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Abstract —This paper presents a software implementation of a 
real-time power system mode estimator which uses ambient 
synchrophasor data. The software is built using Statnett’s 
Software Development Kit (SDK) as a platform for fast 
prototyping of real-time synchrophasor applications. The SDK 
extracts synchrophasor data received in the IEEE C.37.118 
protocol and provides them as LabVIEW signals. These signals 
are preprocessed and mode frequencies and damping ratios are 
calculated by Yule-Walker’s method. The implemented 
LabVIEW software employs state machine logics which enables 
modifications and upgrades to the algorithm. 

Index Terms—Synchrophasors, mode estimation, mode 
meters, state machine. 

I. INTRODUCTION 

YNCHROPHASOR technology is widely recognized as an 
important element that can aid in the enhancement of 

modern power systems monitoring and control [1]. One 
important synchrophasor application is the continuous real-
time monitoring of electromechanical oscillations, which is 
usually referred to as mode estimator or mode meter. Mode 
meters apply signal processing algorithms to ambient data 
(process noise) which is present in all synchrophasor 
measurements [2].  

Measurement based estimation of electromechanical modes 
is a complex problem due to the high dimensionality, 
nonlinearity, and time variant structure of the power system. 
This problem is a topic of ongoing interdisciplinary research 
between the power systems and the system identification 
communities.  

In addition to the theoretical development of methods for 
mode estimation [3], it is important to test an integrated 
solution for mode estimation including measurement 
acquisition. This includes physical Phasor Measurement Units 
(PMUs) and the Information & Communication Technologies 
(ICT) systems that support the mode meter application. 

This paper presents a mode meter application which is 
integrated with the entire Wide Area Measurements Systems 
(WAMS) ICT infrastructure. Statnett’s Software Development 
Kit (SDK) allows fast prototyping and testing of the integrated 
WAMS solution [4]. It is used here as a platform for 
developing the mode estimator. The SDK extracts 
synchrophasor data received in the IEEE C.37.118 protocol 
and converts them to a more convenient form (LabVIEW 
signals). The mode estimator is implemented in the LabVIEW 
environment using state machine logic. This architecture 
enables easy modifications and further developments to the 

estimator. 

The paper is organized as follows: Section II outlines the 
algorithm used in the mode meter application. Section III 
describes Statnett’s SDK platform. The architecture of the 
developed mode meter software is given in Section IV, 
whereas the user interface and experimental testing results are 
given in Section V and Section VI, respectively. Conclusions 
are drawn in Section VII. 

II. MODE ESTIMATION ALGORITHM 
During (quasi) steady state operation, it can be assumed that 

the power system is mainly disturbed by small random load 
variations. These load variations are caused by the random 
behavior of individual consumers at different voltage levels. 
Since these random load changes are small in magnitude, the 
power system behavior can be described by a linear model. 
Therefore, the power system model can be written as follows: 

ω ω ω= ⋅( ) ( ) ( )j j jY H U , (1) 

where: 

ω( )jY – vector of measured electric variables; 
ω( )jH – transfer function matrix of the power system; 
ω( )jU – vector of inputs (load variations). 

In order to demonstrate the mode estimation algorithm 
principle, we will consider only a single input-single output 
system [5]. Assuming that the individual load behavior is 
random and independent from other loads, the (input) load 
variations can be represented by white noise. Keeping in mind 
that the frequency spectrum of white noise is a constant 
function, it is follows that the spectrum of the measured signal 
is proportional to the amplitude response of the system (
| ( ) |H jω ). Therefore, the mode estimation algorithm 
determines the coefficients of a rational transfer function 
whose amplitude response is proportional to the spectrum of 
measured signal. This can be written in the discrete domain 
time domain as: 
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where:  

( )y k  – measured output signal at time point k; 

( )u k  – random load input at time point k (assumed to be 
white noise); 

ia , jb  (i=1,…, p, and j=0,…, q) – unknown coefficients of 
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the rational transfer function; 
p, q – orders of the numerator and denumerator of the 

estimated rational transfer function, respectively. 

