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Abstract—This paper proposes a linear regression method
using synchrophasor measurement for voltage stability monitor-
ing. The method preprocesses synchrophasor measurements in
order to eliminate inconsistencies and errors that embedded in
them. This data is then used in the computation of sensitiv-
ities suitable for voltage stability monitoring. Some important
electrical components such as Over Excitation limiter and On-
Load Tap Changer which create discrete changes affecting in
voltage instability have been included to assess the method’s
performance. Moreover, both process and measurement noises,
obtained from real-time hardware-in-the-loop simulation and real
PMU measurements from the Norwegian network, respectively,
have been applied to validate robustness of the proposed method-
ology.
Index Terms—Voltage Instability Detection, Wide-Area Early

Warning Systems, PMU-based applications, Linear Regression

I. Introduction
Phasor Measurement Units (PMUs) have been adopted to

provide a high-sampling rate voltage and current phasors for
Wide-Area Monitoring, Control and Protection (WAMPAC)
systems [1]. Within WAMPAC systems, are dependent on
synchrophasor data-based applications for providing timely
information to operators so that preventive and corrective
actions can be taken. A number of applications have been
implemented to support applications for voltage instability
detection. However, the ultimate goals of WAMPAC systems
is to go beyond detecting an emergency state and prevent the
evolution of a voltage instability that may lead to a system
collapse.

The activation of defense plans using the information
of PMUs within WAMPAC systems must coordinate with
different elements: PMUs, monitoring, control devices and
protections. To this aim, once the signals emerging from PMUs
are available in a WAMPAC system, appropriate measures
indicating the “inception” of instabilities can be determined.
In this context, such measures can be considered as “Defense
Signals” capable of arming controls or other countermeasures
such as load shedding once curative control actions have been
exhausted. Nevertheless, the activation of controls and “last
resort” countermeasures needs to be coordinated.

In particular, for the case of voltage instability, it has been
shown in [2] that appropriate sensitivities can indicate the
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inception of long-term voltage instabilities. These sensitivities
can be used to arm adaptive load shedding mechanisms [3]
by exploiting an important characteristic: once an inception of
voltage instability occurs, the sensitivities begin to grow - a
change of sign in these sensitivities corresponds to the point of
collapse of the network. However, this approach suffers from
the assumption of full PMU coverage (all voltage phasors in
the HV grid must be monitored). To relax this constraint, a
“state reconstruction” approach has been proposed [4], and
the use of adaptive load shedding control has been formulated
using reconstructed states.

In addition, it is necessary to extract unwanted dynamics
and measurement errors from PMU data before performing
voltage stability analysis. To this aim, the state reconstruction
approach can be used or one can utilize filtering and data
processing methods. Some filtering techniques have been
proposed, [5], [6]. These techniques were used for remov-
ing outliers and oscillations of fast dynamics which are not
relevant for long-term voltage instability detection. The above
mentioned methodologies serve as a theoretical basis for the
generation of defense signals. However, the applicability of
these methods is limited due to the need of: a) the ability to
continuously track the topology at all instances of time, b)
the availability of state estimator snapshots providing pseudo-
measurements for state reconstruction, c) the availability of a
simplified dynamic model capturing only long-term dynamics
(QSS), d) the ability of “fitting” the filtered dynamic responses
to the designed sensitivities from the QSS model, and e)
the availability of appropriate computational resources for
performing calculations on the designed sensitivities.

The approach proposed in this work therefore seeks to relax
some of the requirements from the methodologies above, by
improving recent work [7] on sensitivity computation solely
relying on synchrophasors. This previous work considered the
computation of sensitivities by filtering PMU data, and the
determination of “alarms” by comparisons to thresholds com-
puted through off-line analysis. However, filtering methods
have significant drawbacks such as specific parameters settings
and time delay. To avoid these problems, this paper proposes
a method that uses Linear Regression (LR) to compute sensi-
tivities for voltage instability detection. With the advantage of
fast computation and a simpler algorithm compared with the
filtering approach, the mentioned limitations are resolved.
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The remainder of this paper is structured as follows.
Section II describes the proposed LR methodology for pre-
processing data for fast and simple sensitivity calculations.
Section III presents the test system and simulation results for
different scenarios. Section IV shows the applicability of the
method on real PMU data from the Norwegian grid. Finally, in
Section V, conclusions are drawn and future work is outlined.

