
A Modelica-Based Execution and Simulation
Engine for Automated Power System Model

Validation
Francisco Gómez

KTH Royal Institute of Technology, Sweden
Luigi Vanfretti

KTH Royal Institute of Technology, Sweden
Statnett SF - Research & Development, Norway

Svein Harald Olsen
Statnett SF - Research & Development, Norway

Abstract—Power systems model information exchange and the

simulation of user defined models is a challenge issue for TSOs

due to the use of different simulation software with specific

data format and models strongly coupled to the simulation

software numerical routines. The use of Open Source software

for simulation and modelling can help to decouple these models.

This work describes the design of a simulation tool following

the Free/Libre Open Source Software philosophy to simulate

equation-based models and implement a standard data format

for model information exchange.

Index Terms—Simulation Software, Open Source Software,

OpenModelica, JModelica.

I. INTRODUCTION

Future operations of the pan-European electricity trans-
mission network, thus favouring increased coordination and
harmonization processes for the operation procedures of trans-
mission network operators. The presence of renewable de-
velopment and integration is increasing. The development of
power grids for an efficient security assessment, in particular
regarding new devices FACTS, HVDC, wind generation, solar
generation. The increasing cross boarder connections and
energy market integration of the TSOs power grids requiring
more coordination.

The FP7 iTESLA Project provides a tool to coordinate the
design of system protection schemes between different TSOs
and also provide recommendations on the use of renewable
generation in defence plans. The coordination of different
TSOs requires providing support for a wide range of relevant
formats. Data models used in simulation may be different,
using different data formats and different models are used for
on-line and for off-line simulations. However the data may
be the same. Three important facts are identified in terms of
information exchange coordination: First, TSOs should be able
to easily import the data to be assessed. the FP7 iTESLA
Project context suggests that the use of CIM format should
play a major role in the definition of static data. Second,
The use and acceptance of user defined models in an open
format in order to allow the modelling of specific and new
devices is also expected. Design, validation an improvement of

common models could then be facilitated. The use of Modelica
language for modelling these user defined models provides the
choice of make this exchange of model information open for
TSOs. Third, TSOs also expect openness to plug in their own
modules. Clear interfaces need to be defined to be able to
launch private computations modules.

This work describes a software architecture developed with
Open Source software, such as Modelica, JAVA and Python,
for the simulation and analysis of power systems components
and models. The architecture also includes the FMI standard
technology in order to simulate models developed in other
simulation tools. The proposed work is organized as follows:
in Section II the use of Open Source software in simulation
studies is explored. In Section III the requirements and the
design of an open source simulation software are described.
Section IV presents a detailed description of the simulation
core of the proposed architecture and in Section V results
of the application of the simulation core are shown. Finally,
Section VII explores new requirements for improving model
simulations, within the FP7 iTESLA Project context.

II. BACKGROUND ON SIMULATION AND SOFTWARE
DEVELOPMENT MODELS

A. Simulation Software

According to [1], modern simulation software should be
conceived to work with discrete-event and continuous sys-
tems. Such software will consider constructs with which to
build models, a simulation engine to calculate a model’s
dynamic trajectories and means for control and observation
of the simulation as it progresses. Moreover, a simulator of
continuous systems approximates the solution to a set of
differential equations, the choice of integration method and
requirements for accuracy and precision. A discrete-event
simulation executes events scheduled by its components in
the order of their event times. The simulation engine produces
dynamic behaviour from an assemblage of components. When
talking about wide-area power system (WAPS) simulation, is
important to clearly define which data and how it should
be exchanged between components to produce the general



dynamic behaviour. In particular, the exchange of data may be
performed within parallel simulation of smaller power system
models. In this case, good scheduling techniques are required
to ensure that the memory allocation shared by models are
accessed in the right way, avoiding conflicts when writing in
memory the piece of data produced by one model that another
model will read afterwards [ref Mike Zhou].

For continuous-time simulation, software development is
easier than for discrete-event simulation. Continuous-time
simulation deals exclusively with relationships between real
variables, allows simple programming when the equations
are in proper form and suitable numerical algorithms are
available. However, the software should be built keeping a
clear separation between the model and the solution algorithm.
In many proprietary power system simulation software is com-
mon practice to have the integration of the solution algorithm
strongly connected to their own models. This approach has
several back draws, such as limitations and extensibility and
portability of the model for execution in other simulation
engines. In contrast, the equation-based object-oriented Mod-
elica language offers a strict separation between the model
and the solver, as well as model portability thanks to its
standardized language definition [ref Modelica MSL]. This
allows to develop power systems simulation tools with the
ability to add new algorithms to existing model structures
without the need of modifying the models.

