
Paper submitted for presentation at the panel session of the IEEE Task Force on Open Source Software,
IEEE PES General Meeting, Vancouver, 21-25 July 2013.

1



Abstract— The OpenPMU project is a platform for the
development of Synchrophasor measurement technology, Phasor
Measurement Units (PMU), in an open source manner. The
project has now been operating for a number of years and has
seen increased adoption at Universities and interest from
electrical utilities. The OpenPMU device has recently been tested
against the IEEE C37.118 standard and shown to operate within
the specification.

This paper discusses the OpenPMU project from the
perspective of the past two years of experience and evaluates
successes and opportunities for improvements in both the
OpenPMU device and the philosophy of the design.

Index Terms—Phasor Measurement Unit, Open Source,
Synchrophasor, Smart Grid

I. INTRODUCTION
he OpenPMU project was originally developed as an
outcome from research at Queen’s University Belfast,

UK, (QUB) into applications of Synchrophasor technology at
low voltages for distribution network applications. Such
applications have included Synchronous Islanding of diesel
generator sets [1] and differential Anti-Islanding detection [2].
It had been identified that a number of other university
projects had developed similar PMU devices, but the source
code and design drawings for such devices were not readily
available. The OpenPMU project was established so as to
share PMU technology developed at QUB with other
interested parties with the aspiration that improvements would
be made by other institutions and returned to the project.
 Following the presentation of the OpenPMU project at the
2010 IEEE PES GM in Minneapolis, a connection was made
with the KTH Royal Institute of Technology in Stockholm,
Sweden. KTH were looking for an open source PMU and
used published design drawings to fabricate their own unit.
Subsequently KTH has contributed to the project with
middleware that adds an IEEE C37.118.2 [3] communications
interface to the OpenPMU device.
 The project was the subject of an invited paper to the 2011

Paper submitted for presentation at the panel session of the IEEE Task
Force on Open Source Software, IEEE PES General Meeting, Vancouver, 21-
25 July 2013.

D. M. Laverty, R. Best and D. J. Morrow are with the Electrical Power and
Energy Research Cluster, Queen’s University Belfast, Ashby Building,
Belfast, BT9 5AH, Northern Ireland (e-mail: david@laverty.org.uk;
r.best@qub.ac.uk, dj.morrow@ee.qub.ac.uk).

L. Vanfretti, I. Al Khatib and V.K. Appelgrenn are with KTH Royal
Institute of Technology, Stockholm, Sweden (e-mail: luigiv@kth.se,
iyad.alkhatib@gmail.com, viktorap@kth.se).

IEEE PES GM in Detroit, where it was presented before the
panel “Open Source Software: Enabling the Smart Grid” [4].
Updates on the project were presented at the 2012 GM in San
Diego [5]. By this time, over fifteen of the OpenPMU units
have been deployed in applications by QUB and two units
have been fabricated independently by KTH. Other
universities and colleges have expressed interest in the project
and have fabricated devices or accessed the OpenPMU source
code, including Colorado State University and the US Military
Academy. National Instruments, whose hardware is used in
the OpenPMU device, have published a case study on the
project on their website [6]. This paper documents the
replication efforts carried out at KTH SmarTS Lab.
 Recently, the OpenPMU device has been tested with respect
to the IEEE C37.118.1-2011 [7] standard to verify the quality
of its measurements. The device passed the relevant tests,
which have now been published by the IEEE Instrumentation
& Measurement Society [8]. To enhance the phasor estimation
process and provide alternatives for synchronized timing,
planned hardware upgrades for time synchronization are
briefly discussed.
 As the project matures and more experience is gained, it is
important to address some of the issues and challenges that
have arisen. With many units now deployed, the OpenPMU
devices have operated cumulatively for many thousands of
hours. During this time, many software issues have been
identified and resolved, but more intrinsic issues with the
design remain. These are discussed in this paper, and a
roadmap for the future of the device is identified.
 Other issues regarding the structure and organization of the
project have yet to be addressed, but one of the fundamental
issues is the license under which the project operates. There
are several open source license available, but many will be
incompatible with existing agreements with funding bodies or
industrial sponsors. These issues are discussed within this
paper.

