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Abstract

Operating criteria for power systems, such as theN−1-criterion,
are often based on evaluating whether the system is vulnerable to
a specific set of contingencies. Therefore, a major part of power
system security is concerned with establishing regions in param-
eter space where the system is vulnerable to specific contingen-
cies. In this article we exploit the possibility of using Monte
Carlo simulations to build an approximation of the region, in pa-
rameter space, where the power system will remain stable post a
contingency.

Introduction

Due to the increased utilization of the power grid, that has fol-
lowed upon the deregulation of electricity markets, security con-
siderations now play a prominent role in power system opera-
tion [1]. There is a conflict of interest between the desire to
transfer large amounts of electric energy through the powergrid,
and the requirement of secure operation where the risk of a dis-
turbance is small. To satisfy both objectives to the largestpossi-
ble extent an “adequate balance” between secure operation and
transfer capacity is preferable.

Maintaining a secure operation of the power system is often con-
sidered equivalent to the system being able to withstand each
and every contingency in a list of plausible contingencies.This
requires knowledge of for what parameter levels the system is
vulnerable to different contingencies. When the list of plausi-
ble contingencies is not too long and the system parameters can
be forecasted with a good accuracy on-line, or close to on-line,
time-domain simulations can be used the predict whether the
system satisfies the security criteria. However, with the grow-
ing penetration of variable energy sources, that make the system
parameters more difficult to predict, and the more complicated
interconnections we see as a result of meeting the deregulation
requirements, extensive on-line simulations will not be a valid
tool.

One way to make detailed analysis tractable would be to perform
dynamic simulations off-line to predict which contingencies that
are important to investigate on-line. Another approach, which
is the one we suggest in this paper is to make detailed simu-
lations off-line and try to estimate a stability region which can
then be used to steer the system on-line. The on-line steering
can be performed by, for example, changing the production ac-

cording to the solution of a security-constrained optimal power
flow (SCOPF) (see [2] for the original work or [3,4] for more re-
cent versions) or a stochastic optimal power flow (SOPF) [5,6].
In [6] a SOPF formulation including the expected security cost
from post-contingency corrective actions, such as fast generator
rescheduling and load shedding, was given. The problem, which
we will refer to as expected security cost stochastic optimal
power flow (ESCSOPF), was formulated as:

Problem (ESCSOPF). Givenα > 0 and a list ofnc contingen-
cies each with probabilityqi, i = 1, . . . , nc, of occurrence; solve

min
u∈U

nc
∑

i=0

qiE[Ci(u, Z)] (1a)

s.t.
nc
∑

i=0

qiP [ min
j∈J TS

i

dij(u, Z) < 0] ≤ α, (1b)

whereq0 = 1, u is a vector of controllable parameters,Z is a
random vector of uncertain parameters,C0(u) is the base case
operating cost,Ci(u, Z) is the security cost required to meet
the mid-term stability requirements (see [7]) for contingency
i = 1, . . . , nc, anddij(u, Z) is the distance to thejth (j ∈ J TS

i )
second order approximation part of the boundary of the region
where the system retains transient stability following contin-
gencyi.

This type of problem also appear under the name chance con-
strained optimal power flow CCOPF in the literature [8].
In order to solve this problem we need to first find a set
{Σij}j∈J TI

i
of second order approximations that combined give

a good picture of the boundary that separates the region where
the system retains transient stability and the region wheretran-
sient stability is lost post contingencyi, for i = 1, . . . , nc. Our
tool to obtain this will be repeated time-domain simulations in a
Monte Carlo simulation followed by an identification of bound-
ary points of the stable set and finally an approximation of the
boundary using a number of second order polynomials.

Stability regions

For each contingencyi, the dynamic stability region can be seen
as the intersection of two subregions, one regionDi

TS where
the system retains transient stability, and one regionDi

MT where
mid-term stability [9] properties hold.
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The mid-term stability region D
i

MT

Approximations of the boundary∂Di
MT of the domainDi

MT have
been proposed in the literature before [10–13]. In [11] the closest
bifurcation point from a loading point is calculated and in [10],
sensitivities of the loading margin (distance to the mid-term sta-
bility boundary) with respect to the system parameters are given.
The use of the sensitivities can help the system operator take op-
timal actions to either steer the system away from instability or to
make it stable again. In [12–15] second order approximations of
the loadability surface are derived. In [16] a third order approx-
imation is derived and a method for handling the intersections
of saddle-node bifurcations and switching loadability limits is
proposed.
Since much work has already been done on trying to approxi-
mate the mid-term stability boundary we will focus on approx-
imating the boundary of the domain where the system remains
transiently stable following a specific contingency.