B. The choice of Free and Open Source Software

Proprietary software, being the de facto choice in power
system simulations, is perceived as well-tested and more
computationally efficient with respect to other tools. Some of
these software are powerful in one particular type of analysis
or only focused in few analysis methods, with the use of
particular data format and data models. However, there are
several drawbacks of proprietary software. The first to consider
are license agreements restrict the use of proprietary software
by imposing economic or other limitations [2]. Free/Libre
and Open Source Software (FLOSS) has developed as an
alternative to the proprietary software development model.
Through different experiences, the FOSS model has shown to
produce reliable, secure and efficient code. This fact has drawn
recently some attention from the power systems community,
resulting in the GOOSA effort [ref GOOSA]. However, pre-
vious to this, FLOSS has been more limited to education and
learning activities and generally conceived for being used in
power system courses [3] even though they provide almost the
same functionalities as commercial software. FLOSS can be
exploited in the power system field to provide tools allowing
engineers to change or implement new code, evaluate new
techniques and algorithms and guaranteeing freedom and
liberty to exchange information [2]. Emerging challenges in
power systems may be better approached through the FLOSS
model than the traditional techniques found in proprietary
software.

The Modelica language allows engineers to exchange mod-
els down to the equation-level found in different Modelica or

FMI compliant simulation tools.The Open Source Modelica
Consortium (OSMC) provides OSS librares of different fields,
e.g.: thermal models and mechanical models. The FP7 iTESLA
Project is developing a library of power system components
compliant with Modelica. This creates a choice for power
system model exchange of information, even those that may
be the same in a huge variety of proprietary tools. Simula-
tion tools and API based on Modelica, e.g.: OpenModelica,
JModelica [ref modelica tools] facilitates the development of
well-known industry models. The use of Modelica also permits
developers and engineers to modify or add new components
and equations and share these modifications, within the same
model. The proposal architecture exploits FLOSS and will
adapt the FLOSS development model upon release.

III. SIMULATION SOFTWARE ARCHITECTURE

A. Software Functionality Requirements

The software should provide a solution for simulating
together and analysing power system component models that
are part of wide-area power systems. To achieve this solution
the software tool has to be able to:

• Initialize of the model a steady-state snapshot or a power
flow solution.

• Change the configuration of the time-domain simulation
solvers or the numerical algorithm itself.

• Simulate power systems models developed by different
software tools,

• Use the Modelica and FMI standards [4] compliant
simulation compilers. Moreover, the software should be
open to plug-in other proprietary or FLOSS simulation
compilers,

• Use Modelica as the base modelling language. The tool
also has to be able to work with other models stored as
Functional Mock-up Units (FMU) from FMI technology.

• Use state-of-the-art algorithms for signal processing, val-
idation of models and calibration of parameters.

• Be able to operate using scripting functionality and also
provide an easy to use Graphical User Interface (GUI) to
perform the same functionality.

• Store simulation outputs and statistics metrics in an
open source format, that can be used by commercial
and non-commercial analysis tools (e.g.: MATLAB and
Mathematica).

B. Architecture Design

The proposed architecture deals with input data from Mod-
elica models or FMU files containing models from other
software. The architecture is designed keeping modularity in
mind through different modules or engines that interact with
each other with the exchange of data, which can also be used
separately from each other (Fig. 1).

1) The Model Execution Engine (MEE) provides different
scripts to implement the requirements of running time-
domain simulations with different simulation compilers.
As inputs the engine gets the models, the simulation
options and a set of output variables that should be



Fig. 1. General view of the software architecture. The main modules are MEE, MAE and IntE. The exchange of data between these modules deals with
information about simulation outputs as time series (Ts) and other values such us arrays (V), matrices (M) or scalar (S)

stored and kept for analysis purposes. The outputs of
the engine will be a set of time series (Ts), vectors (V),
matrices (M) an scalar values (S). In this sense, we need
to implement a standard data format that can handle
these data and also be supported by other tools. The data
format chosen has to follow the FLOSS philosophy (see
section IV-B).