II. BACKGROUND TO OPENPMU
The OpenPMU project originated from work at QUB on

applications of Synchrophasor technology to distribution
network problems. In developing a low cost instrument to
acquire GPS synchronized phasor measurement, the authors
became aware of a number of similar university projects, but
were unable to find a design appropriate to their needs that had
source code and design drawings available. Thus it was
necessary to work independently and so a solution was
developed using a National Instruments data acquisition board

The OpenPMU Project:
Challenges and Perspectives

David M. Laverty, Member, IEEE, Luigi Vanfretti, Member, IEEE, Iyad Al Khatib, Member, IEEE,
Viktor K. Applegreen, Robert J. Best, D. John Morrow, Member, IEEE

T

Paper submitted for presentation at the panel session of the IEEE Task Force on Open Source Software,
IEEE PES General Meeting, Vancouver, 21-25 July 2013.

2

interfaced to a Garmin GPS Engine using a custom
microcontroller solution. Details of this design have been
published in the proceedings of the IEE PES GM
previously_[4].

Realizing that such duplication of effort was not an
efficient use of time or resources, the authors determined to
share the design of the QUB type phasor measurement unit
under an open source license, thus the OpenPMU project was
formed. At this stage, the output of the OpenPMU was in a
CSV formatted ASCII string. OpenPMU is developed largely
using the Labview development environment.

The OpenPMU was identified as a solution which met the
needs of projects at KTH Royal Institute of Technology. Here
the first OpenPMU outside of QUB was fabricated. KTH was
able to provide programming experience to add C37.118
communication to the device.

It was established that the OpenPMU should be
modularized so as to separate the functions of GPS disciplined
measurements (a largely hardware orientated task) from the
functions of phase estimation (mathematics) and
telecommunications (programming and computer science
skills). The structure of the OpenPMU is shown in Fig. 1.

Fig. 1. Subsystems of the OpenPMU platform

The individual functions of the OpenPMU communicate

with their neighboring functions using XML over UDP. This
methodology was chosen since it reduces dependence on any
particular vendor. Hardware can be swapped for other
hardware that supports streaming sample data in XML, and
phase estimation, for example, can be performed in any
programming language provided a UDP interface can be
established. The present Telecoms module is written in C#.

III. MEASUREMENT STANDARDS COMPLIANCE
Compliance with the IEEE C37.118.1-2011 standard for

Synchrophasor measurements was tested experimentally and
is the subject of a paper published in IEEE Transactions on
Instrumentation and Measurement [8]. In summary, a series
of test waveforms were prepared in the MATLAB environment
according to the scenarios described in [7]. These waveforms
were exported in WAVE audio format, yielding compatibility
with many test instrumentation platforms. The Omicron
CMC156 test set was used to generate three-phase voltages to
apply to the OpenPMU to test its compliance with [7] under
both nominal frequency and dynamic conditions. Tests
included verifying the magnitude and phase angle response of
the PMU, and modulation of signal amplitude and phase. A
bandwidth test was also performed, and is presented in Fig. 2.

A Total Vector Error (TVE) of 3% is allowed up to a
modulation frequency of 1 Hz. Although the OpenPMU falls
slightly outside of specification, it is comparable with PMUs
from several vendors [9], [10]. An independent study of the
performance of multiple vendors PMUs will be pursued in the
near future by the authors.

Fig. 2. TVE (%) versus Modulation Frequency of the OpenPMU as tested in
accordance with IEEE Std. C37.118.1, Subclause 5.5.6.

IV. COMMUNICATIONS INTERFACE
A major task of any PMU is to be able to communicate

with other ends and send measured data. However, this brings
about a few challenges which can be divided into four
categories: design, implementation, performance, and
standards. These challenges are discussed below, but before
that basic design of the communication module for the
OpenPMU is provided.

