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Abstract—The share of wind power has strongly increased
in electricity production, raising several issues concerning its
integration to power grids. Unexpected dynamic phenomena,
such as oscillatory events around 13 Hz have been recorded in
the US by Oklahoma Gas & Electric (OG&E). Such interactions
differ from traditional and well studied inter-area oscillations,
and the ability to detect them is beyond the measurement
capabilities of most of the existing measurement equipment and
monitoring tools in Energy Management Systems (EMS) systems.

This paper presents the development and implementation
of algorithms for PMU-based real-time fast sub-synchronous
oscillation detection, focusing on the aforementioned case.

The paper focuses on the tool itself and its algorithms, briefly
presents an approach carried out for testing and validating it.
Experience from the use of the tool at OG&E is also described.

Index Terms—Power system oscillations; monitoring applica-
tion; PMU; wind farm; sub-synchronous oscillations.

I. INTRODUCTION

Recent concerns about the environmental impact of tra-
ditional electricity generation in the western world has led
to a strong increase in renewable sources of energy. Since
the 1990s, wind power has been the fastest growing power
generation technology [1], a trend expected to continue as
several countries have politically engaged themselves into
large investments in wind power [2], [3].

Wind power is one kind among different intermittent gener-
ation sources, that brings several challenges to power system
dynamics. For example, its integration in existing power
systems can involve transient stability issues [4]. Unexpected
dynamic behavior is now appearing in the form of sub-
synchronous oscillations. Oklahoma Gas & Electric (OG&E)
has recently measured with PMUs [5] sub-synchronous oscil-
latory events resulting from interactions between wind farms
at frequencies around 3-15 Hz. These oscillations were also
observed at the consumer level in the form of flicker [6].

Traditional monitoring tools build on Supervisory Control
And Data Acquisition (SCADA) systems cannot detect these
fast dynamics, due to the low data rate of conventional meter-
ing and the lack of time synchronization among all metering
devices. Figure 1 presents a comparison between SCADA
and PMU measurements for this phenomenon. The utilization
of PMUs enables observability for phenomena occurring at
frequencies up to 15-25 Hz across wide geographical regions,
opening new wide perspectives for monitoring and control
applications based on synchrophasors. These new tools will
help in acquiring a better knowledge on the challenges brought
by the increase of intermittent energy sources.
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Figure 1. Comparison example between PMU and monitoring through
SCADA during a fast dynamic event

This paper presents a PMU based monitoring tool developed
for detecting the phenomenon depicted on Fig. 1, as well as a
testing method used during the development. The algorithms
used in the tool are presented in Section II, the developed ap-
plication is introduced in Section III. Testing of the application
via replay of archived data is described in Section IV, where
comparisons are made with another tool developed at OG&E.

II. ALGORITHMS FOR FAST OSCILLATION DETECTION

The effects of high frequency oscillations presented in the
Introduction are undesirable [5], monitoring algorithms should
therefore enable fast oscillation detection from PMU measure-
ments. Traditional monitoring tools for inter-area oscillations
estimate the frequency and damping for each oscillatory mode
with two separate algorithms. A similar strategy is adopted in
this case, with one algorithm dedicated to the estimation of the
amount of energy in the oscillations and the other dedicated
to frequency estimation. The three algorithms used by the
proposed PMU application are described next.

A. Fast Oscillation Detection

The proposed oscillation detection algorithm in this paper
builds from work in [7]. As highlighted in [8], it is desirable
for a fast oscillation detection tool to provide information
about oscillatory behavior at different bands of the spectrum.
The spectrum of frequency of interest with potential oscillatory
activity starts from 0.1 Hz and up to the maximum frequency
according to the Nyquist-Shannon criterion considering the
sampling frequency of the PMUs (up to 50 or 60 Hz reporting
rate). To cover such a broad span of frequencies, multiple
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instances of the algorithm can be executed in parallel. Each
instance can be configured independently and thus monitor
different frequency ranges. The following ranges can be used
for configuration:

e« 0.10 Hz - 1 Hz: Inter-area modes, e.g. system-wide

electromechanical swings.

e 1 Hz - 3 Hz: Local-area modes.

e« 3 Hz - 15 Hz: High frequency oscillations, e.g. wind

farms controller interactions.

e 15 Hz - 25 Hz: Other sub-synchronous oscillations, e.g.

sub-synchronous resonance.

