

1

Abstract —This paper presents a software implementation of a
real-time power system mode estimator which uses ambient
synchrophasor data. The software is built using Statnett’s
Software Development Kit (SDK) as a platform for fast
prototyping of real-time synchrophasor applications. The SDK
extracts synchrophasor data received in the IEEE C.37.118
protocol and provides them as LabVIEW signals. These signals
are preprocessed and mode frequencies and damping ratios are
calculated by Yule-Walker’s method. The implemented
LabVIEW software employs state machine logics which enables
modifications and upgrades to the algorithm.

Index Terms—Synchrophasors, mode estimation, mode
meters, state machine.

I. INTRODUCTION

YNCHROPHASOR technology is widely recognized as an
important element that can aid in the enhancement of

modern power systems monitoring and control [1]. One
important synchrophasor application is the continuous real-
time monitoring of electromechanical oscillations, which is
usually referred to as mode estimator or mode meter. Mode
meters apply signal processing algorithms to ambient data
(process noise) which is present in all synchrophasor
measurements [2].

Measurement based estimation of electromechanical modes
is a complex problem due to the high dimensionality,
nonlinearity, and time variant structure of the power system.
This problem is a topic of ongoing interdisciplinary research
between the power systems and the system identification
communities.

In addition to the theoretical development of methods for
mode estimation [3], it is important to test an integrated
solution for mode estimation including measurement
acquisition. This includes physical Phasor Measurement Units
(PMUs) and the Information & Communication Technologies
(ICT) systems that support the mode meter application.

This paper presents a mode meter application which is
integrated with the entire Wide Area Measurements Systems
(WAMS) ICT infrastructure. Statnett’s Software Development
Kit (SDK) allows fast prototyping and testing of the integrated
WAMS solution [4]. It is used here as a platform for
developing the mode estimator. The SDK extracts
synchrophasor data received in the IEEE C.37.118 protocol
and converts them to a more convenient form (LabVIEW
signals). The mode estimator is implemented in the LabVIEW
environment using state machine logic. This architecture
enables easy modifications and further developments to the

estimator.

The paper is organized as follows: Section II outlines the
algorithm used in the mode meter application. Section III
describes Statnett’s SDK platform. The architecture of the
developed mode meter software is given in Section IV,
whereas the user interface and experimental testing results are
given in Section V and Section VI, respectively. Conclusions
are drawn in Section VII.

II. MODE ESTIMATION ALGORITHM
During (quasi) steady state operation, it can be assumed that

the power system is mainly disturbed by small random load
variations. These load variations are caused by the random
behavior of individual consumers at different voltage levels.
Since these random load changes are small in magnitude, the
power system behavior can be described by a linear model.
Therefore, the power system model can be written as follows:

ω ω ω= ⋅() () ()j j jY H U , (1)

where:

ω()jY – vector of measured electric variables;
ω()jH – transfer function matrix of the power system;
ω()jU – vector of inputs (load variations).

In order to demonstrate the mode estimation algorithm
principle, we will consider only a single input-single output
system [5]. Assuming that the individual load behavior is
random and independent from other loads, the (input) load
variations can be represented by white noise. Keeping in mind
that the frequency spectrum of white noise is a constant
function, it is follows that the spectrum of the measured signal
is proportional to the amplitude response of the system (
| () |H jω). Therefore, the mode estimation algorithm
determines the coefficients of a rational transfer function
whose amplitude response is proportional to the spectrum of
measured signal. This can be written in the discrete domain
time domain as:

= =

= − − + −∑ ∑
1 0

() () ()
p q

i j
i j

y k a y k i b u k j , (2)

where:

()y k – measured output signal at time point k;

()u k – random load input at time point k (assumed to be
white noise);

ia , jb (i=1,…, p, and j=0,…, q) – unknown coefficients of

Vedran S. Perić1, Maxime Baudette1, Luigi Vanfretti1,2, Jan O. Gjerde2, Stig Løvlund2
1KTH Royal Institute of Technology, Stockholm, Sweden

2Statnett SF, Oslo, Norway

Implementation and Testing of a Real-Time
Mode Estimation Algorithm using Ambient

PMU Data

S

2

the rational transfer function;
p, q – orders of the numerator and denumerator of the

estimated rational transfer function, respectively.