Fig. 3 shows the OpenPMU Communication Middleware
(OCM) and its interaction with the data source (Labview in
this example) and any data requester (e.g. a Phasor Data
Concentrator (PDC)) [8]. The Labview module (or any other
data wrapper) sends the phasor data to a special input
interface. This is designed so far to suit a network connection
or a data base (DB) interface. Using any of the aforementioned
has its advantages and its challenges. The OCM comprises
three sub-modules: input interface, communication engineer,
and an output interface). The Input interface accepts data
transmitted from the Labview module, of which UDP is best
to be used since it offers independence of the machine and the
HW used. Using TCP, offers the same advantage but can lead
to more processing power due to its heavier code and need for
acknowledgements. Using a DB has its advantages, but its
management, memory requirements, processing speed (that
may go against real-time requirements) can heavily hinder
delivering acceptable quality of service (QoS).

The communication engine does all the required
computation to decide, what to send, how to send it, when to
drop data, check for errors, choose the standards, and
understand requests from an outside source. However, the sub
module that is responsible for communicating with the data
requester and carrying the requests to the engineer is the
Output interface, which is also responsible for receiving data
from the communication engine, wrap it with the right

Measurement Phase
Estimation Telecoms

Voltages
Currents

Synchrophasor

1 2

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2

%
TV

E

Modulation Frequency (Hz)

Paper submitted for presentation at the panel session of the IEEE Task Force on Open Source Software,
IEEE PES General Meeting, Vancouver, 21-25 July 2013.

3

protocol and transmit it out. At the moment, the Output
interface supports only IEEE C37.118 as an application layer
protocol over the TCP/IP suit.

Having described the basics for the OCM, we can point out
the challenges that such a service faces. We list and describe
these challenges as follows:

A. Design
 1) Human factor

One of the most significant challenges while working on
such a multidisciplinary project is to find the right people with
the right skills and the right mindset. We tried to solve the
human factor problems by having different workers from
different background and skills, but the gaps were huge to fill
and this issue was time consuming. Hence, building the team
to work together with such significant differences was a
challenge, and we have now some experience in how to
overcome such a challenge in some areas. However this
experience consumed time and a lot of effort.
 2) Design optimization

The design phase of the OCM can be made in many ways,
but the challenge is to know which OCM design is optimal.
Every error or unoptimized section of the design will cost
nearly 10x more to go back to fix. Hence, having an optimal
design from the very beginning is a challenge. Such a
challenge is still till now dependent on point (a), the human
factor. It is very difficult at such a current state to automate the
design process of the OCM.
 3) Application Characterization

From the OCM’s design and implementation in a specific
language (here in VC++), and after assessing its performance,
it was necessary to determine how this application was
functioning with respect to multiple cases of input. This was a
challenge since it requires specific ways in characterizing the
application. For instance, an assessment of the throughput of
the application with respect to multiple inputs is being
performed.
 4) Real-time issues

An important parameter to respect in the OCM is time. The
“level” of real time granularity needs to be defined, and this is
challenging. In some cases it is in seconds, in others it is in
ms, and now we even look at the microseconds and still may
need more. Paralleling the application functions helps, but is
not the solution. The challenge is to have a dynamic decision
for real-time requirements and limits and relating them to both
HW and SW, i.e. HW-SW co-decision making.

Fig. 3. The OpenPMU Communication Middleware running IEEE C37.118.