2) The Measurement Analysis Engine (MAE) implements
different functions to analyse real measurements and
compare them with the results of the simulations. Differ-
ent statistics are calculated and stored in a Measurement
DB, where the simulation outputs, measurements and the
metrics that the engine has calculated are stored.

3) The Intelligence Engine (InteE) analyses which variables
of the model should be calibrated in order to improve
the simulation results to better match with the real
measurements available.

4) The Steady-State Solver Engine (SSSE) implements
mathematical solvers for computing power flow solu-
tions, in order to set the proper initial values of the
models we want to simulate. It gets as inputs power
system models and update this models with the power
flow solution, if needed. This is an important step of the
simulation process because proper initial conditions help
the MEE Modelica compilers to find a suitable equilib-
rium. In turn, this allows obtaining a valid response from
the simulation of the models.

5) The purpose of the Process Manager (PM), is to provide
easy to use commands and a GUI in order to perform
all the functionalities described in the requirements.

IV. IMPLEMENTATION OF THE MEE

Behind the software architecture there is a large effort
in the design and implementation of the modules and their
functionality and data transfer between the engines and PM.

The first engine implemented is the MEE, which is described
below. It has been implemented using principles from Model-
View-Controller design [ref].

A. Model Execution Engine

This engine performs time-domain simulations of wide-area
power system models. Simulations are performed through the
use of non-proprietary compilers: the OpenModelica Compiler
(OMC) [5] and JModelica [6], however the design of the
engine allows using other compilers as plug-ins into the MEE.
We choose JModelica to simulate models from .fmu files. With
this, the requirement of being able to simulate both Modelica
models and FMU models is fulfilled.

From Fig 2, the JAVA language is used for implement the
GUI and the PM engine. With this, the user can select the
models he wants to simulate, and also manage and change
configurations of the models and the simulation compilers.
This data is stored in properties files. Fig. 2 shows how JAVA
module and Python module interact with data, storing and
loading results from the corresponding files. The interaction
with Jython [7] allows the JAVA module to use Python scripts
and classes, meanwhile both JAVA and Python modules use
the HDF5 API to handle data. We use the Python [ref Python]
language as the main programming language for the MEE.
Python has a variety of libraries that allowing to implement
data processing from files and specific libraries for running
and executing the functionalities of the simulation compilers
are available in this language. The MEE implements different
python scripts specific for each compiler.

A set of classes have been developed to manage all the data
needed. With the use of Jython it is possible to use the same
class structure both in JAVA and Python. The results of the
simulation are stored in files, using the HDF5 format, and this
data is read by the PM engine for building any kind of reports
of the simulation. With the use of JAVA and Python, PM



Fig. 2. Detail of the implementation of the Model Execution Engine. Here,
the interaction between modules and simulation compilers and data is shown

and MEE engines are implemented following Object Oriented
Programming. This allows to decouple the functionality of
the engines and to build scalable and modular software. Fig
5 shows the internal work flow of the engine. Managing
the outputs from simulation compilers requires some effort
in developing functionalities to unify these outputs. To fulfil
the requirements of our software, we use the HDF standard,
in its latest revision HDF5, to create and store definitely
all the simulation outputs. HDF5 is a standard data format,
supported by different commercial tools as Matlab [8], for
storing scientific data.

With JModelica, retrieving outputs values is straightforward
because its API provides functions to handle data directly.
But, managing OpenModelica outputs is more challenging, it
requires extra programming to extract values from resulting
.mat files. ModelicaRes [9] is an open-source tool, developed
in Python, which provides a good API for managing the
outputs produced by OpenModelica and Dymola result files.

The use of ModelicaRes and the HDF5 API will helps to
store data as proposed in our conceptual model (Fig. 3) in a
well organize tree structure within datasets and groups of data
[10]. The data to be stored in the HDF5 files should be the
outputs that the user wants to analyse later on with the use of
the functionality of the MAE. In this case, the main outputs
that need to be stored are the most common in power System
analysis: Active Power (P), Reactive Power (Q), Voltage (V),
Current (I) and angles. Nevertheless the design of the software
allows to store other kind of data.