As shown in Fig. 2, after pre-processing the real-time
measurements, each frequency range previously mentioned,
can be separated by four different band-pass filters set to the
boundary frequencies of each range.
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Figure 2. Diagram of the adaptation of the algorithm for fast real-time
oscillation detection

The output of the high-pass filter provides a measure of
the "oscillatory activity" at the selected frequency range. The
Root Mean Square (RMS) value of this output is used for
energy computation, implying that the following computations
are performed sequentially: squaring, averaging and finally
computing the square-root of the signal. A low-pass moving
average filter is used to extract the main trend of the squared
signal. This is necessary so that a persistent and stable signal is
provided to the forthcoming trigger level comparison. Finally,
a trigger level comparison indicates if the computed energy
exceeds a pre-set level.

B. Frequency Estimation

The frequency estimation algorithm, depicted in Fig. 3, is
comprised by two different algorithms running in parallel,
leaving to the user the choice to activate one of them or
both simultaneously. A non-parametric method can be used
when the frequency of the oscillations within a certain range
is unknown, whereas a parametric method is appropriate when
the knowledge about the number of possible oscillations within
a range is known.
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Figure 3. Diagram of the algorithm for Spectral Estimation

1) Non-Parametric Welch’s Method: Welch’s power spec-
trum estimation is a method based on the standard Peri-
odogram. The method attempts to increase the readability of
the Power Spectrum Density (PSD) by reducing the noise,
however it decreases the PSD’s frequency resolution.

The method has the following procedure: (1) The input
signal is split into overlapping segments of length M (the
overlapping rate is set by the user). (2) Each segment is
windowed (the window is chosen by the user). (3) The Fast
Fourier Transform (FFT) is computed for each windowed
segment. (4) The PSD is obtained by averaging all the resulting
spectra, thereby reducing the final variance. For a complete
description of the method, refer to Peter Welch’s original
article [9].

Because this method is based on FFT computations, it will
highlight all the content of the power frequency spectrum,
which is an intrinsic property of non-parametric estimation.
This property is especially useful for signals, which actual
frequency content is unknown.

2) Parametric Auto-Regressive Methods: These methods
use an auto-regressive mathematical model of the input signal
for estimating power spectral density. In this way, they inte-
grate available knowledge about the input signal to improve
spectral estimation.

Auto-regressive models have been applied for estimating
power system frequency content, as described in [10], [11].
For this specific reason, this model is chosen in the Monitoring
Tool. The specific method utilized is, however, left to the
choice of the user. All of the implemented methods work
on the principle of model fitting. They differ on the method
used to optimize the fitting process. For further details on
parametric methods refer to [12] and for further details on
their application to power systems, refer to [11]. It is worth
mentioning that during experimentations, the Burg Lattice
method has been particularly efficient.

The order of the model is a very important parameter.
Its value cannot be fixed in advance because it is mainly
dependent on the number of oscillations to be identified, and
thus, the frequency content itself. In the case of the Monitoring
Tool where the frequency spectrum of interest is divided into
four frequency ranges, the order can be different in each of the
frequency bands. It is worth mentioning that too small orders
will lead to a smooth spectrum and some modes might be left
unidentified. On the other hand, too large orders might lead to
the identification of artificial modes and their appearance on
the estimated spectrum.

C. Data Pre-Processing:
Outlier Removal and Down Sampling

The algorithms for estimating the energy and frequency of
oscillations described previously involve filtering, averaging
and spectral estimation processes. These processes require
reliable data. In the case of PMUs, measurements are reported
at a high rate (30, 50 or 60 samples per second) and transmitted
over IP networks, and might contain erroneous or missing
measurements. The pre-processing of input data thus appears
necessary to satisfy the requirements imposed by the methods
used in the detection tool.

The pre-processing implementation was inspired from the
prior work on PMU data pre-processing available in [13],
which were executed off-line on archived data. The Monitoring



Tool processes the measurements in real-time, and thus, the
following algorithm was developed.

In general, the variation of frequency in a power system
is the result of the interaction between varying loads and the
generation that follows the same variations with an inertial
delay. It should thus be a rather smooth process that implies
that any value is expected to be within a confidence interval, as
shown in Fig. 4, which can be determined from neighboring
values and intrinsic system properties. The performance of
the outlier removal algorithm is determined by the level of
confidence of the interval used.
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Figure 4. Example of a confidence interval for the frequency

The confidence interval suggested here is built according to
the following steps:

1) The input signal: (f).

2) Create one copy (A) of the input signal delayed by 10

samples: A; = f; 19, where i is the time index.

3) Filter one copy (M) of the input signal with a moving
average filter of order equal to 20: M; = M

4) Subtract (M) from (A). The combination of a delayed
copy (A) and (M) is equivalent to a having a moving
average filter, where the average is computed on the 10
preceding samples and 9 following samples. Compute
the standard deviation o of the resulting signal.

5) Create the upper (U) and lower (L) limits of the con-
fidence interval by adding/subtracting ko to (M), k the
sensitivity factor, is set by the user.

