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Real-Time Hardware-in-the-Loop Validation for WAMPAC: 

 Power System Protection and Communication 

Outline 

 

•Motivation for RT-HIL Approach 

•SmarTS Lab: An RT-HIL Lab for WAMPAC Apps Dev. 

•Model-To-Data Workflow for SIL and RT-HIL Validation  

 

•Recent Projects at SmarTS LAB for Power System Protection 

and Communication 

•Power System Modeling of Protective Relays 

•Power System Communication (GOOSE and Sampled 

Values) Validation  using RT-HIL 

•Interfacing RTS for Station Bus and Process Bus 

Implementation 

•Comparison of Conventional and RT-HIL 

approaches for Power Protection Relay Testing 

 

• A software development toolkit for developing and testing 

PMU based applications for Wide Area Monitoring, 

Protection and Control  
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Timeline for M. Shoaib Almas 

• Almas joined KTH, The Royal Institute of Technology, in 2009 to 

pursue his Masters in Electric Power Engineering majoring in 

Power Systems. Previously he has obtained a Bachelors in 

Electrical Engineering from National University of Sciences and 

Technology (NUST), Pakistan.  

• He has two years of experience working as a Design Engineer 

for designing protection schemes for substations (132kV, 220 

kV and 500kV) through microprocessor-based relays.  

• His professional experience includes substation automation 

and coordination of protective relays to minimize the effect of 

faults in power transmission networks.   

• He performed his master thesis “PMU-Assisted Local 

Optimization of the Coordination between Protective Systems 

and VSC-HVDCs” at the Electric Power System (EPS) division of 

KTH. 

• Currently PhD. Candidate, Project Title “Real-Time Wide-Area 

Control of Hybrid AC and DC Grids” 

Motivation  

• Each substation has in average 50 IEDs performing protection (differential, bus-

bar, overcurrent, over/under voltage, over/under frequency etc.) and 

communicating with various protocols/standards (C37.118, GOOSE, SV, 

MODBUS, DNP 3.0)  

• In order to accurately model a power system, these IEDs along with their 

respective communication techniques need to be modeled  precisely with the 

same settings as the real hardware relay .               Power System Modeling 

• With substations adopting IEC-61850 standards, RT HIL approach proves 

beneficial to exploit interoperability, the use of Station/Process Bus 

effectiveness, etc.                  Power System Communication 

• Digital Real-Time Simulators are compatible with long-established modeling 

software like MATLAB/SIMULINK (Opal-RT) and are IEC 61850 compliant 

(GOOSE & Sampled Values) 

• RT-HIL approach provides freedom to carry on research related with Smart 

Transmission Grids: 

- Wide Area Monitoring Protection and Control (WAMPAC) 
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• Smart Grid require Smart Operation, Smart Control and Smart Protection:  

- The ultimate goal should be to attain an automatic-feedback self-healing control system 

• Measure – Communicate – Analyze (System Assessment and real limits) – Determine 

Preventive/Corrective Actions – Communicate – Control and protect 

• To achieve this vision, new applications need to be developed in a controlled environment, allowing 

testing and considering the ICT chain 

 

How to develop a controlled environment for 

developing Smart Transmission Grid Technologies? 
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SmarTS Lab  
Comm. and Synchronization Architecture and Implementation 

GPS - Signal 

IRIG-B 
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Software-in-the-Loop Validation 

Hardware-in-the-

Loop Validation 

Model-to-Data 

Workflow 

Analog Input of relay 

(Current from CT)

Analog to Digital 

Converter
Digital Filtering

Protection 

Algorithm 

(Instantaneous, 

Definite or IDMT)

Three Phase

 Current

Current Set Point

Trip Signal

Part 1 Part 2 Part 3

Recent Projects at SmarTS LAB 

1. Model Validation of an Over-Current Relay  

ComparatorComparator

Input CurrentInput Current

Pickup ValuePickup Value

Trip SignalTrip Signal

Block Diagram 

• Instantaneous  

• Definite Time 

• Inverse Definite Minimum 

Time (IDMT) 
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1. Model Validation of an Over-Current Relay (contd.) 