Multiplying both sides of (2) by − −()y k n l , taking the

expected value and using the definition of autocorrelation (r)
[6], the following matrix equation can be written [7]:

 − + +

= −
 + − +

1
() (1) (1)

(1) () ()
p

r q r q p a r q

r q p r q a r q p

 (3)

Note that the following property is used in the derivation:
− ⋅ − − ={ () ()} 0E u k j y k q l , for l=1,..,p. (4)

Autocorrelations in (3) are estimated using (5):
1

0

1() () ()
N n

k
r n y k n y k

N

− −

=

= +∑ (5)

The solutions of the system (3) are the autoregressive (AR)
coefficients of the model, which are sufficient to compute the
modes of the system. In case that the moving average (MA)
part is also of the interest, it can be computed using Durbin’s
method [8].

The characteristic equation of the system is defined by the
computed AR coefficients as follows:

+ + + =
1

1 ... 0
p

a a . (6)

The roots of the characteristic equation represent the modes
of the system in the z-domain. These modes (denoted by z)
can be transformed easily to the s-domain using:

= + =σ ω 1
ln()

s

j
T

s z , (7)

where Ts is the signal’s sampling period. σ and ω are real
and imaginary components of the modes in the s-domain (s),
respectively. Once the s-domain modes of the system are
calculated, the damping ratio of the i-th pole (ξ

i
) is computed

using the following formula:
σ

ξ
σ ω

−
=

+2 2

i
i

i i

. (8)

where iσ and iω are i-th elements in σ and ω , respectively.

III. STATNETT’S SOFTWARE DEVELOPMENT KIT (SDK)

Statnett’s Software Development Kit (SDK) enables easy
real-time access to PMU and PDC streams [4]. The LabVIEW
platform provides easy integration with different hardware
equipment as well as intuitive graphical programing language
(G language). The main benefit of the software development
toolkit is that it exempts a developer of complicated
synchrophasor data handling. Instead, the developer is
required only to set the appropriate PDC connection
parameters such as PDC ID, PDC host address and the port

number to connect to the PDC stream.

The general architecture of the SDK is shown in Fig. 1.

PDC

DLL

Live Buffer

Access Buffer

Remote

Buffer Handler

Selector

C37.118

Data

Data
Collector

Data extractor (LabView PMU control)

• Time step
• Voltage Phasor
• Current Phasor
• Frequency

PRL Library

Queue Handler

Fig. 1. Statnett's SDK architecture.

The SDK has two major components, Data Collector and
Data Extractor.

A. Data Collector
The Data Collector reads the data from the PDC/PMU and

stores them in configurable buffers. This component uses a
Dynamic-Dink Library (DLL) developed in the C
programming language to connect to the PDC stream via the
IEEE C37.118.2 protocol. In addition, the DLL reads the
configuration data of the PDC stream, such as channel names,
scaling and number of the measured signals by type (analog,
phasors or digital signals).

The incoming data from the DLL are stored in a Live
Buffer. When the data buffer is full, the data is put in a queue
that sends data to the Access Buffer, the data then can be
received by a user application using the Queue Handler. The
Access Buffer size decides on the amount of data history to be
kept in memory, and the data that can be read from the buffer
in the Custom Application via the Buffer Handler.

B. Data extractor – LabVIEW PMU control
The data extractor is a collection of functions (VIs) that

allows the user to access the buffers and queues in the Data
Collector. It reads the data from the buffers and provides the
user with control over the data streams in a form suitable for
further processing in the main application (as a signal data
type in LabVIEW). The interface of this VI is shown in Fig. 2.

Fig. 2. LabVIEW PMU Control.

Other parameters such as PMU selection, data length, and
others, are set in an auxillary user interface. Additional
LabVIEW VIs are provided in the SDK for data handling and
processing [4].