Each element of (A) is then compared to (U) and (L). If
U; > A; > L; the element is preserved, else it is dropped and
will be replaced by an interpolated value. The interpolation
is performed by taking as inputs the elements of the signal,
the indexes of theses elements and all the indexes at which an
element will be returned. Each returned element is either an
input element if its index is on both lists or an interpolated
value if its index is only on the second list. The chosen method
for interpolation is linear interpolation, as it gave the best
results during testing. Testing results showed that it has no
divergence risks compared to methods involving higher order
polynomials.

An example of the outlier removal algorithm applied to real-
time PMU data is shown in Fig. 5. The data points removed
are single points far from the neighbouring values, likely
corresponding to measurement errors. The outlier removal
effectively performs the tasks described above.

After removing outliers, the signal is processed further to
feed the frequency estimation algorithms by mean removal and
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Figure 5. Screen shots of the frequency signal with and without outlier
removal

high-pass filtering. This aids to attenuate frequency compo-
nents related to the action of generator governors and loads,
which are close to 0 Hz and lower than electro-mechanical
modes.

Furthermore, according to Shannon’s theorem, all the fre-
quency content below frequency f; can be restored if the
sampling frequency is at least 2 x f;. The typical reporting
frequencies of PMUs are 30, 50 or 60 Hz, which correspond
to a highest observable frequencies 15, 25 or 30 Hz. The
observed frequency in the tool can be much lower, thus, a step
of down-sampling is added to remove redundant data'. This
step is preceded by a low-pass filter acting as an anti-aliasing
filter.

The implementation was carried out with a band-pass filter
for each frequency range configured. The down-sampling
factor is calculated from the cut-off frequency of the band-pass
filter, considering Shannon’s criterion. An upper limit equal to
10 was added to the down-sampling factor, motivated by the
limited size of the rolling window of buffered data.

III. MONITORING APPLICATION

The Monitoring Tool has been implemented as a real-
time graphical analysis tool, which could be used by system
operators or wind farm owners. LabVIEW was chosen as
the software development environment due to the availability
of two different real-time mediators, namely Statnett’s Syn-
chrophasor SDK [14] and BableFish [15]. These data medi-
ators are compliant with the IEEE C37.118.2 standard [16]
for PMU data exchange and deliver the PMU measurements
in the LabVIEW development environment. In addition, Lab-
VIEW also allows designing a graphical user interface in a
straightforward manner.

The tool is provided with real-time PMU measurements,
allowing monitoring of oscillatory events at a frequency up
to the Nyquist limit. This broad frequency spectrum contains
different categories of phenomena, mentioned in Section II.
The tool has been implemented for monitoring four frequency
ranges simultaneously. The elements in four instances are
named Modules. The resulting Graphical User Interface (GUI)
is depicted in Fig. 6 (for concision purposes, only the interface
of the Replay Tool introduced in Section IV is shown in this
paper).

The interface includes a data display that is a simple
representation of the buffered input signals received. The
signals are displayed one at a time, letting the user choose
from the list box on top of the graph in Fig. 6 (the frequency is

'Down-sampling is applied for frequency estimation and not performed in
the oscillation detection algorithm in order to avoid lowering the reaction
times of the algorithm.
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Figure 6. Screenshot of the tool reading the file of the oscillation case at OG&E, shown in Fig. 8

displayed in this case). This graph is also useful for calibrating
of the outlier removal algorithm.

The top left part of the GUI is used to configure the tool
and divided in five tabs. The tab “Options” gathers the general
configuration of the tool related to the data acquisition as well
as state LEDs. The remaining tabs “Module I to 4” are four
identical tabs used for the configuration of the estimation and
detection modules, see Fig. 7. The configuration should be
done after launching and initializing the tool.

Figure 7 presents an interface with two separate blocks.
The block on the left is used to configure the band-pass filter,
the parameters are common for both the Oscillation Detection
and the Frequency Estimation algorithms. The block on the
right is dedicated to the Frequency Estimation algorithm and
contains the parameters for each of the methods mentioned
in Section II. It also includes the parameters for spectral
averaging. Finally the user is able to choose in the list box
if both methods are to be used simultaneously or just one of
them.

Once the configuration is set, the outputs of the algorithms
are displayed in a Module, highlighted on Fig. 6. The graph
on the right presents the power spectrum density, which
is the output of the Frequency Estimation algorithm. It is
scaled according to the parameters of the band-pass filter,
highlighting the content of interest.

