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Abstract—In this paper, a three layer small-signal stability
index to assess power system dynamic simulations is presented.
The index is calculated from an estimate of the eigenvalues
of the system, which are determined using time-series from
dynamic simulations. The methodology assumes that no other
information about the system (model) is available. In the first
layer, a scalar (positive or negative) indicates if any of the modes
have a damping ratio less than a pre-defined value without giving
detailed information about which mode and for how much the
damping ratio is violated. In the second layer, a vector is used
to specify which pre-defined damping ratios were violated and
finally, in the third layer a matrix is used to retrieve precise
information about which mode has violated the pre-defined
damping requirements of the system. The proposed index is first
illustrated using synthetic data and then the index is validated
using simulation data from the KTH-Nordic32 system.

Index Terms—small-signal stability, ringdown, time-domain
simulations, severity index

I. INTRODUCTION

THE impact of large-scale power outages in recent years

clearly indicates the need for methods that can determine

the likelihood of catastrophic system failures.The FP7 iTesla

project aims to build a software toolbox to cope with these

challenges. Dynamic impact assessment of detailed time-

domain simulations is part of the off-line analysis workflow

within the iTesla toolbox1. The aim is to develop offline

criteria to support online analysis functions.

After performing a dynamic simulation for a specific con-

tingency, an appropriate post-contingency severity index needs

to be determined in order to classify the impact of the

contingency. To do so, a set of scalars, vectors and matrices

define the stability index that provides a measure of how severe

the contingency is. The three layer index has been designed

with the requirement of fast computation as numerous contin-

gencies have to be evaluated for each operating condition, and

at the same time they must provide a good measure of how

severe the contingency is. These requirements differentiate the

small-signal stability index presented here to those described

in [1], [2] and [3].
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The reminder of this paper is organized as follows. Sec-

tion II presents the methodology and each of the stages

required to calculate the small-signal stability index. Sec-

tion III explains how to interpret the results by describing

the three different layers. In Section IV, a simple example

(using synthetic data) is given to illustrate the application and

interpretation of the index. Later, in Section V, the application

of the index is demonstrated and validated through nonlinear

simulations using the KTH-NORDIC32 system. Finally, Sec-

tion VI summarizes the results presented and outlines future

work.

II. SMALL-SIGNAL STABILITY INDEX

Small-signal stability refers to the ability of a power sys-

tem to maintain synchronism under small disturbances. Such

disturbances occur continuously because of small variations in

loads and generation, and switching (e.g. line trips). Instability

may arise in two forms: a) increase of rotor angle due to lack

of sufficient synchronization torque, or b) rotor oscillations of

increasing amplitude due to lack of sufficient damping torque

[4]. In this section, the different stages required to calculate

the small-signal index are defined.

A. Pre-precessing input signals

Dynamic simulations provide time-series with useful infor-

mation to assess the dynamic performance of the system. In

order to estimate the eigenvalues of the system following a

disturbance, the first step is to choose signals with the highest

oscillation content. This can be performed by calculating the

energy of each signal and sorting them in descending order.

First, signals y(t) are detrended to remove linear trends and

put all of them in the same reference, and then the energy of

the time varying signals can be calculated as in (1).

ŷ(t) = y(t)− ymean(t), E(t) =

∞
∫

−∞

|ŷ(t)|2 dt (1)

where y(t) ∈ ℜp are the signals to be analyzed and p is the

total number of signals, ymean(t) ∈ ℜp are the mean values,

ŷ(t) ∈ ℜp are the detrended signals and E(t) ∈ ℜp are the

energy of all signals.

B. Frequency Screening

Because dynamic simulations provide a large number of

signals to be analyzed, it is useful to divide the signals into
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Fig. 1. Flow chart of the index calculation procedure.

a smaller subgroup to facilitate calculations. Signals can be

classified according to their frequency, so only signals within

a desired frequency range are analyzed, e.g. between 0.1 and 1

Hz for inter-area modes. The classification can be carried out

using the Fast Fourier Transform (FFT) as described below

Y (k) =

N−1
∑

n=0

y(n)e−i2πk n
N , k = 0, . . . , N − 1. (2)

N is the size of y(t). Y (k) is a vector of complex numbers,

the largest magnitudes of the complex vector |Y (k)| are the

frequencies of the signal y(t).