3

IV. MODE METER SOFTWARE ARCHITECTURE
The state machine architecture is chosen for the mode meter

application development. This architecture allows to decouple
different tasks and to develop them independently. The block
diagram of the state machine is given in Fig. 3:

Fig. 3. Global block diagram of the implemented mode meter.

The software’s structure, which is typical for real-time
applications, consists of an initialization step and a main loop.

The initialization step is performed only once and it sets all
variables to their initial values, as well as populating initial
settings such as data source, refresh rate, etc. After the
initialization step the program enters the main loop which
consists of four blocks, namely: data acquisition,
preprocessing, estimation of ARMA coefficients and reports.

A. Data acquisition
Data acquisition imports a parcel of data which is used for

mode estimation. The length of data is defined in the
software’s options and usually is in the range of 10-15 min.
There are two operating modes of data acquisition:

• Acquisition through a PDC and Statnett’s SDK. The
signal used for mode estimation is selected among
available real-time measurements in Statnett’s SDK
interface [4].

• Acquisition from an internal data generator. The internal
data generator provides Gaussian white noise filtered by
linear an IIR filter. The coefficients of the IIR filter are
set manually by the user in the Testing tab (this tab is
described in Section V).

Software modularity is achieved through a standardized
interface among the blocks. The following interface is adopted
and implemented using a “type definition” LabVIEW structure
(Fig. 4.):

Fig. 4 Common data structure

This user defined type consists of 5 elements, namely:

• Waveform – Data parcel with corresponding time stamps;

• AR Order – Order of the estimated autoregressive part of
the model;

• MA Order – Order of the estimated moving averge part
of the model;

• Sampling frequency - Sampling frequency of the signal;
• AR Coefficients – Calculated autoregressive coefficients;
• MA Coefficients – Calculated moving average

coefficients.

This user defined type is sufficient for communication
between different blocks. This means that the block’s
functionality is well defined and it is easy to maintain the
interfaces between blocks. This also means that each
individual block can be developed independently, what makes
the software maintenance easier.

B. Preprocessing
After the data parcel is imported, the parcel is preprocessed

in order to make it more adequate to apply the system
identification algorithm. This includes signal downsampling,
mean and outlier removal. Downsampling greatly improves
the accuracy of the estimation because only a frequency range
of the interest is considered, i.e. the estimator is not
constrained by fitting dynamics at higher frequencies. Also, in
the case of high sampling frequency data, the modes in z-
domain tend to be grouped around point (1,0) in the complex
plane what creates numerical difficulties. More details can be
found in [9].

C. Estimation of ARMA coefficients
A preprocessed signal is fed into the main computation

block which calculates the ARMA coefficients of the
stochastic process. The algorithm used in this block is given in
Section II. This block does not perform any further
computation because it is important to keep it independent
from other blocks in order to make the core algorithm easy to
update or replace. The computed ARMA coefficients are
stored in the interface structure (Fig. 4.). The coefficients are
later used for calculation of the estimation results presented to
the user.
D. Reports

The computed ARMA coefficients are used in the Report
block to present results to the user. This block computes the
spectrum, and poles in the discrete and continuous domain
(described by (7) and (8)). Furthermore, this block buffers
results from previous iterations. Each of these calculations are
performed in sub-routines (sub VIs).

The algorithm described is executed in a timed loop, and
paused after the Report block has been executed. The next
iteration starts at the time specified in the settings of the timed
loop.

Note that overlapping in the algorithm is defined by the
loop period and the parcel data length.

V. USER INTERFACE
The user interface is designed to provide relevant

information about the estimated modes of the system. There

4

are two main parts of the interface: 1) Time domain signal
plots (upper part) and 2) Computed results and estimator’s
settings (lower part).

In the upper part, the measured signal is shown in the time
domain, as well as the signal which is obtained after
preprocessing (Fig. 5).

Fig. 5. Time domain signal representation.