The graphical display on the left has several components,
the most important are the three LEDs Low Activity, High
Activity and Danger!!!, corresponding to the three thresholds
defined in the general configuration tab. The comparison is
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Figure 7. Screen shot of the configuration tab of one module of the
Monitoring Tool

made on the latest sample, whose value is displayed by the
field Energy. The graph provides a history to easily corroborate
the energy computed with the input signal displayed. Given
that the input signal is filtered by three FIR filters, the output
signal is shorter than the input signal. Moreover the order of
the filters have a strong influence on the length of the output
signal. This can be modified by the user to adapt to their needs,
measurement features and particular power network.

The Monitoring Tool presented in this paper was compared
against an in-house tool developed by OG&E. OG&E’s tool
runs on a production-grade server and is shown in Fig. 8. It
provides detection of the oscillations and email notifications.
The application was developed in VB.net and utilizes the
digital signal processing exocortex library for FFT oscillation



detection’. It is configured via a set of parameters, which can
be tested against archived data for assessing their relevance.
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Figure 8. Screenshot of OG&E’s FFT tool

IV. REPLAY EXPERIMENT

In the previous Section the Monitoring Tool was introduced
and all the options for its configuration have been presented.
While the options related to connectivity aspects do not require
knowledge about the power system analyzed, the configuration
of the processing algorithms, especially for frequency estima-
tion, have to be calibrated according to the properties of the
power system. A good solution is to use archived data to run
off-line experiments.

The original idea was to replay archived data from a PDC,
broadcast it as an output stream and use the Monitoring Tool.
The diversity of archive techniques and file structures raised
the issue that a PDC, such as OpenPDC [17], was not flexible
enough and not suitable to replay the archived data format
available. This led to the development of the Replay Tool.

A. Replay Tool

The Replay Tool has been developed using the same code
as the real-time tool. However, the software related to input
measurements has been developed to use archived PMU
data instead of real-time PMU data. The interface is almost
identical to the Monitoring Tool. The processing algorithms
are identical. This tool has specific additional features. For
example it allows to scroll along the replayed data, which
can be useful to get a quick overview of the content of the
selected file. The Replay Tool works, otherwise, exactly like
the Monitoring Tool.

B. Results

The experiments carried out with the Replay Tool used
archived data obtained from OG&E, containing measurements
from different locations during oscillatory events at a fre-
quency around 13 Hz, as mentioned in the Introduction.
These experiments served, during the development and im-
plementation of the algorithms, to verify that the algorithms

Zhttp://www.exocortex.org/dsp

worked properly and calibrate their configurations for other
experiments.

Figure 6 presents the Replay Tool during the replay of such
oscillatory event. The beginning of the oscillatory phenomenon
can be clearly identified in the frequency (display on the top
left), as well as in both active and reactive power (displays
on the top right). It can also be noticed that the Module on
the bottom right, corresponding to the frequency range [12 -
15 Hz], that the Danger!!! indicator is activated only a few
seconds after the beginning of the phenomenon. Additionally
the oscillatory frequency is identified to 13.4 Hz on the PSD.

Figure 8 presents OG&E’s tool analyzing the same archived
data. As it can be seen on the screenshot a strong oscillatory
activity, above the defined threshold, is occurring at 12 Hz.
Additional oscillatory components can be noticed around
1.4 Hz, 5.5 Hz, 8 Hz, 9.4 Hz and 10.7 Hz. The main 12 Hz
component is also detected with the Monitoring Tool and it
activates the Danger!!! threshold as shown on Fig. 6. All the
other components can also be identified on Fig. 6, validating
the Monitoring Tool’s algorithms.

Additional testing and validation experiments have been
carried out by using hardware-in-the-loop setups with real
PMU devices in two different laboratory environments. One
setup involved the use of a real-time digital simulator with
a model reproducing the sub-synchronous oscillatory phe-
nomenon [18], [19]. In the second setup, the simulator was
replaced by power emulators, producing real power oscilla-
tions [20].

Finally, paper [21] evaluates the impact of a laboratory set-
up when performing validation experiments on this tool.

V. CONCLUSION

This paper gives an example how synchonized phasor
data applications can be developed to help grid operators in
monitoring and control of renewable energy sources when
unpredictable dynamic interactions arise.

In addition, the development of this PMU application
showed that new applications can be conceived and imple-
mented without relying on a monolithic software environment
and within a relatively short time.

The paper did not cover the control actions that can be
taken to mitigate the unwanted dynamics discussed, as the
only available action at this time is to curtail the wind farm
power output. One important aspect to further investigate is
how the use of synchrophasor data can help in providing
rich measurements containing information on sub-synchronous
oscillations into the controls of Static Var Compensators, and
other controllable devices. Recent applications to damping
of low-frequency oscillations suggest that PMU-based sub-
synchronous oscillation damping could be effectively ap-
plied [22].
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