Multiplying both sides of (2) by − −( )y k n l , taking the 

expected value and using the definition of autocorrelation (r) 
[6], the following matrix equation can be written [7]: 
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Note that the following property is used in the derivation:
− ⋅ − − ={ ( ) ( )} 0E u k j y k q l , for l=1,..,p. (4) 

Autocorrelations in (3) are estimated using (5): 
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The solutions of the system (3) are the autoregressive (AR) 
coefficients of the model, which are sufficient to compute the 
modes of the system. In case that the moving average (MA) 
part is also of the interest, it can be computed using Durbin’s 
method [8]. 

The characteristic equation of the system is defined by the 
computed AR coefficients as follows: 

+ + + =
1

1 ... 0
p

a a . (6) 

The roots of the characteristic equation represent the modes 
of the system in the z-domain. These modes (denoted by z) 
can be transformed easily to the s-domain using: 

= + =σ ω 1
ln( )

s

j
T

s z , (7) 

where Ts is the signal’s sampling period. σ  and ω  are real 
and imaginary components of the modes in the s-domain (s), 
respectively. Once the s-domain modes of the system are 
calculated, the damping ratio of the i-th pole (ξ

i
) is computed 

using the following formula: 
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where iσ and iω  are i-th elements in σ  and ω , respectively. 

III. STATNETT’S SOFTWARE DEVELOPMENT KIT (SDK) 

Statnett’s Software Development Kit (SDK) enables easy 
real-time access to PMU and PDC streams [4]. The LabVIEW 
platform provides easy integration with different hardware 
equipment as well as intuitive graphical programing language 
(G language). The main benefit of the software development 
toolkit is that it exempts a developer of complicated 
synchrophasor data handling. Instead, the developer is 
required only to set the appropriate PDC connection 
parameters such as PDC ID, PDC host address and the port 

number to connect to the PDC stream. 

The general architecture of the SDK is shown in Fig. 1. 
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Fig. 1. Statnett's SDK architecture. 

The SDK has two major components, Data Collector and 
Data Extractor. 

A. Data Collector 
The Data Collector reads the data from the PDC/PMU and 

stores them in configurable buffers. This component uses a 
Dynamic-Dink Library (DLL) developed in the C 
programming language to connect to the PDC stream via the 
IEEE C37.118.2 protocol. In addition, the DLL reads the 
configuration data of the PDC stream, such as channel names, 
scaling and number of the measured signals by type (analog, 
phasors or digital signals).  

The incoming data from the DLL are stored in a Live 
Buffer. When the data buffer is full, the data is put in a queue 
that sends data to the Access Buffer, the data then can be 
received by a user application using the Queue Handler. The 
Access Buffer size decides on the amount of data history to be 
kept in memory, and the data that can be read from the buffer 
in the Custom Application via the Buffer Handler.  

B. Data extractor – LabVIEW PMU control   
The data extractor is a collection of functions (VIs) that 

allows the user to access the buffers and queues in the Data 
Collector. It reads the data from the buffers and provides the 
user with control over the data streams in a form suitable for 
further processing in the main application (as a signal data 
type in LabVIEW). The interface of this VI is shown in Fig. 2.  

 
Fig. 2. LabVIEW PMU Control. 

Other parameters such as PMU selection, data length, and 
others, are set in an auxillary user interface. Additional 
LabVIEW VIs are provided in the SDK for data handling and 
processing [4].  



 
 
 

3 

IV. MODE METER SOFTWARE ARCHITECTURE 
The state machine architecture is chosen for the mode meter 

application development. This architecture allows to decouple 
different tasks and to develop them independently. The block 
diagram of the state machine is given in Fig. 3: 

 
Fig. 3. Global block diagram of the implemented mode meter. 

The software’s structure, which is typical for real-time 
applications, consists of an initialization step and a main loop.  

The initialization step is performed only once and it sets all 
variables to their initial values, as well as populating initial 
settings such as data source, refresh rate, etc. After the 
initialization step the program enters the main loop which 
consists of four blocks, namely: data acquisition, 
preprocessing, estimation of ARMA coefficients and reports. 

A. Data acquisition  
Data acquisition imports a parcel of data which is used for 

mode estimation. The length of data is defined in the 
software’s options and usually is in the range of 10-15 min. 
There are two operating modes of data acquisition:  

• Acquisition through a PDC and Statnett’s SDK. The 
signal used for mode estimation is selected among 
available real-time measurements in Statnett’s SDK 
interface [4]. 

