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Abstract

Electromechanical modes are predominantly determined by
the machine rotor angles and speeds, and as a result, they
provide the best visibility of such modes. These electrome-
chanical modes are also observable in the network variables
such as voltages and line currents, which are measured by
PMUs. In this paper, by analyzing the electromechanical
modes in the network variables, we can trace the propaga-
tion of electromechanical oscillations in the power network
following a disturbance. In large power networks with mul-
tiple transfer paths across the interconnection it is not al-
ways clear how and where the oscillations propagate. Here,
we seek to provide a rationale explaining how (the qualita-
tive behavior) and where (transmission lines) network os-
cillations propagate. We first analyze the oscillations from
real PMU data originating from a system-wide disturbance.
Applying eigenvalue and sensitivity analysis we provide an
analytical framework to understand the nature of the net-
work oscillations. Closed-form expressions for the network
sensitivities are provided. The results here important for
building reduced models to assess transient stability and
the selection of network variables as input signals to damp
inter-area mode oscillations.
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linear analysis techniques, synchronized phasor measure-
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1 Introduction

Inter-area modes are predominantly determined by the ma-
chine rotor angles and speeds [1]- [5], and as a result, they
provide the best visibility of such modes. Thus electrome-
chanical modes are also observable in the network variables
such as voltages and line currents, which are measured by
PMUs [6] and observed through simulations [7]. In this pa-
per, by computing the electromechanical modes in the net-
work variables, we can trace the propagation of electrome-
chanical oscillations in the power network following a dis-
turbance. These network variables have received less atten-
tion because they are algebraic variables which can change
abruptly. Recently, an analytical framework to study volt-
age inter-area oscillations present in the bus voltage and

frequency variables has been proposed [8]. This technique
uses the linearized model of a power system with bus volt-
ages and frequencies as output variables.

The purpose of this investigation is to generalize the re-
sults in [8] to analyze power system oscillations which may
be present in any type of network variables. To moti-
vate, we first analyze the oscillations observed during a
major system disturbance that took place on 2/26/2008 in
the Florida Reliability Coordination Council (FRCC) ser-
vice area [9, 10]. The PMU measurements show that af-
ter the initial transient, the oscillations consist mainly of
one single-frequency mode, peaking at different instants. A
question of interest is whether these oscillations originate
from a single mode. If this is so, how should the time delay
be explained.

With the goal of explaining the origin of the phase shifts in
the network variables, we use the multi-machine linearized
power system electromechanical model [11] and extend the
mode shape concepts to the network variables. We show
that with no damping and constant impedance loads, all
electromechanical oscillations are in phase. However, when
damping or control equipment such as voltage regulator
models are included, the eigenvector matrix will indicate
phase shifts. The time delays related to these phase shifts
show a strong resemblance to those observed in PMU data.

To obtain the mode shapes, we perform a detailed sensitiv-
ity analysis of the network variables and provide analytical
expressions [12]. This analysis provides a theoretical under-
standing of oscillations as directly measured by PMUs on
high-voltage transmission systems. Finally, network sensi-
tivities and eigenvectors are used to obtain the modal com-
ponents in the network variables, thus providing a rationale
explaining the phase shifts observed in the modal compo-
nents of the synchrophasor data.

The remainder of the paper is organized as follows. In Sec-
tion 2 we analyze the network oscillations originating from
the 2/26/2008 FRCC disturbance. In Section 3 we deter-
mine the origin of the phase shifts in the electromechanical
mode shape. In Section 4 we perform sensitivity analysis of
the network variables and provide closed-form expressions
of the network sensitivities. Afterwards, in Section 5 we
map the network sensitivities onto the electromechanical
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Figure 1: PMU locations and recorded measurements during the 2008 Florida Disturbance
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Figure 2: Identified Oscillatory Components in the Voltage
Phasor at W. Tenn.

mode shapes and explain the nature of the modal com-
ponents in the network variables, illustrating with a four-
generator, two-area system [12,13]. Applications for inter-
area mode tracing and PMU siting are suggested in Section
6 and conclusions are presented in Section 7.