II. Linear Regression method for sensitivity computation
A. Linear Regression and Correlation Coefficient

Linear Regression (LR) is an approach to model a linear
relationship between a scalar dependent variable yi and p-
vector of regressors xi, with nonzero slope βi and an error
between the dependent variable and regressors ei. The generic
form of this linear relationship can be written as follows:

yi = β1xi1 + ... + βpxip + ei, i = 1, .., l (1)

Equation (1) can be written in vector form as Y = βX + e
where β is also called the regression coefficients which is
a rate of change of a conditional mean of variables Y with
respect to variables X. The linear regression model is the
statistical estimation that uses least squares to minimize the
sum of square residuals in (2) to obtain β.

S(β) =
∑
e2 = e′e = (Y − βx)′(Y − βx) (2)

The minimum of S(β) can be obtained by setting the derivative
of S(β) equal to zero and β can be defined as:

β = argmin
n∑

i=1

e2i (β) (3)

However, it is unlikely that the sum of the predicted values,∑
Y′ equals to the sum of the observed values,

∑
Y (neither

the mean of the predicted values, Ȳ′ equals to the mean
the observed values, Ȳ). Therefore, the good-of-fitness values,
which is derived from the sum of square for linear regression,∑
(Y− Ȳ)2 and the sum of squares of residuals,

∑
(Y−Y′)2, is

determined to evaluate the relationship between predicted and
observed values. This measure is called correlation coefficient
(see (7)). More details of a general LR approach can also be
found in [8].

B. Sensitivity Computation through Linear Regression
The use of sensitivities for voltage instability detection

has been proposed previously, see for example [6], [9]. In
this study a similar approach is adopted; however, individual
components of sensitivities are constructed from the power
flow in each transmission line (one direction) instead of
injected power flow of the bus (summation of power flow).
Moreover, the lines’ power flow are calculated solely based
on measured voltage and current phasors. This means that the
network topology and dynamic models are not required.

The transmitted power on the line can be expressed as:

Smn = VmI
∗

mn

Pmn = Re(Smn), Qmn = Im(Smn) (4)

where
Vm = voltage phasor at Bus m.
Imn = current phasor from Bus m to Bus n.
Sik = complex power transmitted from Bus m to Bus n.
Pmn = transmitted real power from Bus m to Bus n.
Qmn = transmitted reactive power from Bus m to Bus n.

To apply the LR method for calculating sensitivities, a rolling
window of measured voltage and current phasors (from avail-
able PMU buses) will be used to find the regression line. Con-
sequently, noise, outliers and oscillations which are produced
from fast dynamic components in power system are assumed to
have finite variance and are homoscedastic. The LR method to
compute sensitivities for voltage instability detection proposed
here follows the next steps:
Step 1: Gather voltage & current phasors from all buses with

PMUs.
Step 2: Calculate active and reactive powers from the gath-

ered voltage and current phasors using (4).
Step 3: Find the linear correlation (as in (1)) of measured

voltage magnitude and calculated powers:
Vmti − Vmti−1 = ai(ti − ti−1) + bi (5)
Pmnti − Pmnti−1 = ci(ti − ti−1) + di (6)

The linear correlation of measured voltage and calculated
active power at time instant i (i.e. ti) are ai, bi and
ci, di, respectively. The length between ti and ti−1 (so
called twindow) is selected from the shortest discrete change
created by system’s components, e.g. smallest time delay
between two tap positions of the OLTC.

Step 4: Check the good-of-fitness of the measured voltage by
calculating the correlation coefficient (R2

volt
):

R2volt = 1 − SSres/SStot (7)

where

Total sum of squares: SStot =
ti∑

h=ti−1

(Vmh − V̄m)2.

Total sum of square residuals: SSres =
ti∑

h=ti−1

(Vmh − V′mh )
2

The value of R2
volt

lies in the [0,1] range. If the value
of R2

volt
is small for a time larger than the window size,

it means that this window size is too large to capture
the linear behaviour of the physical system. Here, if the
R2
volt
< 0.3 for t > twindow, the window size should be

reduced to increase the R2
volt

value.
Step 5.1: Replace the oldest measurement by the newest one,

maintaining the window size, i.e. twindow .
Step 5.2: Check the variation in powers, i.e. abs(Pmni −

Pmni−1 ) < k ∗ ε, ci = ci−1 where k is a sensitivity factor.
The selection of k depends on the Signal-to-Noise Ratio
(SNR). The lower the SNR (higher noise), the larger k
value.



Step 6: Calculate the sensitivity, ΔVi/ΔPmni :

ΔVi
Δti
∗

Δti
ΔPmni

=
ai
ci

(8)

Similar expressions can also be derived for ΔVm/ΔQmni .
Fig. 1 shows the flowchart for sensitivities computation using
the proposed LR method.