• Acquisition from an internal data generator. The internal 
data generator provides Gaussian white noise filtered by 
linear an IIR filter. The coefficients of the IIR filter are 
set manually by the user in the Testing tab (this tab is 
described in Section V). 

Software modularity is achieved through a standardized 
interface among the blocks. The following interface is adopted 
and implemented using a “type definition” LabVIEW structure 
(Fig. 4.): 

 
Fig. 4 Common data structure 

This user defined type consists of 5 elements, namely: 

• Waveform – Data parcel with corresponding time stamps;  

• AR Order – Order of the estimated autoregressive part of 
the model; 

• MA Order – Order of the estimated moving averge part 
of the model; 

• Sampling frequency - Sampling frequency of the signal; 
• AR Coefficients – Calculated autoregressive coefficients; 
• MA Coefficients – Calculated moving average 

coefficients. 

This user defined type is sufficient for communication 
between different blocks. This means that the block’s 
functionality is well defined and it is easy to maintain the 
interfaces between blocks. This also means that each 
individual block can be developed independently, what makes 
the software maintenance easier.  

B. Preprocessing 
After the data parcel is imported, the parcel is preprocessed 

in order to make it more adequate to apply the system 
identification algorithm. This includes signal downsampling, 
mean and outlier removal. Downsampling greatly improves 
the accuracy of the estimation because only a frequency range 
of the interest is considered, i.e. the estimator is not 
constrained by fitting dynamics at higher frequencies. Also, in 
the case of high sampling frequency data, the modes in z-
domain tend to be grouped around point (1,0) in the complex 
plane what creates numerical difficulties. More details can be 
found in [9]. 

C. Estimation of ARMA coefficients 
A preprocessed signal is fed into the main computation 

block which calculates the ARMA coefficients of the 
stochastic process. The algorithm used in this block is given in 
Section II. This block does not perform any further 
computation because it is important to keep it independent 
from other blocks in order to make the core algorithm easy to 
update or replace. The computed ARMA coefficients are 
stored in the interface structure (Fig. 4.). The coefficients are 
later used for calculation of the estimation results presented to 
the user. 
D. Reports 

The computed ARMA coefficients are used in the Report 
block to present results to the user. This block computes the 
spectrum, and poles in the discrete and continuous domain 
(described by (7) and (8)). Furthermore, this block buffers 
results from previous iterations. Each of these calculations are 
performed in sub-routines (sub VIs).  

The algorithm described is executed in a timed loop, and 
paused after the Report block has been executed. The next 
iteration starts at the time specified in the settings of the timed 
loop. 

Note that overlapping in the algorithm is defined by the 
loop period and the parcel data length.  

V. USER INTERFACE 
The user interface is designed to provide relevant 

information about the estimated modes of the system. There 



 
 
 

4 

are two main parts of the interface: 1) Time domain signal 
plots (upper part) and 2) Computed results and estimator’s 
settings (lower part). 

In the upper part, the measured signal is shown in the time 
domain, as well as the signal which is obtained after 
preprocessing (Fig. 5). 

 

 
Fig. 5. Time domain signal representation. 

The lower part is composed of five parts (tabs), namely: 
• Main Results tab (Fig. 6). This tab shows the estimated 

modes location in the complex plane as well as the 
history of estimated damping ratios. In addition, the 
frequency and damping ratio of the most critical mode 
are shown. 

 
Fig. 6. Main results interface1. 

• Spectra tab (Fig. 7.). Shows the measured signal in the 
frequency domain. The spectrogram also gives 
information how the spectrum has changed over time.  

 
Fig. 7 Spectral results1. 

• Numerical results tab. This tab presents the estimation 

 
1 The red lines in Figs. 6-7 are added to show important values (results) 

obtained from the tests and they are not part of the application interface. 

results in form of numbers which are required for 
detailed analysis. 

• Test tab. Defines the parameters of the IIR filter used in 
the simulation operating mode. 

• Options tab (Fig. 8). Defines the parameters of the 
estimator such as data length, etc. 

VI. EXPERIMENTAL RESULTS 
The developed mode meter is first tested in KTH SmartTS 

Lab using real-time hardware in-the-loop simulation with 
Opal-RT simulator and physical PMUs connected to it [10]. In 
the second test, a PMU connected to low voltage grid is used 
to for mode estimation in the Nordic grid. 