2 Nature of Network Oscillations Observed
from Phasor Measurement Data

We study the power system inter-area oscillations excited
by the FRCC system disturbance by analyzing archived
phasor measurement data. The PMUs considered in this
analysis are Manitoba, near the city of Winnipeg, Canada.
Main near Bangor, Maine. Florida near Jacksonville,
Florida. West Tennessee (W. Tenn.), near Memphis, Ten-
nessee, and East Tennessee (E. Tenn.), near Knoxville, Ten-
nessee, as shown in Fig. 1a. In Fig. 1b we plot the bus
frequency measured during the disturbance by the PMUs,
showing the wide-area impact of the disturbance. The
steady state frequency deviation is approximately Δf = 30

mHz, while the electromechanical swing is propagated from
Florida, to E. Tenn. and W. Tenn., and subsequently to
Manitoba, and finally Maine.

We aim to analyze the oscillatory components and char-
acteristics contained in these measurements. We use the
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Figure 3: Voltage Angle Inter-area Oscillations and Projec-
tions

Eigensystem Realization Algorithm (ERA) [14] to identify
the individual modal components in the voltage magnitude,
voltage angle, and active power flow measurements avail-
able from each PMU. The identified low-frequency inter-
area modes include frequencies of 0.22 Hz and 0.49 Hz. In
Fig. 2 the voltage phasors measurements of the PMU at
W. Tenn. are shown along with their ERA approximation
for the 0.22 and 0.49 Hz components of the signals.

All identified components for the 0.22 Hz mode in the volt-
age angle are shown in Fig. 3a, and those for the 0.49 Hz
mode are shown in Fig. 3b. A snapshot of the voltage
angle components is taken at t=3 sec., and is used for the
projection of the 0.22 Hz mode shown in Fig. 3c. For the
0.49 Hz mode a snapshot of the voltage angle components
is taken at t=1.93 sec., and used for the projection in Fig



3d. The starting time t=0 sec corresponds to 18:10:04.333
hrs. From the voltage angles of the 0.22 Hz mode we note
that Florida oscillates against Maine and Manitoba, that
is, it is a North vs South mode.

The 0.49 Hz mode is more difficult to analyze from this
limited data set. However, it can be noted that the voltage
angle at W. Tenn., E. Tenn., and Florida have the largest
oscillations while Manitoba and Maine have a less signifi-
cant contribution. More important, W. Tenn. and E. Tenn.
are in anti-phase suggesting that the pivot node of the os-
cillation is located somewhere between them.

The most important observation that could be made about
the oscillations discussed above is the following: for all of
the network variables, the independent modal components
do not peak at the same instants. There is in fact a time
delay between the modal components. This time delay can
be viewed as a phase shift between the modal components
in the frequency domain. In the next section we will inves-
tigate this phase shift by analyzing the mode shapes of a
test network.

3 The Electromechanical Mode Shape

3.1 Multi-Machine Electromechanical Model

In this section we develop a basic understanding on the ori-
gin of electromechanical mode phase shifts by performing
eigenanalysis on different linearized models of multi ma-
chine power systems. We start with the electromechanical
model [15]. For an N -machine power system, the linearized
electromechanical model in state-space form is given by[

Δδ̇
Δω̇

]
︸ ︷︷ ︸

ẋ

=

[
0 ΩI(N×N)

M−1K M−1D

]
︸ ︷︷ ︸

Ā

[
Δδ
Δω

]
︸ ︷︷ ︸

x

(1)

where
Δδ = [Δδ1 . . . ΔδN ]

T
, (N × 1)

Δω = [Δω1 . . . ΔωN ]
T , (N × 1)

M−1 = diag

(
1

2Hi

)
, (N ×N)

D = diag (Di) , (N ×N); K = [Kij ] , (N ×N)

(2)

where i, j = 1, . . . , N . We will refer to this model (1) as
the electromechanical model with damping, and to matrix
Ā as the state matrix with damping. If the damping terms
are neglected (Di ≈ 0) the model becomes[

Δδ̇
Δω̇

]
︸ ︷︷ ︸

ẋ

=

[
0 ΩI(N×N)

Aω 0

]
︸ ︷︷ ︸

A

[
Δδ
Δω

]
︸ ︷︷ ︸

x

Aω = M−1K

(3)

We will refer to A as the state matrix without damping.
Many properties of Ā and A have been studied [11,15,16].
In this investigation some characteristics of the eigenvectors
of A and Ā are analyzed. These characteristics have strong
effects on the phase shift of network variables as discussed
later.
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Figure 4: Two-Area Four-Machine Power System and Voltage
Magnitude Mode Shape for the Inter-area Mode (No Damping)

3.2 Eigenvectors of the Electromechanical Models

Consider the two-area four-machine power system shown in
Fig. 4 [12, 13]. The system is modeled using (3), linearized
about an equilibrium. In the resulting state matrix A all
elements corresponding to the machine damping M−1D
are zero. Eigenanalysis is performed on A resulting in the
eigenvector matrix