The transient stability region D
i

TS

We assume that we want to investigate the post contingency sta-
ble region for contingencyi. To do this we first generate a set
Γ = {λ1, . . . , λM} of points in a Monte Carlo simulation. Let
Di

TS be the set of all points in parameter space where the sys-
tem retain transient stability after being subject to contingency
i and letΓi

TS = {λTSi(1), . . . , λTSi(nTS)} = Γ ∩ Di
TS. The set

Γi
TS is thus the collection of points ofΓ for which a time domain

simulation results in a transiently stable trajectory whenapply-
ing contingencyi. Note here that the post contingency trajectory
should include the control actions that are normally used tosave
the system from loss of stability.
Assuming that the stable region is convex we could estimateDi

TS
with the convex hull,Conv(Γi

TS), of Γi
TS. Note thatΓi

TS and thus
alsoConv(Γi

TS) is a random set. In Fig. 1 the result of discon-
necting 60 MW of production in Generator 2 of the WSCC 9-bus
system is shown for 1000 randomly selected values of the loads
at nodes 5 and 8 while keeping a constant load at node 6.
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Figure 1: The stable domain of the WSCC 9 bus system for a 60
MW outage in Generator 2.

In the figure the green dots are cases for which the system re-
tained transient stability (i.e. the setΓi

TS is given by the green

dots) and the red dots correspond to cases where transient sta-
bility was lost. The area contained in the polygon is the convex
hull Conv(Γi

TS) of the set of green points.
Unfortunately, we cannot assume thatDi

TS is convex and we
might thus have thatConv(Γi

TS) 6⊂ Di
TS. To solve this we will

use a triangular representation of the domainConv(Γi
TS) and re-

move triangles if necessary to make it fit better withDi
TS.

In am-dimensional parameter space, assume thatm + 1 stable
points{λTS

1 , . . . , λTS
m+1} have been detected. If these points are

not lying in a plane the convex hull of these points will form a
m-simplex of positive volume. Them-simplex is bounded by
m + 1 hypersurfaces and any pointλ within the simplex will
satisfy

nT
1 (λ− p1) ≤ 0

...

nT
m+1(λ− pm+1) ≤ 0,

whereni andpi are the normal to and a point of theith bound-
ing hupersurface, respectively. When adding an additionalpoint
λTS
m+2, we can get two different situations. Either the new point

is inside them-simplex formed by the points{λTS
1 , . . . , λTS

m+1}
or the new point is outside them-simplex.
The first situation is depicted in Fig. 2 for a 2-simplex (i.e. a tri-
angle). As can be seen from the figure the convex hull does not

1
2

3

λTSj(1)

λTSj(4)

λTSj(2)

λTSj(3)

Figure 2: The approximation of the domain does not change
when a new stable point is found inside the domain.

change when a new point inside is discovered. Rather the exist-
ing m-simplex is divided into a simplicial complex withm + 1
smallerm-simplexes. These newm-simplexes are formed by
taking the new pointλTS

m+2 and making am-simplex together
with m of the points{λTS

1 , . . . , λTS
m+1}. As this can be done in

m+ 1 different ways we getm+ 1 new (smaller)m-simplexes.
The other situation is when the new point lies outside of the ini-
tial m-simplex. This situation is depicted in Fig. 3 for the same
2-simplex that was used above. To form a simplicial complex
with them + 2 points we add a number of newm-simplexes,
one for each bounding surface whichλTS

m+2 lies on the outside
of. If λTS

m+2 is outside of bounding surfacek, i.e.

nT
k (λ

TS
m+2 − pk) > 0, (2)

then a new simplex with verticesλTS
m+2 and them points of

{λTS
1 , . . . , λTS

m+1} that lie in bounding surfacei are used to form



1

2

λTSj(1) λTSj(2)

λTSj(4)

λTSj(3)

Figure 3: A new stable point is found outside of the firstm-
simplex.

a newm-simplex. In this way we get the convex hull of the set
{λTS

1 , . . . , λTS
m+2}.

