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Abstract—This paper provides a summary of linear 
ringdown analysis methods excerpted from the first 
chapter of the June 2012 IEEE Power & Energy Society 
special publication entitled “Identification of 
Electromechanical Modes in Power Systems.” This 
publication is a report of the Task Force on 
Identification of Electromechanical Modes of the Power 
System Stability Subcommittee of the Power System 
Dynamic Performance Committee [1].  Chapter 1 of this 
special publication provides a basic summary of three 
linear methods:  Prony, eigensystem realization methods 
(ERA), and matrix pencil methods, followed by detailed 
applications.  This paper provides an overview of 
Chapter 1.  
 

Index Terms- ringdown analysis, Prony methods, 
eigensystem realization methods, matrix pencil methods, 
electromechanical modal identification 

I. INTRODUCTION 

Although many systems are inherently nonlinear, in some 
instances they may respond to well-tuned linear controls.  In 
order to implement linear feedback control, the system 
designer must have an accurate model of sufficiently low 
order from which to design the control.  Several approaches 
to developing such lower-order models have included 
dynamic equivalencing, eigenanalysis, and pole/zero 
cancellation.  Frequently, however, the original system is too 
complex or the parameters are not known with enough 
accuracy to produce an adequate reduced order model.  In 
practice, the system may have parameters that drift with time 
or operating condition which compromises the accuracy of 
the mathematical model.  In these cases, it is desirable to 
extract the modal information directly from the system 
response to a perturbation.  Using this approach, it may be 
possible to replace the actual dynamic model with an 
estimated linear model that is derived from the system 
response to a stimulus. The time-varying dynamic response 
of a power system to a disturbance may be composed of 
numerous modes that must be identified.   Several methods 
have been proposed to extract the pertinent modal 
information from time varying responses.  The application of 
an appropriate identification method must recognize the 

system nonlinearities, the size of the model that can be 
effectively utilized, and the reliability of the results.   

Methods that are applied directly to the nonlinear system 
simulation or field measurements include the effects of 
nonlinearities.  In full state eigenvalue analysis, the size of 
the system model is typically limited to several hundred 
states with present computing capabilities.  This means that 
a typical system containing several thousand nodes must be 
reduced using dynamic equivalencing. Modal analysis 
techniques that operate directly on system output are not 
limited by system size.  This means that standard time-
domain-analysis results are directly applicable.  This 
eliminates the possibility of losing some of system modal 
content due to reduction.  The estimated linear model may 
then be used for control design applications or other linear 
analysis techniques.  The estimated model is typically of 
lower order than the original system, but still retains the 
dominant modal characteristics.   

II. OVERVIEW OF METHODS 

The modal analysis problem may be posed, such that given a 
set of measurements that vary with time, it is desired to fit a 
time-varying waveform of pre-specified form to the actual 
waveform (i.e., minimize the error between the actual 
measured waveform and the proposed waveform).  The 
coefficients of the pre-specified waveform yield the 
dominant modal characteristics of the underlying linear 
system.  Consider the following linear system: 
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where x  denotes differentiation of x with respect to time.  
Variables u and y are respectively the input and the output of 
the system; x, the internal state of the system, is usually 
taken to be a vector of n elements (n being the order of the 
system differential equation).  These equations, and the 
system matrices within them, can be rearranged in many 
different ways to serve specific purposes.  Each individual 
element ix  can be given by: 
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The parameter ir  is the residue of the mode i, 0ix is derived 
from influence of the initial conditions, and i represents the 
(possibly complex) eigenvalues of A.  The estimation of 
these responses yields modal information about the system 
that can be used to predict possible unstable behavior, 
controller design, parametric summaries for damping 
studies, and modal interaction information. 

The discrete form of equations (1) and (2) is given by: 
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(5) 
where k represents the discrete time interval.  This system of 
equations is shown in Figure 1. 
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Figure 1: Discrete Linear System Representation 

The primary task in modal identification is to determine the 
system poles or, equivalently, the eigenvalues of A.  Transfer 
function identification must, in addition to the poles, also 
determine the zeros and the gains along one or more 
response paths.  The system transfer function involves all of 
the system matrices in equations (1) and (2): 
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(6) 

where each pole ip is identical to an eigenvalue i of the 
matrix A and Ki is the transfer function residue of the 
associated pole ip .   

Ringdown analysis, which is loosely correlated to the 
impulse response of the system, is based upon modal 
decompositions of output vector y(t). The modes and the 

modal parameters identified are for a subset of A that is 
estimated from a subset of y(t); the mode shape parameters 
are specific to whatever stimulus may have produced the 
output. Given sufficient knowledge of u(t), an approximating 
subset can be constructed for the matrices of equations (1) 
and (2). 