B. Implementation
 1) Human factor

As discussed in point A.1, the human factor remains a large
challenge for implementation also. One big problem we faced
is that the implementation requires a programmer that knows,
very well, how to program in many different environments,
Operating Systems, and platforms. In addition, it requires the
ability to send/receive data between the different platforms.
For instance, in this work, we need to have an experienced
Labview programmer experienced in standard C, VC++, as
well as in HW issues. This remains a challenge.
 2) Choice of Real-time

Real-time parameter choices remain hard since we usually
leave them for the programmer, but in this case the
programmer may not know very well the application behavior
so the challenge is who chooses or decides on real-time
parameters, checks, testing, etc. In our case we have two
major real time requirements that may be improved if more
parameters are added, but then this depends on if the HW part
can affords that much calculation in real time.

C. Performance
 1) Design of experiments

Up till now, no good design of experiments for testing is
satisfactory and this remains an open issue.
 2) Delay

We differentiate between computation delay and
communication delay. We also look at the challenges of
reception and transmission speeds. Since time is a sensitive
parameter, delays are treated accordingly and the challenge is
to find the correlation between computational delays and
communication delays based on different standards, and
intrinsic-machine differences in speeds of reception and
transmission.
 3) Scalability

The challenging question is: how scalable can the SW
implementation be on a specific HW connected to a specific
communication network based on the design made? This is, in
itself a study that may take months to estimate and perform.

D. Standards
 1) Supporting multiple standards

A major challenge is to be able to dynamically support
multiple different standards (e.g. IEEE C37.118.2 and IEC
61850-90-5).
 2) Concurrent different standards

Even if point D.1 is solved a challenge would be faced
when trying to connect the OCM module to different PDCs
with different standards at the same time.
 3) Scalability

Point C.3 brings up the issue of scalability with a multitude
of standards, which remains a significant challenge also.
 4) Which HW resources for which standard

A good idea, theoretically would be to assign different HW
resources to different standards, but this comes with human
factor, OS, and programming language challenges.

Labview
Module

Data
Requester

Input
Interface

Output
Interface

Communication
Engine

OpenPMU Communication Middleware (OCM) running IEEE C37.118

UDP, TCP, or DB TCP/IP

Paper submitted for presentation at the panel session of the IEEE Task Force on Open Source Software,
IEEE PES General Meeting, Vancouver, 21-25 July 2013.

4

 5) Standards are not perfect
We noticed a very important problem in standards: they are

not perfect and their interpretation is not transparent. Many
software glitches occur due to some missed point in the
standard that we had to compensate for via our own design
and implementation. This remains a challenge for the
implementer, who finds the implementation failing sometimes
but due to an unstudied or misunderstood point in the
standard.

With all the aforementioned challenges we are sure that
more will arise as we continue our work in this
multidisciplinary project. Therefore, we believe it is very
relevant and important to share our experience so that this can
speed up the development and progress towards a better OCM
and a better PMU community.

V. OPENPMU REPLICA AT KTH SMARTS LAB
As mentioned earlier, there have been different efforts of

independent fabrication of the OpenPMU at other universities.
One such unit was replicated by the KTH SmarTS Lab and is
shown in Figs. 4 and 5. All components described in the
OpenPMU website where assembled on PCB fabricated by a
small company in Stockholm. Fig. 4 shows the set-up at the
laboratory comprised of the Garmin GPS Engine, main board,
DC power supply and a laptop with the OpenPMU Labview
software, while Fig. 5 shows a close up of the main board and
GPS engine. Finally, a capture of the OpenPMU estimated
phasor from the laboratory mains is shown in Fig. 6.

Fig. 4. Replicated OpenPMU set-up at KTH SmarTS Lab.

Fig. 5. Main board of the OpenPMU replicated at KTH SmarTS Lab.

Fig. 6. Estimated phasor from KTH’ SmarTS Lab mains

VI. PLANNED HARDWARE UPGRADES FOR TIME
SYNCHRONIZATION

Timing information is currently provided to the OpenPMU
via a Garmin GPS engine and a custom microcontroller. This
is suitable for installations that do not have a stationary GPS
antenna installed. However, for installations where stationary
GPS antennae and antenna splitters are available, replacing the
current GPS engine for a receiver IC might be more suitable.