So far we have only searched for the convex hull of a set of
stable points. However, as noted aboveDi

TS is not necessarily
convex. Fig. 4 shows the stable and unstable points for a short
circuit at node 4 followed by a disconnection of the line between
nodes 4 and 7 in the WSCC 9-bus system. In this figure the
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Conv(Γj
TS

)

Figure 4: A sample ofConv(Γi
TS) of the WSCC 9 bus system

for a short circuit at bus 4 followed by a disconnection of the
line between nodes 4 and 7. Green points are transiently stable
and red are unstable.

higher loading boundary (which is not in the picture) is due to
feasibility of the initial (pre-contingency) operating point and
the lower level is due to transient instability. As we can seein
the figure there are a number of parameter vectors leading to
transient instability within the convex hull of the points where
transient stability is retained.
In the view of this result we need to somehow update the ap-
proximationD̂i

TS of Di
TS by removingm-simplexes so that no

parameter vectors leading to transient instability are inside D̂i
TS.

Assume that after samplingk parameter vectors we have built
the approximationD̂i

TS,k and the(k + 1)th sample lies within

D̂i
TS,k and the corresponding time domain simulation gives a

transiently unstable path. Then we have to remove the small-
estm-simplex that contains the unstable point.
In Fig. 5 we see what happens when a unstable point is encoun-
tered inside the convex hull in the example given in Fig. 2. In
this case the approximation of the stable domain is reduced to

1

λTSj(2)

λTSj(3)

λTSj(1)

λTSj(4)

unstable case

2

Figure 5: When an unstable point inside the approximation is
found we remove the triangle that contains the point.

the two triangles labeled 1 and 2.
When all the samples are examined we should further investi-
gate the boundary by verifying that the middle of each part of
the boundary corresponds to a stable path in a time-domain sim-
ulation.
The resulting domain is given by the condition

(nCH
k )T (λ− pCH

k ) ≤ 0, k = 1, . . . , NCH, (3)

max
j∈{1,...,m+1}

(nR,k
j )T (λ− pR,k

j ) ≥ 0, k = 1, . . . , NR, (4)

wherenCH
k andpCH

k are the outward normals of and points of
the boundary of the convex hull, respectively,NCH are the num-
ber of boundary parts of the convex hull,nR,j

k andpR,j
k are the

outward normals and points of them + 1 bounding surfaces of
theNR removedm-simplexes.
Constraint (4) only holds true if theλ is inside the complex hull
and constraint (3) is only true ifλ is not lying within any of the
removedm-simplexes.
Fig. 6 shows the updated approximation of the transient stability
domain obtained by first removing all triangles that contained
unstable points. Each part of the resulting boundary was then
investigated by finding the middle of the boundary part and per-
forming a time-domain simulation to validate that the boundary
is part of the transient stability domain.
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Figure 6: The domain̂Di
TS after removing the triangles that con-

tain unstable points and checking the new boundary parts.



Second order approximations of the transient sta-
bility region

The procedure for determining approximations of the boundary
∂Di

TS of the domainDi
TS is as follows:

1. Perform a number of Monte Carlo simulations where the
transient stability properties for a randomized parameter
vector is investigated by time-domain simulation.

2. From the simulated points approximate the boundary of the
stable domain.

3. Approximate this boundary using several second order
polynomials in the system parameters.

The two first steps have already been explained above. What
remains is to compute second order polynomials that together
well approximate the boundary of the transient stability region.

To get a good approximation of the boundary,∂Di
TS, of the tran-

sient stability region several polynomials will often be needed.
This is illustrated in Fig. 7.

 

 

 

( ) 

 

Figure 7: Polynomial approximations of∂Di
TS.