Step 1

Step 2

Step 3

Step 4

Step 5.1

Step 5.2

i i-1

Step 6

Fig. 1. Flowchart for sensitivities calculation using the LR method

III. Demonstration
A. Test System and real PMU data

The proposed methodology is applied to simulate phasors
from the test system in Fig. 2 (Scenario 1 and 2 in Sec-
tion III-B) and to PMU data gathered from the Norwegian
Grid (in Section IV). The test system includes a salient-
pole synchronous generator equipped with a simplified IEEE
ST1A excitation system [10], a standard speed governor and
a simplified linear model for the hydraulic turbine [11]. The
generator is connected at Bus 1 to supply the loads through a
13.8/230 ratio transformer. An Over Excitation limiter (OEL)

is modelled to protect the generator from high excitation
levels. An On-Load Tap Changer (OLTC) of 8-tap positions
is equipped at Bus 4 to maintain the voltage of the constant
power load at Bus 5.

Fig. 2. Test system

B. Study Cases
The voltage instability scenarios used for demonstration are

implemented by increasing the load at Bus 5 of the test system
shown in Fig. 2. The load is assumed to change as:

PL = PLo(1 + λ) (9)

where PLo is the initial active power and λ is varying pa-
rameter representing the active power loading factors. The
constant active power load is increased continuously at a rate
of 0.1 MW/s. The impact of system components which lead
to voltage instability is studied under two different scenarios
for the following cases:

Case 1: Only OLTC activation
Case 2: Only OEL activation
Case 3: OLTC & OEL activation

Scenario 1 – Without random load variations (process
noise): In this test scenario, a random load variation (process
noise) is not applied to the load. This means that SNR equals
infinity. The active power load at Bus 5 starts to increase at
t = 50 sec until the system collapses. Fig. 3 shows the voltage
at Bus 5 for three cases when the load is increased. It can
be seen that the OLTC (for Case 1 and 3) tries to restore
the voltage at the load bus within its deadband [12]. Since
the load increases monotonically, the OLTC unsuccessfully
attempts to restore the load bus voltage, until it reaches its
lower limit. Meanwhile, the OEL (for Case 2 and 3) detects
a large field current resulting from the load increase and the
generator’s voltage is no longer controlled when this current
passes beyond the design limit. It can be seen that when OEL
reaches its limit, the voltage at Bus 5 in Case 3 declines at
a steeper rate (at t = 130 sec and t = 115 sec for Case 2
and 3, respectively) and the test system collapses sooner (at
t = 145 sec) compared with Case 1 (at t = 220 sec) where
the OEL is not activated.

The activation of OEL and OLTC events can be detected
by checking the reduction of R2 value of measured voltage
(ai). As shown in Fig. 4, it is obvious that these discrete
events weaken the linear correlation of measured voltage (ai),
consequently R2

volt
is drastically reduced. The R2

volt
value

returns to high value (≈ 1 pu, in these test cases) when discrete
event is not in the rolling window. In other words, the R2

volt
value returns to ≈ 1 when the old measurement which contains
discrete events are replaced by non-discrete ones (i.e. when
OEL and OLTC is not activated).



Fig. 3. Voltage at Bus 5 for three cases
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for three test cases

Fig. 5 shows the ΔV5/ΔP45 for the three cases. The spikes
shown in the green and blue lines in Fig. 5 correspond to
changes in the OLTC tap position in Case 1 and 3, respectively.
There are no visible spikes in the results for Case 2 (the OLTC
is not included) but there is an abrupt change in ΔV5/ΔP45
caused by OEL activation at t = 130 sec (similar to Case
3 at t = 115 sec). This means that the proposed method by
adopting measurements to calculate sensitivities (in this case,
ΔVi/ΔPik) is capable of predicting not only voltage instability
but also all discrete events created by system components such
as OEL and OLTC.

Fig. 5. ΔV5/ΔP45 for three cases with non-noised load

Scenario 2 – With random load variation (process noise):
Similar experiments as those in Scenario 1 are conducted,
however, a random white noise component is added to this
load. It is worth noting that there are two types of noise;
process noise and measurement noise. Both types of noise can
be modeled as Gaussian distribution if they are independent
and identically distributed (iid). This means that they are
mutually independent and with normal probability distribu-
tions. The difference between process noise and measurement
noise is that the process noise refers to uncertainties in the
system being controlled. Process noise influences directly
the system’s stability, i.e. driving electromechanical variations
and, consequently changing the dynamics of the system. On
the other hand, measurement noise relates to the sensitivity of
monitoring equipment, such as sensors and instrumentation.
In this paper, only process noise is used to model random
changes in the load as in (10) [13] where f (xt−1) is the load
function (represented in (9)) from the previous time step and
wt−1 denotes process noise with Gaussian random variable.