B. Formating Outputs

V. PROOF OF CONCEPT

First, the performance of the proposed implementation is
assessed by simulating of a very simple model. This test
was performed to ensure that the implementation of different
functionalities are properly functioning with a small-scale
model, before simulating larger models

A. Test Power System Model

A Single Machine Infinite Bus (SMIB) model is used for
testing. One can find different representations of the this
simple model. A representation composed by one generator
connected to an infinite bus through a transmission line and
two buses where will be used (Fig. 4).

Fig. 3. HDF5 viewer screen shot of simulation outputs.

Fig. 4. OpenModelica representation of the Single Machine Infinite Bus
Model for testing the simulation environment.

B. Engine Workflow

Two scripts in Python have been implemented for simu-
lating the same model, in parallel. Both scripts implement
the work flow detailed in Fig. 5. On one hand, the OMC
simulates directly the SMIB model from a Modelica file (.mo).
Meanwhile, JModelica first translates the model into a FMU
and then simulates. JModelica is also capable simulating a
FMU model which has been previously translated by another
tool (e.g.: Dymola translate the model to a FMU and then
JModelica simulates it).

C. Results

For this experiment the initial conditions of the model have
been set manually, directly into the model, from a power
flow solution calculated with the same model implemented in
PSAT [ref PSAT]. To prove that the results from open source
compilers are acceptable, the model has been simulated with
Dymola [11] (Fig. 6). The resultant outputs are stored in the
HDF5 format. From JModelica the storage is straightforward
using the JModelica API to obtain results. From OpenMod-
elica ModelicaRes API was used to parse the results into the
HDF5 file.

VI. DISCUSSION ON ARCHITECTURAL IMPACT AND
ADOPTION

This section is introduced to discuss important aspects of
the proposal architecture when talking about performance of
the simulations and how TSOs can adapt the architecture in
their systems.



Fig. 5. Gane-Sarson diagram showing the data flow of the MEE. Rounded boxes are processes, squared boxes represent user interaction and open boxes
represent data storage in memory or disk

Fig. 6. Simulation results from JModelica and OpenModelica. The outputs
are compared with the output produced by Dymola.

A. Architectural Impact on Simulation Performance

As a self-contained software implementation, the architec-
ture will consider the implementation of a process scheduler
so that the software can exploit all available cores in a single
computer (Fig. 7). Simulations can be ran concurrently through
multiple processors in a multi-core deployment, this is because
only the Model Execution Engine would be implemented
within a scheduler. For example, in an 8 core machine, 8
simulations can be run concurrently; this can be used when
assessing different contingencies for a specific operation con-
dition. However note that the overall speed of each simulation
itself will be limited to the available hardware in a specific
machine. Finally, observe that all other architectural compo-
nents in Fig. 1 do not affect simulation speed, because the
different modules are decoupled from the simulation. To adopt
the proposed approach in this paper within the iTesla platform
it would require to adapt the Model Execution Engine to the
Computation Manager of the iTesla platform (Fig. 9). The best
way to achieve this adoption is to use the iTESLA computation
API within the Python module of the MEE (Fig. 2)and include

Fig. 7. Detail of the implementation of the Model Execution Engine, with
a job scheduler. With the scheduler, the engine is able to execute different
simulation compilers among available cores.

the modelica compilers in computation modules layer.

B. Architectural Adoption by the TSOs

As a self-contained software implementation, in order to
minimize the effort on the adoption of the suggested approach
by a TSO, the straightforward route would be to develop a
self-contained translator from the TSO specific format into
Modelica. It is difficult to determine how much effort is
required to build a specific translator, because this depends on
the complexity of the TSO specific format. However, the iTesla
project proposes an integrated approach and offers translation
facilities.

Commonly, TSOs use proprietary SW tools for their sim-
ulation needs and are not familiar with Modelica. For an
industrial adoption of the approach proposed in this paper,
the iTesla platform offers an integrated solution where no
previous knowledge of Modelica is required. Observe from
8 that the iTesla platform has a Data Manager. One of the
functionalities of the Data Manager is to provide translators
from common proprietary tools such as Eurostag and PSS/E,
into a Dynamic Data Manager that links the proprietary models
to a Modelica definition. This allows to translate an entire
model, for example in Eurostag, into the Modelica language
to be used for simulation. The data manager also takes care
of building the contingencies and actions that should affect



the model during simulation, and configures the Modelica
model to execute these actions at run time. Thus, there would
be substantially low effort needed from a TSO to adopt this
approach, provided that the iTesla platform is utilized.