Modeling and Implementation for RT Simulation 

Implementation in 

SimPowerSystems 

(MATLAB/Simulink) 

1. Model Validation of an Over-Current Relay (contd.) 

Protection Algorithm Implemented in the Overcurrent Relay Model 
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1. Model Validation of an Over-Current Relay (contd.) 

Test Case Model Developed in SimPowerSystems (MATLAB/Simulink) 
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1. Model Validation of an Over-Current Relay (contd.) 
Test Case Model Developed in SimPowerSystems (MATLAB/Simulink) 

HIL Implementation 
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1. Model Validation of an Over-Current Relay (contd.) 

Validation Results 

2. Power System Communication (Station & Process Bus Implementation 
Comparison of the Real-Time Results with Stand Alone Testing Using Freja-
300 (Relay Test Set) 

CT Input

VT Input
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Three phase voltage 

injection to the 

relay under test
Three phase current 

injection to the 

relay under test

Digital I/O of the relay 

under test. The Digital 

Output is configured to 

change its contact from 

normal open to normal 

close when a 

protection function 

operates

Workstation with software FREJA 

Win which is a graphical interface 

for the FREJA 300 Relay Testing 

System

Relay Test Set

Freja 300

1

2

Stand-Alone Testing 

Hardwired 
Stand-Alone Testing 

GOOSE (IEC 61850-8-1:Station Bus) 

The only way to validate the RT-HIL results for protection 

IEDs is to compare results with existing technology 

(stand-alone tests) 
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Softwares:

· MATLAB / SimPowerSystems 

· ABB PCM 600: Relat Settings

· RT-LAB: Real-Time Execution

· WireShark: Network Analyzer

· ABB IET 600: Substation Automation 

Architecture

No Hardwires for CT and VT connections

No need of Amplifiers for RT-HIL execution

Process BUS

(IEC 61850-9-2)

2. Power System Communication (Station & Process Bus 

Implementation (contd.) 

3. Comparison of Standalone 

and RT-HIL Testing Approach 

 

Comparison of Results from Standalone and RT-HIL Testing 

Fault Applied at t=2 sec, protection tested=instantaneous 

overcurrent 

Testing 

Methodology 

Feature Tripping Time 

(sec) 

Delay (msec) 

Standalone Hardwired 2.0083 8.30 

GOOSE 2.0060 6.00 

RT-HIL Hardwired 2.0085 8.50 

GOOSE 2.0062 6.20 
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EthernetPortEthernetPort
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Real-Time Data Access 

Straightforward Development 

of Monitoring Application 

a. Results from developed 

synchrophasor based monitoring 

application (with Statnett)  

b. Results from vendor specific 

(SEL-5073 PDC monitoring) tool 

Comparison with a commercial monitoring tool 
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PMU Based Application Example 

Real-Time Mode Meter 

Estimates frequency of the 

electromechanical modes of the 

power system 

Three different spectral estimators are used 

ensuring accurate signal spectrum 

estimation:  

• Welch’s method, 

• Auto-Regresive (AR)method 

• Auto-Regresive Moving 

Average (ARMA) method 

Conclusions and Further Work 

• Smart Transmission Grids will benefit from RT HIL simulation for developing new 

technologies. 

• Modeling for real time simulation is necessary: 

• Developing more models for protection functions like Distance protection, differential 

protection, over/under voltage, over/under frequency protection etc. to have available a 

library for protection functions.  

• Consideration of actual measurement and automation streams is necessary: 

• Exploiting IEEE C37.118 (Synchrophasors from PMU)  and IEC 61850 (Substation 

Automation) can be useful to develop applications which can serve as online oscillation 

detection, mode estimation, power oscillation damping, etc. 

• PMU-Based applications can enable flexibility: 

• Developing a Real-Time controller which can read data from power system / substation 

components irrespective of the vendor protocol and can translate it  to take either 

distributed or global control actions. 

• RT HIL simulation can help us to achieve broader goals: 

• Power system which is more reliable and more flexible 
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