Any time-varying function, such as a ringdown trace, can be 
fit to a series of complex exponential functions over a finite 
time interval.  However, in most systems, a true fit is not 
possible because 

• the system response may not be truly linear 
• only a subset of the modal content is excited by the 

event 
However, it is not practical to include a large number of 
terms in the fitting function.  The problem then becomes one 
of minimizing the error between the actual time-varying 
function and the proposed function by estimating the 
magnitude, phase, and damping parameters of the fitting 
function.  Several methods have been proposed for transfer 
function identification and modal analysis.  The three 
primary methods that have been developed are: 

• Prony 
• Eigensystem Realization Algorithm (ERA) 
• Matrix Pencil 

All of these methods are approximate, and none can generate 
results of higher quality than the information provided to 
them.  Results from model-based eigenanalysis are colored 
by errors in the model, and by linear approximations to 
nonlinear phenomena such as saturation and dead zones.  
Results from measurement-based eigenanalysis are colored 
by the extent and quality of the available signals.  Some 
modes may not be sufficiently observable within the signal 
set.  Those which are observable may be obscured by noise, 
by dynamic nonlinearities, and by hidden inputs to the 
system.   

Each of these methods will be briefly summarized in this 
paper.  Greater detail can be found in the report [1].  

III. PRONY METHODS 

The core notion in Prony analysis originated in an earlier 
century [2].  Its practical use was not possible until the 
advent of the digital computer and means for dealing with 
some inherently ill-conditioned numeric were developed. 
Prony methods and their modern extensions are designed to 
directly estimate the parameters for the exponential terms in 
(3), by fitting a function to an observed record for y(t).  In 
doing this it may also be necessary to model offsets, trends, 
noise, and other extraneous effects in the signal.  The Prony 
method is a “polynomial” method in that it includes the 
process of finding the roots of a characteristic polynomial. 



Let the record for y(t) consist of N samples y(tk) that are 
evenly spaced by an amount t.  The notation is simplified if 
(3) is recast in the exponential form: 
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where n  N is the subset of modes to be determined.  At the 
sample times kt , this can be can be discretized to 
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where 

( )tz ii = exp        (9) 

The iz are the roots of the polynomial 
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where the ai coefficients are unknown and are calculated 
from the set of measurement vectors. 

The strategy for obtaining a Prony solution can be 
summarized as follows: 

Step 1: Assemble selected elements of the record into a 
Toeplitz data matrix  

Step 2: Fit the data with a discrete linear prediction model, 
such as a least squares solution. 

Step 3: Find the roots of the characteristic polynomial (9) 
associated with the model of step 1. 

Step 4: Using the roots of step 3 as the complex modal 
frequencies for the signal, determine the amplitude 
and initial phase for each mode. 

The approach to the Toeplitz (or the closely related Hankel) 
matrix assembly of Step 1 has received the most attention in 
the literature. The problem can be formulated in many 
different ways.  If the initial (i.e., i < 0) and post (i.e., i > N) 
conditions are assumed to be zero, then the subscript ranges 
X1 through X4 in equation (7) represent four such 
formulations.  The range X1 is termed the covariance 
problem. Because the initial and post conditions are not 
used, no assumption is required on their value.  The range X4 
is called the correlation problem; it incorporates both initial 
and post conditions. The remaining problems, X2 and X3, are 
termed the pre-windowed and post-windowed methods.   
 
In the majority of practical cases, the Toeplitz matrix is non-
square with more rows than columns. A Toeplitz matrix is a 
matrix with a constant diagonal in which each descending 
diagonal from left to right is constant.  The system of 
equations Error! Reference source not found.) requires a 

least squares solution to find the factors a1 through an.  After 
the ai coefficients are obtained, the n roots zi of the 
polynomial in (9) can be found by factoring. 

 

(11) 

 

Step 4 is also a linear algebra problem.  Once the roots zi are 
obtained from step 3, they are substituted into (8) and 
written in matrix form as 
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The N  n matrix in (12) is a Vandermonde matrix and 
solving it for the Bi is called the Vandermonde problem.  
Once the residue coefficients are found, the estimated signal 

)(ˆ ty can be reconstructed from (8) using the roots of (9).  

The reconstructed signal )(ˆ ty will usually not fit y(t) 
exactly.  An appropriate measure for the quality of this fit is 
the signal to noise (SNR) ratio: 
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where the SNR is given in decibels (dB). 

At a more abstract level, Prony analysis is sometimes 
characterized as a projection method in which steps 1 and 2 
define a modal basis onto which the observed data y(k) are 
projected at step 3.  Once this basis is determined, some or 
all of it can be reused in subsequent “repeat” solutions.  
Conditions under which this is useful include the following: 

• mode shapes are desired for a larger number of 
signals than can be processed in one tandem 
analysis  
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• modal residues are desired at locations where the 
signal to noise ratio is adverse  

• the signal to be analyzed consists of a fast transient 
imposed upon a much slower one  

The first step in implementation is to model the trend, 
perhaps on a time frame ranging from 3 seconds to 30 
seconds.  Then, retaining this estimate, another repeat 
solution would be performed from 3 seconds to about 15 
seconds.  This two-step approach permits better separation 
of the trend from the swing dynamics, while avoiding 
inclusion of the “noise tail” in the final estimate of modal 
parameters. 