C. Mode Estimation Methods

The mode estimation problem may be posed as follows:

given a set of measurements that vary with time, it is desired

to fit a time-varying waveform of pre-specified form (such as

(4) ) to the actual waveform. Consider the following linear

system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (3)

where x(t) ∈ ℜn is the state of the system, u(t) ∈ ℜq is the

control input and y(t) ∈ ℜp are the outputs of the system. A,

B and C matrices are constant and of appropriate dimensions.

Each individual element xi(t) is given by:

xi(t) =
n
∑

i=1

rixi(0)e
λit =

n
∑

i=1

aie
σit cos(ωit+ θi) (4)

where the parameter ri is the residue of the mode i, xi(0) is

derived from initial conditions, and λi represents the eigen-

values of A, the frequency f and damping ratio ζ of mode λi

are given as follows

λi = σi + jωi, fi =
ωi

2π
, ζi =

−σi
√

σ2

i + ω2

i

(5)

The main target in modal identification is to determine the

eigenvalues of system (3). For full details about linear ring-

down analysis methods such as: Prony’s method, Eigenvalue

Realization Algorithm (ERA), Matrix pencil and nonlinear

methods, see [5].

D. Index Calculation

After estimating the modes from time-series, it is possible

to calculate the distance from each mode to a pre-defined

damping ratio to evaluate the stability condition of the system.

Typically, a damping ratio below 5% is unacceptable in power

systems because following a disturbance, oscillations in the

signals will last for several seconds thereby affecting the

Fig. 2. Distance θ̃ (in radians) from the ith mode (λi) to different pre-defined
damping ratios ζ0 = 0%, ζ5 = 5% and ζ10 = 10%, respectively.

system’s dynamic performance. In the worst case (having neg-

ative damping), increasing oscillations will appear indicating

that the system is unstable. A summary of the procedures

required to apply the small-signal stability index to time-series

is described in Figure 1. More details about the index are

described in the following section.

III. THREE-LAYER SMALL-SIGNAL STABILITY INDEX

In this section the small-signal stability index is explained.

The index has three layers, it provides a measure related to the

stability of the system and is based on the damping ratio of the

estimated system modes. The measure is the angular distance

(in radians) from each mode to a pre-defined damping ratio,

as seen in Figure 2. The three layers of the index are:

• Single Mode Index (SMI), a matrix.

• All Modes Index (AMI), a vector.

• Global Modes Index (GMI), a scalar.

The SMI offers the most detailed source of information, but

for a system with multiple modes, it is not easy to interpret.

The matrix of data is described as follows

SMI =







θ̃1,ζ0 θ̃1,ζ5 θ̃1,ζ10 · · · θ̃1,ζj
...

...
...

. . .
...

θ̃i,ζ0 θ̃i,ζ5 θ̃i,ζ10 · · · θ̃i,ζj






(6)

and
θ̃i,ζj = θi − θζj
θi = cos−1(ζi)
θζj = π − cos−1(ζj)

(7)

where θ̃i,ζj is the (i, j) element of SMI, ζi and θi are the

damping ratio and angle of the ith mode λi, respectively. ζj
and θζj are the jth pre-defined damping ratios and angles,

respectively.

SMI provides the individual distance of each mode to a pre-

defined damping ratio, e.g. ζ0 = 0%, ζ5 = 5% and ζ10 = 10%.
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If any of the elements of SMI is negative, this indicates that

the mode corresponding to the specific row, has a damping

ratio less than the required for that column. For instance, lets

assume that element (2,2) in (6) is negative (θ̃2,ζ5 < 0), then

mode λ2 has a damping ratio less than 5% (ζ2 < 5%) and

consequently element (2,3) in (6) is also negative; this mode

is violating the damping ratios ζ5 and ζ10, respectively.