xt = f (xt−1) + wt−1 (10)

Measurement noise is not modeled, instead actual PMU
measurements are used (in Section IV) to assess the perfor-
mance of the proposed algorithm under realistic measurement
noise. Fig. 6 and 7 show the load increment and voltage
profiles (Case 3) of this test scenario, respectively. It is worth
noting that since the simulation is performed using simulink/
SimPowerSystems EMTP-type models, the obtained results
contain outliers (the green dashed lines as seen in Fig. 6) due
to the switching of discrete devices (i.e. OLTC).

Fig. 8 shows the plot of R2
volt

for load with and without
random variations. It can be seen that the R2

volt
value of the

random load case is lower compared to the non-random’s one.
However the response of the R2

volt
value for both scenarios

preserve its important behavior when the OEL and OLTC
is activated. Fig. 9 illustrates the ΔV5/ΔP45 sensitivity for
different SNR values in Case 3. Observe that the sensitivity
can detect all activities, load increment at t = 50 sec, all 8-tap
position steps, and OEL activation at t = 115 sec, leading to
the collapse (t = 150 sec). Fig. 10 depicts the ΔV5/ΔP45 for
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Fig. 6. Load with random variations (process noise)
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Fig. 7. Voltage at Bus 5 under process noise influence

three cases with the random load variation is increased. As
seen in Fig. 8 to 10, it can be concluded that the proposed
method for computing sensitivities can be effectively applied
when the test system is subjected to process noise.

Fig. 8. R2
vol t

for load with and without process noise (SNR=10 and SNR=inf)
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IV. Application to Real PMU data from the Norwegian Grid

In this section, PMU data from January, 2010 was gathered
from the Norwegian grid. Fig. 11 shows the approximate
location of PMUs installed at high voltage substations.

Fig. 11. Approximate PMU locations in the Norwegian Grid

The voltage at the “North” substation started to drop at
16:07 hrs. The OLTC was activated twice to step up the voltage
level at 16:12 hrs and 16:15 hrs. However, since the voltage
was below allowable limit (≈ 0.93 pu), an industrial load was
manually disconnected to prevent a voltage instability. Fig. 12
and 13 depict the voltage profile at the three substations and



the calculated ΔVmi/ΔQmni1 sensitivitity from the proposed
method, respectively.
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Fig. 12. Measured voltage from three high voltage substations

04:00:00,000 04:30:00,000
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (HH:MM:SS)

dV
dQ

 (p
u)

North
Central
South

Fig. 13. ΔVmi/ΔQmni for the near-voltage instability in the Norwegian Grid

Observe that the calculated sensitivity, which takes into
account both process noise and the measurement noise from
actual PMUs, can detect the OLTC’s activations and the load
disconnection. The authors suspect that the ΔVmi/ΔQmni sensi-
tivity of the “North” substation would have increased steeply
if the load was not shedded. In addition, it is worth noting
that the sensitivity decreases after the load disconnection and
it remains at a positive value which means that the system is
stable. A threshold on the sensitivity can be used to activate
load shedding mechanisms to prevent voltage instability [14].

V. Conclusion
Utilizing the approach proposed in this paper, an impending

long-term system collapse can be determined directly from
synchrophasor data, in which errors and unnecessary features
embedded in measurements can be properly treated. A linear
regression method for computing sensitivities was adopted to
detect voltage instability, using a rolling window of PMU
measurements. It has been shown that this methodology is
simple and it can be effectively applied when both process
and measurement noise are present. Moreover, activations of
system components that capture voltage instability phenomena

1
ΔQmn is calculated from the measured voltage and current phasors in the

line towards the large industrial load.

[15] (i.e. OEL and OLTC) can be detected efficiently. There are
two main advantages offered by this method: network topology
and dynamic models are not required. This is beneficial when
dealing with large networks and real-time applications where
the computational time to decide preventive or corrective
actions is critical. Secondly, difficulties related to filtering tech-
niques for preprocessing, such as several cutoff frequencies to
be considered in big systems (inter-area and local oscillations)
and filter order, are avoided. More importantly, intrinsic time
delays from using filtering methods are eliminated.

The ultimate goal of determining sensitivities is not only to
use them for wide-area monitoring but also to enable preven-
tive actions and to facilitate cooperation with other controllable
devices such as HVDCs [16] and protection systems. Such
coordination could use these “defense signals” to activate a
number of devices simultanously and will be the subjected of
a future publication.
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