IV. EIGENSYSTEM REALIZATION ALGORITHM 

The Eigensystem Realization Algorithm (ERA) is based on 
the singular value decomposition of the Hankel matrix 𝐻0 
associated with the linear ringdown of the system.  The ERA 
fits a discrete state space model to the impulse response of a 
linear system.  From the state space model, modal 
frequencies and damping coefficients can be calculated.  
Succinctly, the algorithm consists of building a Hankel 
matrix whose elements are the Markov parameters of the 
system under study; from this matrix, the state space 
matrices are derived using the singular value decomposition 
(SVD) of the Hankel matrix.  Lastly, the system modes are 
computed from the realized system matrices.  Figure 2 is a 
conceptual view of the ERA identification process.   
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Figure 2:  ERA Process 

A Hankel matrix is a square matrix with constant skew-
diagonals.  The Hankel matrices are typically assembled 
using all of the available data such that the top left-most 
element of 0H is 0y  and the bottom right-most element of 

1H  is Ny .   The Hankel matrices are assembled such that: 
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and r is 1
2
−

N
.  This choice of r assumes that the number 

of data points is sufficient such that r > n. 

The ERA formulation begins by separating the singular 
value decomposition of 0 ,H   into two components 
according to the relative size of the singular values: 
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where n and z are diagonal matrices with their elements 
ordered by magnitude: 
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and the singular values are ordered by magnitude such that  

1 2 1 2n n n N
           

+ +
 

The SVD is a useful tool for determining an appropriate 
value for n. The ratio of the singular values of contained in   
can determine the best approximation of n. The ratio of each 
singular value i  to the largest singular value max  is 
compared to a threshold value, where p is the number of 
significant decimal digits in the data:   

pi − 10
max


 

An example is to set p equal to 3 significant digits, thus any 
singular values with a ratio below 10-3 are assumed to be 
part of the noise and are not included in the reconstruction of 
the system. The value of n should be set to the number of 
singular values with a ratio above the threshold p−10 .  It 
can be shown that for a linear system of order n, the diagonal 
elements of z  are zero (assuming that the impulse 
response is free of noise).  The practical significance of this 
result is that the relative size of the singular values provides 
an indication of the identified system order.  If the singular 
values exhibit a significant grouping such that, 1+ nn 
then from the partitioned representation given in (14),  0H
can be approximated by  
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The method for obtaining the eigenvalue realization 
algorithm solution can be summarized as follows: 

Step 1: Assemble selected elements of the record into a 
Hankel data matrices 0H  and  1H  

Step 2: Perform the singular value decomposition of 0H  
and estimate the system order n based on the 
magnitude of the singular values 

Step 3: Compute the discrete system matrices as follows: 
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Step 4: Calculate continuous system matrices Ac, Bc 
assuming a zero order hold and sampling interval 
t: 
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The reduced system response can then be computed from the 
continuous matrices. 

V. MATRIX PENCIL METHOD 

The Matrix Pencil approach was introduced for extracting 
poles from antennas’ electromagnetic transient responses. 
The matrix pencil method produces a matrix whose roots 
provide 𝑧𝑖 .  The poles are found as the solution of a 
generalized eigenvalue problem.    

The advantage of the Matrix Pencil method is that the signal 
poles can be found directly from the eigenvalues of a single 
developed matrix in contrast to polynomial methods which 
require a two-step process. This method is designed to 
directly estimate the parameters for the exponential terms by 
fitting the function (3) to an observed measurement for y(t) 
in (7), where y(t) consists of N samples that are evenly 
spaced by a time interval Δt. Since the measurement signal 

y(t) may contain noise or dc offset, it may have to be 
conditioned before the fitting process is applied. 

By using the generalized eigenvalue solution to find zi, the 
Matrix Pencil method removes the limitation on the number 
of poles M, whereas, the polynomial method has difficulties 
obtaining roots of a polynomial if M is greater than 50. This 
results in the estimates of zi having better statistical 
properties.  

The basic process of the Matrix Pencil is similar to that of 
the ERA method up through Step 3:   

Step 1: Assemble selected elements of the record into a 
Hankel data matrix  

Step 2: Fit the data with a discrete linear prediction model, 
such as a least squares solution. 

Step 3: Define the matrices 1V  and 2V  from V in (14): 
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and calculate the matrices 1Y  and 2Y : 
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Step 4: The desired poles iz may be found as the 
generalized eigenvalues of the matrix pair
    12 YY − . The eigenvalue set ( )12 ,YY  is 

contained in the square matrices 1Y  and 2Y , as the 

pencil values or roots of 2Y relative to 1Y .  

VI. CONCLUSIONS 

This paper provides a brief summary of the first chapter of 
the IEEE special publication report. 
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