AMI facilitates the interpretation of SMI, it is a vector and

it gives the minimum distance of the modes with respect to

each of the pre-defined damping ratios ζj as described below

AMI=
[

θ̂ζ0 θ̂ζ5 θ̂ζ10 · · · θ̂ζj
]

, θ̂ζj =min |θ̃i,ζj | (8)

If one value of AMI is negative, this means that at least one

mode has a damping ratio less than the one required.

GMI gives a global interpretation of the modes respect to all

pre-defined damping ratios, is the minimum distance among

all modes respect to all pre-defined ratios and is described

below

GMI = Θζj , Θζj =min |θ̂ζj |· (9)

Remark: If the system has a single mode, then SMI and

AMI are the same. If the system is unstable, all the elements

in SMI, AMI and GMI will be negative for the corresponding

mode.

IV. ILLUSTRATIVE EXAMPLE

In this section an example to illustrate the interpretation

of the SMI, AMI and GMI indexes is presented, and their

ability to identify signals with multiple modes is demonstrated.

Two synthetic signals y1(t) and y2(t) of known frequency and

damping were generated using (10)

ci(t) = 1− e
−

(

ζi−
√

ζ2

i
−1ωit

)

, i = 1, 2, 3

dj(t) = 1− e−(ζj−
√

ζ2

j
−1ωit), j = 1, 2, 3

y1(t) = c1(t) ∗ c2(t) ∗ c3(t)
y2(t) = d1(t) ∗ d2(t) ∗ d3(t)

(10)

Figures 3 (a)-(c) depict each stage of the application of the

small-signal index described in Section II. The time-series of

signals y1(t) and y2(t) are described in Figure 3 (a). First,

the input signals were detrended and sorted according to their

energy, then a frequency screening is applied to identify the

frequencies within a range of interest as shown in Figure 3 (b).

Next,linear ringdown analysis method was applied using Prony

in Figure 3 (c), and in the last step, six different modes were

estimated as shown in Figure 3 (d) and Table I.

TABLE I
IDENTIFIED MODES WITHIN THE FREQUENCY RANGE OF: 0.10 AND 1.0 HZ

Mode σ + jω f (Hz) ζ (%)

λ1 -0.0980 + j 0.7476 0.1190 13.0
λ2 -0.0867 + j 1.4425 0.2296 6.0
λ3 -0.0905 + j 3.0146 0.4798 3.0
λ4 -0.0653 + j 3.2666 0.5199 2.0
λ5 -0.0540 + j 5.4033 0.8600 1.0
λ6 -0.4675 + j 5.8246 0.9270 8.0

The SMI, AMI and GMI indexes are summarized in Ta-

ble II. The value of the GMI index is negative, indicating
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Fig. 3. (a) Analyzed time-series, (b) Detrended and selected data, (c) Signal
estimation from ringdown analysis, (d) Estimated Modes.

that at least one mode has violated one of the pre-defined

damping ratios. A review of AMI, illustrates that elements

(1, 2) and (1, 3) are negative, showing that at least one mode

has violated the pre-defined damping ratios ζ10 and ζ5 set

to 10% and 5%, respectively. In order to retrieve detailed

stability information about each mode, after examining SMI it

is possible to conclude that modes λ3, λ4 and λ5 are violating

the damping ratio ζ5, and modes λ2 to λ5 are violating the

damping ratio ζ10; as indicated by their negative numbers

highlighted in bold in Table II. Figure 3 (d) confirms the

indexes results.

TABLE II
SMALL-SIGNAL STABILITY INDEXES FOR THE SYNTHETIC CASE

Θζj

GMI -0.0902

θ̂ζ0 θ̂ζ5 θ̂ζ10
AMI 0.0100 -0.0400 -0.0902

SMI θ̃i,ζ0 θ̃i,ζ5 θ̃i,ζ10
λ1 0.1304 0.0803 0.0302
λ2 0.0600 0.0100 -0.0401

λ3 0.0300 -0.0200 -0.0702
λ4 0.0200 -0.0300 -0.0802

λ5 0.0100 -0.0400 -0.0902

λ6 0.0801 0.0301 -0.0201

V. APPLICATION USING A POWER SYSTEM MODEL

A. Power System Description

The KTH-Nordic32 system was constructed from the data

proposed in [6], further details are available in [7]. The one-

line diagram is shown in Figure 4 and it is comprised of 52

buses, 80 transmission lines and 20 generators. There are 12

hydro generators located in the North and equivalent areas, the

rest are thermal generators located in the Central and South

areas. This weakly coupled system exhibits lightly damped

low frequency inter-area oscillations. The two lowest damping

modes have a frequency of 0.46 Hz and 0.78 Hz, respec-

tively and a damping ratio of 4.08% and 4.98%, respectively.