Since second order polynomial approximations were suggested
earlier we need to decide vectorsλij

c ∈ R
m where the approx-

imation has its basis, normalsnij ∈ R
m and curvature tensors

Aij that are symmetricm×m–matrixes such thatAijnij = 0.
Assume the we have a prediction of future system parameters
giving the probability density functionfΘ : Rm → R+. To get
a good accuracy of the approximation we chooseλi1

c to be the
boundary point that maximizesfΘ, i.e. the most probable point
of the boundary.
Now, since the boundary has not been calculated exactly, the
boundary will probably not be smooth and local information at
λi1
c is often not that useful. Moreover, sinceλi1

c was decided by
maximizing a probability density function we may expect that
λi1
c is closer to the middle of the set than its neighbors on the

boundary. Hence, when decidingnij ∈ R
m andAij we should

discard all other boundary points lying on a distance< δ from
λi1
c . The constantδ > 0 should be set depending on the accuracy

(e.g. number of samples) of the initial boundary approximation.

Once the basis pointλi1
c andδ > 0 have been decided we define

di1(λ, n,A) = n⊤(λi1
c − λ) +

1

2
λ⊤Aλ. (5)

This means that the pointλ is on the inner side (in negative
direction of the normaln) of the codimension-one surface de-
fined byΣ̂ij(n,A) := {λ ∈ R

n : dij(λ, n,A) = 0} whenever
dij(λ, n,A) > 0.
Let Λi

0 be the set of all boundary points computed in step 2.
The pointλi1

c of Λi
0 that maximizedfΘ : R

m → R+ was
picked to be the basis for the first approximation. We now re-
move all the points on a distance< δ to λi1

c and get the set
Λi
0(λ, δ) = Λi

0 ∩ (Bδ(λ))
c, where(Bδ(λ))

c is the complement
of theδ-ball centered atλ. We now want to choosen andA, so
thatdij(λ, n,A) ≥ 0, ∀λ ∈ Λi

0(λ, δ). But still we want the fit to
be as close as possible. We thus pose the following optimization
problem:

min
n∈Sm−1,A∈Sym

m

∑

λ∈Λi
0

fΘ(λ)di1(λ, n,A) (6a)

s.t. di1(λ, n,A) ≥ 0, ∀λ ∈ Λi
0(λ

i1
c , δ), (6b)

An = 0. (6c)

Note here that once we have picked an ∈ S
m−1 = {x ∈ R

m :
‖x‖ = 1}, (6) is a linear program. A heuristic way of solving
(6) would be to set̂n = (λi1

c − ζ)/‖λi1
c − ζ‖ and letC be a

m × (m − 1)–matrix with basis vectors of⊥n̂. The distance
from λ to the surface{λi1

c + Cx+ n̂(a⊤x+ 1/2x⊤bx) ∈ R
m :

x, a ∈ R
m−1, b ∈ Symm−1} in the direction̂n is then

d̂i1(λ, a, b) = n̂⊤(λi1
c − λ) + a⊤C⊤(λi1

c − λ)

+
1

2
(λi1

c − λ)⊤CbC⊤(λi1
c − λ).

If we instead of (6) solve

min
a∈Rm−1,b∈Sym

m−1

∑

λ∈Λi
0

f̂Θ(λ)di1(λ, a, b) (7a)

s.t. d̂i1(λ, a, b) ≥ 0, ∀λ ∈ Λi
0(λ

i1
c , δ), (7b)

and repeatedly set̂n← (n̂+Ca)/‖n̂+Ca‖ and solve (7) we get
the solution to (6) as a fixed point to the algorithm withn∗ = n̂
andA∗ = C⊤b∗C.
Once problem (6) has been solved we setdi1(λ) =
di1(λ, n

∗, A∗), where(n∗, A∗) is the pair giving the optimal so-
lution to (6). It might be worthwhile here to note that (6) is not a
convex problem so having a good initial guess is important.
Now, we pick a second numberγ > 0 and setΛi

1 = {λ ∈ Λi
0 :

di1(λ) > γ}. The setΛi
1 will thus consist of all points of the

boundary for which the first approximation has an accuracy less
thanγ. To compute the second part of the polynomial approxi-
mation of the transient stability boundary we look for the most
probable point of the remaining non-covered part of the bound-
ary. Hence,

λi2
c = Argmax

λ∈Λi
1

fΘ(λ). (8)



Similar to computing the first approximation the second is found
by solving

min
n∈Sm−1,A∈Sym

m

∑

λ∈Λi
1

fΘ(λ)di2(λ, n,A) (9a)

s.t. di2(λ, n,A) ≥ 0, ∀λ ∈ Λi
0(λ

i2
c , δ), (9b)

An = 0. (9c)

This process is then repeated until

max
λ∈Λi

j

fΘ(λ)

is sufficiently small.