 
Fig. 8 Options tab of the mode estimator. 

A. Real-time hardware-in-the-loop test 
Opal-RT simulator is used for the hardware-in-the-loop 

(HIL) simulation of the KTH Nordic 32 test system [11]. This 
system has a dominant mode at 0.4987 Hz with 3.5223 % 
damping ratio (computed using classical small signal stability 
analysis). An ambient response of the system is simulated by 
imposing random load variations in all load buses. It is 
assumed that these variations are described by Gaussian white 
noise. Voltage waveforms at bus No. 49 are chosen for mode 
estimation because that bus has the highest observability of the 
dominant mode [12]. The simulated signals are amplified by 
Megger Smrt-1 Amplifiers and fed into a National Instruments 
PMU implemented in the CompactRIO platform [13]. The 
PMU computes the frequency using the three phase signals 
and sends it the mode meter application. The data parcel 
length used for estimation is chosen to be 10 minutes. 

 
Fig. 9 Mode estimation results using signals generated by the simulated 

power system 

The results of this test are depicted in Figs. 8-9. It can be 
seen that the estimator finds the 0.5 Hz mode to be the most 
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critical with damping ratio oscillating around the value of 4 %. 
Since this is a stochastic process (estimation), these results are 
not sufficient for a full assessment of the estimator’s 
performances. To get better insight into the estimator’s 
performances, a large number of estimates (120 estimates 
based on 120 different 10-minutes data parcels) is recorded 
and the mean value and variance of the estimates are 
computed using: 

=

= ∑
1

1 N

i
i

x x
N

 (9) 

2
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1var( ) ( )
1

N

i
i

x x x
N =

= −
− ∑  (10) 

where x  is the mean value of the all estimates and N is the 
number of estimates (N=120). 

 
Fig. 10 Spectrum of the signal generated by the real-time hardware-in-

the-loop simulation. 

Further, these results are compared against an off-line mode 
estimator implementation in Matlab, without physical PMUs 
involved (no HIL). This means that it is possible to distinct the 
error caused by the estimator itself from measurement errors 
(there are no measurement errors within the Matlab simulation 
environment).  

TABLE I STOCHASTIC PROPERTIES OF THE MODE ESTIMATOR 
 Hardware in the loop Software simulation 

Mean {f} [Hz] 0.5073 0.4985 
Mean {ξ} [%] 4.0910 3.6905 

Var {f} 1.1037e-04 7.5797e-05 
Var {ξ} 1.9088 1.7184 

It can be seen that HIL test introduces additional error 
which can be explained by the imprecision of the HIL chain, 
including limits of the PMU’s accuracy. 

B. Test using measurements from the Nordic grid 
After having validated the software in the laboratory, the 

software was tested using real-time measurements from a 
PMU in the Nordic grid. The results from this test are shown 
in Figs. 5-7, whereas the options used are shown in Fig. 8. 
Several oscillatory modes can be observed in Figs.6-7. The 
most critical mode has a frequency of around 0.39 Hz and 
damping around 9 % (in average). Other modes that are 
observable appear at 0.2 Hz, 1 Hz and 1.4 Hz, while a 0.5 Hz 
mode sporadically appears as a poorly damped mode. These 
estimates are quite in accordance with the results reported in 
[14]. Also, the mode with frequency of 1 Hz has been reported 
in [15] and (supposedly) it can be classified as a forced 

oscillation.  

CONCLUSION  
The paper presents a real-time mode meter software 

implementation and testing in the real-life conditions. The 
mode meter uses the well-known methodology based on Yule-
Walker equations. The performed tests show that the tool 
provides results comparable to those obtained in the software 
simulation mode. In addition, the paper demonstrates that with 
the tools used, a powerful real-time WAMS application can be 
developed in relatively short time.  

In order to make a full use of the ambient data-based mode 
estimation approach, further improvements of the tool are 
necessary. In addition to the implementation of more 
sophisticated and precise mode estimation algorithms, one of 
the main requirements is that the algorithm provides 
confidence intervals for the estimates. Confidence intervals 
are necessary for operators to take corrective actions initiated 
by the mode estimator results. Furthermore, the tool should be 
able to use all available synchrophasor signals. 
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