Although mode shapes are not shown here, λ1 is related to

the swing of the North and Equivalent machines against the

Central and South machines, while λ2 is related to the swing
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Fig. 4. The KTH-Nordic32 power system.

of the Central machines against the Equivalent and South

machines. Both modes have a low damping ratio.

B. Case study 1: Single Contingency Analysis

A 3-phase fault of 160 msec was applied at bus 40. After

the disturbance, the proposed indexes SMI, AMI and GMI,

where computed from time-series of the active power flow on

different lines. Two modes were identified and are shown in

Table III, note that the real part of λ1 is positive and has

a negative damping ratio (−7.05%) indicating an unstable

condition in the system.

B.1 Analysis of the Index Calculation

Figure 5 depicts the different stages of the indexes cal-

culation. Figure 5 (a) shows the effects of the disturbance

in the active power flow of the 80 transmission lines, while

Figure 5 (b) presents the post-disturbance time-series. The

application of the ringdown method (Prony) and identification

results are shown in Figure 5 (c). The location of the modes in

the complex plain is shown in Figure 5 (d). Table IV presents

the value of the small-signal indexes from where it is possible

to conclude that λ1 is unstable, as indicated by the negative

numbers of elements (1, 1), (1, 2) and (1, 3) of SMI and the

negative damping ratio in Table IV. λ2 has damping ratio

above 5% as indicated by the positive distances (2, 1) and

(2, 2) in elements of SMI.

In this case the disturbance destabilizes λ1 and does not

provide enough excitation to λ2 and thus, the time-domain

simulation does not show much activity in the time-series to

obtain a better estimation. The important aspect to keep in

mind here is that the mode which is most affected by the

contingency instability is detected by the indexes, and that

leads to the system’s instability.

C. Case study 2: Multiple Contingency Analysis

This case demonstrate the indexes calculation for multiple

contingencies, here the performed simulations consider 3-
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Fig. 5. (a) Analyzed time-series, (b) Detrended and selected data, (c) Signal
estimation from ringdown analysis, (d) Estimated Modes.

TABLE III
ESTIMATED MODES, FREQUENCIES AND DAMPING (CASE STUDY 1)

Mode σ + jω f (Hz) ζ (%)

λ1 0.0583 + j 0.8240 0.1311 -7.0588
λ2 -0.2333 + j 4.2171 0.6712 5.5249

TABLE IV
SMALL-SIGNAL STABILITY INDEXES FOR THE NORDIC SYSTEM (CASE

STUDY 1)

Θζj

GMI -0.0706

θ̂ζ0 θ̂ζ5 θ̂ζ10
AMI -0.0706 -0.1207 -0.1708

SMI θ̃i,ζ0 θ̃i,ζ5 θ̃i,ζ10
λ1 -0.0706 -0.1207 -0.1708

λ2 0.0553 0.0053 -0.0449

phase faults applied to different buses for a fixed duration

of 100 msec (Case 2.A) and for a random duration between

20 and 150 msec (Case 2.B).

C.1 Case 2.A: Fixed Fault Duration

A 3-phase fault of 100 msec was applied at each of the 32

buses of the system. The median values of the identified modes

are shown in Table V, where the standard deviation is also

included. Figure 6 (a) depicts the location in the complex plain

of the modes (λ1 in red and λ2 in blue) and the location of

the median values in black. From these results, it can be seen

how λ1 is better estimated than λ2. The standard deviation is

lower for λ1 and the poles location are closer to each other

as shown by the blue crosses in Figure 6 (a), λ1 is more

visible than λ2, this can be justified in a similar way as in

the example in Section V-B. The median values of SMI, AMI

and GMI are shown in Table VI, it is possible to conclude

that λ1 has a damping ratio below 5% as indicated by the

negative numbers in SMI and that λ2 has a damping ratio less

than 10% as indicated by the negative number in the element

(2, 3) of SMI. Figure 7 shows the fitted normal distribution

of the frequency and damping ratio for both modes after the

disturbances in the system.