The GPS-1513R high performance compact GPS receiver
in Fig. 7 [11] is a highly configurable device that can be
incorporated into OpenPMU’s main board so that GPS signals
from stationary antennas can be used for time synchronization.
To this aim, a modified PCB design will be developed and
tested at KTH SmarTS Lab during 2013. Other modifications
to reduce the footprint, simplify fabrication and usage.

Another planned improvement is the replacement of the
internal clock of the NI DAQ board with an external timing
signal. This timing signal will be derived from a Phase-
Locked-Loop which will be implemented in the PCB and will
be synchronized with the GPS receiver. This modification will
help improving the accuracy of the phasor estimation process.

Fig. 7. GPS-1513R high performance compact GPS receiver

Additionally, the cRIO platform from National Instruments
is now being considered as a data acquisition module for the
OpenPMU project. This new hardware avenue will be
developed in parallel to the present data acquisition solution.
The National Instruments cRIO platform is rapidly becoming
a common feature of laboratory hardware, so the inclusion of
this option will lower the barriers to enter into the OpenPMU
project and aims to expand the community of developers.

Paper submitted for presentation at the panel session of the IEEE Task Force on Open Source Software,
IEEE PES General Meeting, Vancouver, 21-25 July 2013.

5

VII. DISCUSSION OF OPEN SOURCE LICENSES
The OpenPMU project is operated according to the

principles of the GNU General Public License (GPL) [12].
The ambitions of the GNU GPL can be paraphrased to fit with
the OpenPMU project as follows. The user should have the
freedom to:

1) Run the OpenPMU program,
2) Study how the OpenPMU works,
3) The freedom to distribute copies of the OpenPMU,
4) Distribute copies of the modified OpenPMU to others.

While the authors fully intend to strive to realize these

ideals, there are difficulties. The most obvious is the fact that
the OpenPMU is a hardware device. While software licenses
can be applied to its phase estimation algorithms and hardware
timing firmware, hardware cannot be copyrighted in the same
way. For this reason, the design drawings of the OpenPMU
are protected under copyleft licenses which require
redistribution of modified works so as to avoid attempts at
closing modifications to the OpenPMU design.

There are concerns that GPL like licenses are ‘infectious’
and that if included in projects that have commercial software,
this essentially requires that the commercial code is released
and distributed under GPL. The OpenPMU project wishes to
avoid such scenarios, and as such accepts that individual
modules in the project might require separate licensing by
necessity of existing licensing agreements, non-disclosure
agreements and so on.

Ideally, it is desired to reach a point in time when a
commercial vendor could use an OpenPMU algorithm in their
product, without compromising their intellectual property, but
with acknowledgement that OpenPMU technology is in use in
their device.

VIII. COMMUNITY INVOLVEMENT
To get involved with the OpenPMU project and to

communicate with the authors of this paper, please visit
www.OpenPMU.org [13]. The project is hosted on the
Codeplex system, which provides Wiki style documentation,
message boards and news feeds. For less formal contact and
announcements, the authors maintain a Facebook page.
Simply search for ‘OpenPMU’ within Facebook.
 The authors particularly welcome suggestions for
improving the project, and welcome partners interested in
contributing to the project. Please do not hesitate to make
contact if you have any questions regarding taking part in
OpenPMU or building your own OpenPMU.

IX. CONCLUSIONS
OpenPMU developed by Queen’s University Belfast out of

the need for a low cost PMU, with transparent operation, for
use in applications on low voltage networks were the expense
of current commercial PMUs could not be justified. Functions
such as disturbance / transient event recorder are not necessary
for many of these applications. To avoid duplication of effort

at other academic institutions, the QUB PMU was released
under an Open Source license.

Since the initial release of OpenPMU, the project has been
enhanced by the contributions of KTH, specifically with the
addition of IEEE C37.118.2 telecommunications support. The
replication efforts from KTH reported in this article serves to
show that the OpenPMU can be fabricated using the design
drawings on www.OpenPMU.org.