The lower part is composed of five parts (tabs), namely:
• Main Results tab (Fig. 6). This tab shows the estimated

modes location in the complex plane as well as the
history of estimated damping ratios. In addition, the
frequency and damping ratio of the most critical mode
are shown.

Fig. 6. Main results interface1.

• Spectra tab (Fig. 7.). Shows the measured signal in the
frequency domain. The spectrogram also gives
information how the spectrum has changed over time.

Fig. 7 Spectral results1.

• Numerical results tab. This tab presents the estimation

1 The red lines in Figs. 6-7 are added to show important values (results)

obtained from the tests and they are not part of the application interface.

results in form of numbers which are required for
detailed analysis.

• Test tab. Defines the parameters of the IIR filter used in
the simulation operating mode.

• Options tab (Fig. 8). Defines the parameters of the
estimator such as data length, etc.

VI. EXPERIMENTAL RESULTS
The developed mode meter is first tested in KTH SmartTS

Lab using real-time hardware in-the-loop simulation with
Opal-RT simulator and physical PMUs connected to it [10]. In
the second test, a PMU connected to low voltage grid is used
to for mode estimation in the Nordic grid.

Fig. 8 Options tab of the mode estimator.

A. Real-time hardware-in-the-loop test
Opal-RT simulator is used for the hardware-in-the-loop

(HIL) simulation of the KTH Nordic 32 test system [11]. This
system has a dominant mode at 0.4987 Hz with 3.5223 %
damping ratio (computed using classical small signal stability
analysis). An ambient response of the system is simulated by
imposing random load variations in all load buses. It is
assumed that these variations are described by Gaussian white
noise. Voltage waveforms at bus No. 49 are chosen for mode
estimation because that bus has the highest observability of the
dominant mode [12]. The simulated signals are amplified by
Megger Smrt-1 Amplifiers and fed into a National Instruments
PMU implemented in the CompactRIO platform [13]. The
PMU computes the frequency using the three phase signals
and sends it the mode meter application. The data parcel
length used for estimation is chosen to be 10 minutes.

Fig. 9 Mode estimation results using signals generated by the simulated

power system

The results of this test are depicted in Figs. 8-9. It can be
seen that the estimator finds the 0.5 Hz mode to be the most

5

critical with damping ratio oscillating around the value of 4 %.
Since this is a stochastic process (estimation), these results are
not sufficient for a full assessment of the estimator’s
performances. To get better insight into the estimator’s
performances, a large number of estimates (120 estimates
based on 120 different 10-minutes data parcels) is recorded
and the mean value and variance of the estimates are
computed using:

=

= ∑
1

1 N

i
i

x x
N

 (9)

2

1

1var() ()
1

N

i
i

x x x
N =

= −
− ∑ (10)

where x is the mean value of the all estimates and N is the
number of estimates (N=120).

Fig. 10 Spectrum of the signal generated by the real-time hardware-in-

the-loop simulation.

Further, these results are compared against an off-line mode
estimator implementation in Matlab, without physical PMUs
involved (no HIL). This means that it is possible to distinct the
error caused by the estimator itself from measurement errors
(there are no measurement errors within the Matlab simulation
environment).

TABLE I STOCHASTIC PROPERTIES OF THE MODE ESTIMATOR
 Hardware in the loop Software simulation

Mean {f} [Hz] 0.5073 0.4985
Mean {ξ} [%] 4.0910 3.6905

Var {f} 1.1037e-04 7.5797e-05
Var {ξ} 1.9088 1.7184

It can be seen that HIL test introduces additional error
which can be explained by the imprecision of the HIL chain,
including limits of the PMU’s accuracy.

B. Test using measurements from the Nordic grid
After having validated the software in the laboratory, the

software was tested using real-time measurements from a
PMU in the Nordic grid. The results from this test are shown
in Figs. 5-7, whereas the options used are shown in Fig. 8.
Several oscillatory modes can be observed in Figs.6-7. The
most critical mode has a frequency of around 0.39 Hz and
damping around 9 % (in average). Other modes that are
observable appear at 0.2 Hz, 1 Hz and 1.4 Hz, while a 0.5 Hz
mode sporadically appears as a poorly damped mode. These
estimates are quite in accordance with the results reported in
[14]. Also, the mode with frequency of 1 Hz has been reported
in [15] and (supposedly) it can be classified as a forced

oscillation.