Example

In the numerical example we continue working with the two con-
tingencies on the WSCC 9 bus system (see Fig. 8) defined above.
The first contingency is an outage leading to a loss of 60 MW

Figure 8: The WSCC 9 bus system.

production in the generator located at node 2. The second con-
tingency is a 0.083 second short circuit at node 4 followed bya
disconnection of the line connecting nodes 4 and 7.
We assume that the varying parameters are the active power
loads at nodes 5 and 8, so thatλ = [PD5 PD8]. To createΓ
we generate 1000 samples of a pair of independent random vari-
ables uniformly distributed on[0, 5].
Assume thatΘ is Gaussian with mean

mΘ =

[

3
2

]

and variance

Var [Θ] =

[

0.75 0
0 1

]

.

To build the boundary we will split all boundary segments un-
til the length (Euclidean norm) of the longest segment is less

than 0.1 p.u. For each of the new boundary points, time domain
simulations have to be made to validate the stability. Once the
stability of all boundary points is validated we start building the
second order approximations. The result in the first contingency
case with parametersδ = 0.3 andγ = 0.1 is shown in Fig. 9. In
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Figure 9: The approximation of the transient stability boundary
for contingencei = 1 with δ = 0.3 andγ = 0.1.

the figure the blue solid polygon is the transient stability bound-
ary approximated from the points of the setΓ. In this case the
transient stability domain seems to be convex so the convex hull
of the pointsΓi

TS gives the initial approximation. From the set
of boundary points we then need three second order approxima-
tions (black solid lines) to obtain the accuracyγ = 0.1. The
magenta arrows show the initial guesses of the normal vectors
and the black arrows are the normal vectors obtained by the it-
erative procedure described above. To get the initial guesses we
usedζ = mΘ.
To increase the accuracy of the approximations we setγ = 0.05
andδ = 0.2. With these values we get the approximation shown
in Fig. 10. For both figures we use a stopping criteria based on
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Figure 10: The approximation of the transient stability boundary
for contingencei = 1 with δ = 0.2 andγ = 0.05.

the likelihood of the remaining boundary points that prevents us
from approximating the far off corners with an excessive degree
of accuracy. With the increased requirement on the accuracywe
see that we need a total of six second order approximations. As
expected we thus see that increasing the accuracy requirements
leads to the use of more approximations.



Discussion

In this paper we investigated how Monte Carlo simulations com-
bined with time domain simulations can be used to build second
order approximations of the transient stability boundary for a
given list of contingencies. These approximations can thenbe
combined with approximations of mid-term stability regions and
other operational regions when solving an optimal power flow
problem with chance constraints.

To compute the second order approximations the boundary
points of the region, in parameter space, where the system
remained stable after the contingency were identified. The sec-
ond order approximations of this boundary were then obtained
by solving a number of linear programming problems in an
iterative approach.

Possible improvements of the method include:

Sequential scenario generation

If the stability of each scenario is checked directly after the sce-
nario has been generated in the Monte Carlo simulation this in-
formation can be used to update the distribution from which we
sample the future scenarios. One could, for example, use a set
of indexes to evaluate “how stable” a stable point is or “how un-
stable” an unstable point is. This information can then be used
to avoid drawing unnecessary samples and help us focus on the
regions where the boundary between stable and unstable points
is likely to appear.

Growing the region

When a first approximation of the transient stability regionis
obtained we could take small steps in the normal directions from
the different affine parts of the boundary. This would give an
efficient way of further expanding the boundary to get a maximal
approximation of the stability region.

Non-heuristic guess of normal vector

The initial guess of the normal vector at the approximation points
is very heuristic. One alternative could be to solve a linearprob-
lem where we maximize the distance of the closest boundary
point to a hyperplane passing through the approximation point.
The normal to this hyperplane can then be taken as a first approx-
imation of the normal to the second order surface at the boundary
point.

Higher order surfaces

Instead of increasing the number of approximating surfaceswe
may want to increase the order of the approximations. Note that
this would preserve the linearity of the optimization problems
but dramatically increase the number of variables when the pa-
rameter space has a high dimensionality.
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