Future activity will see the continued improvement of the
current instrumentation platform and phase estimation
software, and the inclusion of a National Instruments cRIO
measurement system to allow more rapid development of an
OpenPMU system where such components are available in the
laboratory.

The authors encourage others with interests in PMU
technology to become involved in the OpenPMU project and
help the community develop.

X. REFERENCES

[1] Best, R.J.; Morrow, D.J.; Laverty, D.M.; Crossley, P.A.; ,

"Synchrophasor Broadcast Over Internet Protocol for Distributed
Generator Synchronization," Power Delivery, IEEE Transactions on ,
vol.25, no.4, pp.2835-2841, Oct. 2010

[2] Laverty, D.M.; Morrow, D.J.; Best, R.; Cregan, M.; , "Anti-islanding
detection using Synchrophasors and Internet Protocol tele-
communications," Innovative Smart Grid Technologies (ISGT Europe),
2011 2nd IEEE PES Int. Conf. and Exhibition on , pp.1-5, 5-7 Dec. 2011

[3] "IEEE Standard for Synchrophasor Data Transfer for Power Systems,"
IEEE Std C37.118.2-2011, 2011, Online: http://standards.ieee.org/
findstds/standard/C37.118.2-2011.html [Accessed: April 12 2012]

[4] Laverty, D.M.; Morrow, D.J.; McKinley, A.; Cregan, M.; , "OpenPMU:
Open source platform for Synchrophasor applications and research,"
Power and Energy Society General Meeting, 2011 IEEE , vol., no., pp.1-
6, 24-29 July 2011

[5] Laverty, David M.; Vanfretti, Luigi; Best, Robert J.; Morrow, D. John;
Nordstrom, Lars; Chenine, Moustafa; , "OpenPMU technology platform
for Synchrophasor research applications," Power and Energy Society
General Meeting, 2012 IEEE , vol., no., pp.1-5, 22-26 July 2012

[6] National Instruments, “OpenPMU: The Open-Source Phasor
Measurement Unit”, NI Case Studies, Internet:
http://sine.ni.com/cs/app/doc/p/id/cs-14787 [Accessed: Dec 05 2012]

[7] "IEEE Standard for Synchrophasor Measurements for Power Systems,"
IEEE Std C37.118.1-2011, 2011, Online: http://standards.ieee.org/
findstds/standard/C37.118.1-2011.html [Accessed: April 12 2012]

[8] Laverty, D.; Best, R.; Brogan, P.; Khatib, I.; Vanfretti, L,, Morrow, J.;
"The OpenPMU Platform for Open Source Phasor Measurements"
(2012), IEEE Transactions on Instrumentation & Measurement, (in
press since October 2012)

[9] R.M. Moraes, Y. Hu, G. Stenbakken, K. Martin, J.E.R. Alves, A.G.
Phadke, H.A.R. Volskis, and V. Centeno, “PMU Interoperability,
Steady-State and Dynamic Performance Tests,” IEEE Transactions on
Smart Grid, Early Access Article, Sept. 2012.
10.1109/TSG.2012.2208482

[10] G.Y. Yang, K.E. Martin, and J. Østergaard, “Investigation of PMU
Performance under TVE Criterion,” 5th International Conference on
Critical Infrastructure (CRIS), Sept. 2010.

[11] RF Solutions, “Low-Power High-Performance and Low-Cost 65
Channel SMD GPS Module.” Data Sheet, Version 1.4, RF Solutions,
Jul. 9, 2009.

[12] The GNU Foundation, “GNU General Public License”, Internet:
http://www.gnu.org/licenses/gpl.html [Accessed: Dec 05 2012]

[13] The OpenPMU Project, Internet: http://www.openpmu.org/ [Accessed:
December 7 2012]

View publication stats

http://dx.doi.org/10.1109/TSG.2012.2208482
https://www.researchgate.net/publication/261336314