CONCLUSION
The paper presents a real-time mode meter software

implementation and testing in the real-life conditions. The
mode meter uses the well-known methodology based on Yule-
Walker equations. The performed tests show that the tool
provides results comparable to those obtained in the software
simulation mode. In addition, the paper demonstrates that with
the tools used, a powerful real-time WAMS application can be
developed in relatively short time.

In order to make a full use of the ambient data-based mode
estimation approach, further improvements of the tool are
necessary. In addition to the implementation of more
sophisticated and precise mode estimation algorithms, one of
the main requirements is that the algorithm provides
confidence intervals for the estimates. Confidence intervals
are necessary for operators to take corrective actions initiated
by the mode estimator results. Furthermore, the tool should be
able to use all available synchrophasor signals.

REFERENCES
[1] S. Horowitz, A.G. Phadke and B. Renz, “The Future of Power

Transmission”, IEEE Power Energy Mag., vol.8, no.2, pp.34-40, Mar.-
Apr. 2010.

[2] J.J. Sanchez-Gasca (Ed.), “Identification of electromechanical modes in
power systems”, IEEE Task Force Report, Special Publication TP462,
2012.

[3] V.S. Perić and L. Vanfretti, “Mode Estimation using Load Spectral
characteristics”, IEEE Trans. Power Syst., accepted for publication,
2013.

[4] L. Vanfretti, et al., “A Software Development Toolkit for Real-Time
Synchrophasor Applications”, in Proc. PowerTech 2013, 16-20 June
2013.

[5] B. Friedlander and B. Porat, “The Modified Yule-Walker Method of
ARMA Spectral Estimation”, IEEE Trans. Aerosp. Electron. Syst.,
vol.AES-20, no.2, pp.158-173, Mar. 1984.

[6] M. H. Hayes, Statistical Digital Signal Processing and Modeling, John
Wiley & Sons Inc., 1996.

[7] V.K. Madisetti (Ed.), “The Digital Signal Processing Handbook”, CRC
Press, 2009.

[8] N. Sandgren, P. Stoica and P. Babu, “On moving average parameter
estimation”, in Proc. Eur. Signal Process. Conf. (EUSIPCO), 27-31
Aug. 2012.

[9] L. Vanfretti, S. Bengtsson and J.O. Gjerde, “Preprocessing synchronized
phasor measurement data for spectral analysis of electromechanical
oscillations in the Nordic Grid”, in press, Eur. Trans. Electr. Power,
2013.

[10] M.S. Almas et al., “Synchrophasor Network, Laboratory and Software
Applications developed in the STRONg2rid project”, submitted to IEEE
PES General Meeting, 2014.

[11] Y. Chompoobutrgool, W. Li and L. Vanfretti, “Development and
implementation of a Nordic grid model for power system small-signal
and transient stability studies in a free and open source software”, in
Proc. IEEE Power Eng. Soc. General Meeting 2012, 22-26 July 2012.

[12] A.M. Almutairi and J.V. Milanović, “Comparison of different methods
for optimal placement of PMUs”, in Proc. IEEE PowerTech 2009,
28 June - 2 July 2009.

[13] NI Advanced PMU Development System, www.ni.com
[14] K. Uhlen, et al., “Wide-Area Power Oscillation Damper Implementation

and Testing in the Norwegian Transmission Network”, in Proc. IEEE
PES General Meeting 2012, 22-26 July 2012.

[15] L. Vanfretti. et al., “Spectral estimation of low-frequency oscillations in
the Nordic grid using ambient synchrophasor data under the presence of
forced oscillations”, in Proc. IEEE PowerTech 2013, 16-20 June 2013.

http://www.ni.com/