VII. CONCLUSIONS AND FURTHER WORK

This work has explored requirements for a scalable and
modular simulation software architecture and how open source
tools can be used for its implementation. The design of the
architecture presented was conceived for complete analysis of
power system models: running model simulations, validating
simulation outputs from real measurements, and identification
and calibration of particular models parameters that will adjust
the model to match the measurements.

Towards the implementation of this architecture the Model
Execution Engine has been presented which is responsible
for performing time domain simulations. The design allows
parallel simulation, through the execution of different simula-
tion compilers at the same time. To fully exploid this benefit
the simulation engine will be extended with a scheduling
technique to fully utilize multiple compilers and to manage
different processing time of both compilers. The OpenMod-
elica compiler is suitable for simulating Modelica models
and JModelica allows to simulate Modelica models or FMU
models translated from other simulation tools.

Next steps include the use of HDF format for storing real
measurements. This will facilitate the implementation of the
validation techniques within the Measurement Analysis Engine
and the Intelligence Engine. However, several aspects of power
system simulations using Modelica tools need to be addressed
first. The first issue is to automatically and consistently provide
the initial conditions, from power flow solution or a steady-
state snapshot, in order to obtain valid simulation outputs. To
automate this, two tasks will be carried out: a first task will
consists on the implementation of the SSSE to solve the power
flow of the models or import existing power flow solution
from other sources, i.e.: CIM, PSS/E, Eurostag. The second
and most important will be the use the UML representation
of the CIM standard to translate the CIM data model into a
Modelica model. CIM components for power systems have
attributes for storing the values from power flow solution [12]

REFERENCES

[1] J. Nutaro, “Building software for simulation: Theory and algorithms,
with applications in c++,” Wiley, Ed. Wiley, 2011.

[2] R. M. Stallman, Free Software, Free Society: Selected Essays of Richard

M. Stallman. Boston, Massachusetts: GNU Press, 2002.
[3] L. Vanfretti and F. Milano, “Facilitating constructive alignment in power

systems engineering education using free and open-source software,”
Education, IEEE Transactions on, vol. 55, no. 3, pp. 309–318, Aug
2012.

[4] T. Blochwitz and et al, “The Functional Mockup Interface for Tool
independent Exchange of Simulation Models,” in Proceedings of the

8th International Modelica Conference, Mar. 2011.
[5] P. Fritzson, P. Aronsson, H. Lundvall, K. Nystrm, A. Pop, L. Saldamli,

and D. Broman, “The OpenModelica Modeling, Simulation, and Soft-
ware Development Environment,” Simulation News Europe, vol. 44,
no. 45, Dec. 2005.

Fig. 8. Main modules of the iTESLA architecture for power systems models
simulation and validation.

Fig. 9. Detail of the modules part of the iTESLA Computation Manager.

[6] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and H. Tummescheit,
“Modeling and optimization with Optimica and JModelica.org—
languages and tools for solving large-scale dynamic optimization prob-
lems,” Computers and Chemical Engineering, vol. 34, no. 11, pp. 1737–
1749, Nov. 2010.

[7] J. Juneau, J. Baker, F. Wierzbicki, L. Soto, and V. Ng, The Definitive

Guide to Jython: Python for the Java Platform, 1st ed. Berkely, CA,
USA: Apress, 2010.

[8] MathWorks. (2014) Hdf5 files. [Online]. Available: http://www.
mathworks.se/help/matlab/hdf5-files.html

[9] K. Davies, “Declarative modeling of coupled advection and diffusion as
applied to fuel cell,” PhD Dissertation, Georgia Institute of Technology,
2014.

[10] M. Poinot, “Five good reasons to use the hierarchical data format,”
Computing in Science Engineering, vol. 12, no. 5, pp. 84–90, Sept 2010.

[11] Dymola. Dynamic modeling laboratory. Dynasim AB Lund, Sweden.
[Online]. Available: http://www.dynasim.org

[12] M. Uslar, M. Specht, S. Rohjans, J. Trefke, and J. Vasquez González,
The Common Information Model CIM. Springer Berlin Heidelberg,
2012.

View publication stats

https://www.researchgate.net/publication/283094366

