
controller in the future when such an algorithm is developed
and verified. The Phasor POD algorithm input parameters also
change depending on the input used. An approach to determine
these parameters iteratively or calculate them from input data
is required.

Fig. 4. Revised Architecture

2) Development and Revision: With the limitations of the
initial architecture in mind, the architecture was refined. The
process of extracting data from the synchrophasor stream was
shifted to a workstation computer along with the processes of
signal selection and processing. Once data was available, it
was sent to the RT controller, over the network. The damping
control was kept on the RT controller with the FPGA perform-
ing the interpolation required to match the read-interval of the
real-time simulator. Besides the damping control algorithm,
a local control function was included on the RT controller.
This revision is shown in Figure 4. Here, the complexity of
implementing an interpolation algorithm on the FPGA was
examined in detail. An implementation was also attempted.
It was determined that a simple linear interpolation algorithm
would not be sufficiently accurate. An implementation of the
damping control algorithm on the RT controller was also
tested. The fastest loop rate that could be achieved was always
greater than 25 ms. This was slower than the reporting rate
of the PMUs. Communication between the cRIO and the RT
simulator using TCP/IP was also abandoned. Analogue output
signals of the FPGA were instead hard-wired to the real-time
simulator’s analogue inputs.

3) Final Implementation: At this stage, the damping control
algorithm was moved to the FPGA with the RT controller
being used only for network communication and data moni-
toring so as to achieve an acceptable loop rate. The Phasor
POD algorithm parameters and monitoring data would be sent
over the network to the RT section of the controller. The local
control function was also discarded as it was found to reduce
the response speed of the RT controller. If needed and if space
permits, the local control function can be implemented on
the FPGA. The desired 50µs. data output rate could also be
maintained as the FPGA was capable of response times of

this order. The problem of differing data and loop rates was
solved by implementing a basic sample-and-hold algorithm
on the FPGA. Data would still be received from the RT
controller every 20 ms. but the output would be held constant
till the next data point was received and processed. With the
Phasor POD algorithm implemented on the FPGA, resource
utilization stood at 78%. As with the previous design, the
process of extracting data from the synchrophasor stream was
done on a workstation computer. This (Figure 5) was the final
architecture as implemented.

Fig. 5. Final Controller Architecture as Implemented

V. ARCHITECTURE IMPLEMENTATION USING THE
LABVIEW PLATFORM

Fig. 6. LabVIEW Project explorer showing where different sections of code
are run

The central part of implementing the architecture described
here was the code written for the cRIO. This was written using
the real-time and FPGA toolboxes available in LabVIEW
[11]. Broadly speaking, three layers of code were written



corresponding to labels 1, 2 and 3 in Figure 5. As mentioned
before, code here was written with modularity and future
expansion in mind. Sections of code in LabVIEW are referred
to as Virtual Instruments (VIs) and essentially consist of code
with certain inputs and outputs [11]. It is important to note
that Figure 6 is the actual implementation of Figure 5 with
three, distinct layers each of which is described below.

A. UI Main.vi

The primary VI, called UI Main, corresponds to Label 1 in
Figure 5. A screenshot of the interface of this VI is shown
in Figure 7. This serves are the main interface to the POD
algorithm and allows for monitoring algorithm inputs, outputs
and the performance of the cRIO. This VI is responsible
for handling communication between the host computer (My
Computer, in Figure 6) and the cRIO (NI-cRIO9081 in Figure
6). Data extracted from the PDC stream is read in this VI and
is sent over the network to the cRIO. Errors generated by the
POD algorithm are also received and stored here. Parameters
required for the POD algorithm are entered and displayed
here. Presently, the selection of the input signal for the POD
algorithm is also performed here. This can be automated in
future. Note that this is the only VI with a user interface that
can be interacted with. T

B. RT Main.vi

This VI runs on the real-time section of the cRIO at a loop
rate of 5ms. It has no user interface as data is transmitted over
the network and displayed on the remote real-time target. The
primary function of this VI is to act as an intermediary between
the POD algorithm running on the FPGA and the user interface
on the remote computer. The input to the POD algorithm is
received over the network and passed to the FPGA. As such,
this VI is designed to be ’headless’ and does not require the
user interface to be active. In the present implementation,
this cannot be achieved as the input to the POD algorithm
is generated on the remote computer. Further development
is needed to be able to unwrap the PMU data stream on
the RT controller itself. Default values of the POD control
parameters are stored and the algorithm itself can run without
any action from the user. Network errors and latency are also
handled here. Logging information and errors can be buffered
temporarily before transmission over the network.

C. FPGA Main.vi

This section of code runs on the FPGA and primarily
consists of the POD algorithm itself. Additionally, debug, data
logging and error checking code is written to ensure that
the algorithm responds only to user input. The code here is
optimised and compiled for the limited resources available
on the FPGA. This is also the only section of code that is
directly realised in hardware. The output of the POD algorithm
is directly written to the analogue output module in the cRIO.
The loop rate here is 50µs. To account for the difference in
loop rates between the FPGA and the RT section, a sample
and hold algorithm is also implemented here.

VI. CONCLUSION & RESULTS

Figure 7 shows an outline of the HIL test constructed to
verify the working of the developed controller. The results are
not examined in detail here due to constraints of space. The
reader is, however, referred to [17] for a presentation of the
results.

A hardware prototype of a real-time power oscillation damp-
ing control system was developed and tested. The developed
prototype uses a real-time implementation of a wide-area con-
trol system. Issues and challenges faced in this implementation
are documented and examined. The architecture development
& refinement process for this implementation is also examined
in detail. The final software implementation resulting from this
process was coded in LabVIEW and is presented. The success
of the tests performed indicates that PMU-based wide area
controllers can be exploited for multiple control applications
in power system control and monitoring.
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