C.2 Case 2.B: Random Fault Duration

Five 3-phase faults of random duration between 120 and 250
msec were applied at each of the 32 buses (160 faults). The
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TABLE V
MEDIAN OF THE ESTIMATED MODES, FREQUENCIES AND DAMPING (CASE

STUDY 2.A)

Mode σ + jω f (Hz) ζ (%) std

λ1 -0.1298 + j 3.0069 0.4763 4.56 0.0681
λ2 -0.4153 + j 4.7811 0.7609 6.99 0.1006

TABLE VI
SMALL-SIGNAL STABILITY INDEXES FOR THE NORDIC SYSTEM - MEDIAN

VALUES (CASE STUDY 2.A)

Θζj

GMI -0.0545

θ̂ζ0 θ̂ζ5 θ̂ζ10
AMI 0.0456 -0.0044 -0.0545

SMI θ̃i,ζ0 θ̃i,ζ5 θ̃i,ζ10
λ1 0.0456 -0.0044 -0.0545

λ2 0.0700 0.0199 -0.0302

identified modes are plotted in Figure 6 (b), the fitted normal

distribution of the frequency and damping ratio for both modes

are shown in Figure 7 (dotted curves) and the median values

are shown in Table VII. Note that the standard deviation values

for both modes are smaller than in the previous case study.

Table VIII shows the SMI, AMI and GMI index for this study

case.

C.3 Comparison of Case 2.A and Case 2.B

Analyzing results from case studies 2.A and 2.B, is possible

to observe that incrementing the severity of the disturbances in

the network improves the identification of the system modes as

indicated by the reduction of the standard deviation on Table V

and VII. Larger disturbances excite relevant modes facilitating

its identification. Altough, λ1 is the most visible mode in the

system as indicated by the concentration of blue crosses in

TABLE VII
MEDIAN OF THE ESTIMATED MODES, FREQUENCIES AND DAMPING (CASE

STUDY 2.B)

Mode σ + jω f (Hz) ζ (%) std

λ1 -0.1282 + j 2.9392 0.4698 3.98 0.0054
λ2 -0.3818 + j 4.7539 0.7566 5.94 0.0938

TABLE VIII
SMALL-SIGNAL STABILITY INDEXES FOR THE NORDIC SYSTEM - MEDIAN

VALUES (CASE STUDY 2.B)

Θζj

GMI -0.0652

θ̂ζ0 θ̂ζ5 θ̂ζ10
AMI 0.0349 -0.0151 -0.0652

SMI θ̃i,ζ0 θ̃i,ζ5 θ̃i,ζ10
λ1 0.0349 -0.0151 -0.0652
λ2 0.0595 0.0095 -0.0406

Figures 6 (a) and (b), λ2 can be identified applying the correct

disturbance.

VI. CONCLUSIONS

In this paper a three layer severity index to assess the power

system small-signal stability problem has been described. The

index is calculated using time-series from dynamic simulations

without any information about the mathematical model of the

system. The index is comprised by a matrix (SMI), a vector

(AMI) and a scalar (GMI) to facilitate interpretation. Time-

series of the response seen in dynamic simulations of active

and reactive power trough transmission lines were utilized as

inputs to the index. Altough Prony’s procedure was used as

ringdown method, the index is not limited to this approach

and can use any other linear or non-linear mode identification

methodology. An illustrative example to understand the proce-

dure and the index interpretation has been provided. Nonlinear

simulations using the KTH-Nordic32 power system model

were performed to validate the procedure. Future work will

focus to the application of this index to time-series obtained

from synchronized phasor measurements in both off-line and

near real-time analysis.
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