W (A) =

⎡
⎢⎢⎣

0.5 −0.5930 0.7871 −0.0547

0.5 −0.5997 −0.6167 −0.0512

0.5 −0.4539 0.0155 0.9972

0.5 0.2876 −0.0015 −0.0041

⎤
⎥⎥⎦ (4)

Note that only the components corresponding to the ma-
chine angles are shown. All the components of W (A) are
real. Column 2, the inter-area mode mode shape in Fig. 5a,
shows that G1, G2 and G3 are oscillating against G4, that
is, Area 1 oscillates against Area 2.

Column 3, the mode shape for Local Mode 1 in Fig. 5b,
indicates that G1 and G2 are mostly oscillating against each
other. Finally, Local Mode 2 (Column 4) is mostly confined
within Area 1 with G3 oscillating against G1 and G2. The
most important characteristic to note is that the oscillations
are either completely in-phase or anti-phase as reflected by
the time-responses in Fig. 5c for the inter-area mode and
Fig. 5d for Local Mode 1.

Using (1) we analyze the effect that machine damping has
on the eigenvectors. The elements corresponding to the
machine damping M−1D in Ā are given by

M−1D = diag
`ˆ −0.001 −0.3 −0.015 −0.2

˜´
(5)

and all other elements remain unchanged with respect to
A.

Eigenanalysis is performed on Ā, yielding the eigenvector
matrix in (6) at the top of p. 4. Note that the eigenvec-
tor matrix is now complex. For convenience it is shown in
polar form. The main oscillatory characteristics discussed
for the mode shapes from A are maintained for the mode
shapes of Ā. However, the components of each mode shape
now present a phase shift due to the inclusion of machine
damping. This phase shift is readily observed in the phasor



W (Ā) =

⎡
⎢⎢⎣

0.5∠0◦ 0.5882∠172.6196◦ 0.7878∠0◦ 0.0548∠− 178.5539◦

0.5∠0◦ 0.6066∠− 180◦ 0.6084∠165.8682◦ 0.0507∠172.6111◦

0.5∠0◦ 0.4548∠176.1869◦ 0.0951∠68.6262◦ 0.9972∠0◦

0.5∠0◦ 0.2814∠− 6.3759◦ 0.0072∠− 116.0791◦ 0.0041∠176.6467◦

⎤
⎥⎥⎦ (6)
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Figure 5: Machine angle mode shapes (no damping), phasor
diagram (a) and (b), and time response (c) and (d)

diagrams in Figs. 6a and 6b. A more important observation
is that in the time domain these phase shifts translate to
time delays, making the oscillations in each mode peak at
different instants as shown in Figs. 6c and 6d. It is inter-
esting to note that the time-shifts shown in Figs. 6c and 6d
strongly resembles those of the measurement data presented
in the previous section. The phase shifts are particularly
exhibited for “non-dominant” bus locations. Why do the
network measurements exhibit phase shifts similar to those
in the machine angle mode shapes of Ā? In the following
section we build upon the understanding gained from the
mode shapes from Ā, and generalize the results obtained
in [8].

4 Sensitivity Analysis of Network Variables

4.1 Network Sensitivities

By computing the sensitivities of the entire network, it is
possible to predict the incremental behavior of the network
variables when a small perturbation occurs in the power
system. This is of particular interest because PMUs are ca-
pable of measuring synchronized network variable changes
across wide-areas of the power system that emerge from
small perturbations. Thus, an understanding of network
sensitivities can provide insight for PMU data analysis of
small signal oscillations occurring in large scale power net-
works.
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Figure 6: Machine angle mode shapes (damping), phasor dia-
gram (a) and (b), and time response (c) and (d)

To illustrate, consider the n-bus, N -machine power system
shown in Fig. 7. Buses i to (i+4) are transmission and load
buses remotely connected to generators j = 1, . . . , N . Re-
gardless of their distance from the generators, these buses
will be affected by changes in the internal machine angle of
any generator. For example, a change in the internal angle
of machine j, Δδj , will be reflected in the voltage magni-
tude at the i-th bus, Vi, in a proportion dictated by the
network sensitivity (∂Vi/∂δj)|(o). The total change in the
voltage magnitude at bus i, ΔVi , will be the sum of all
the changes in the machine internal angles scaled by their
corresponding network sensitivity.

Similarly, if the current flow among buses i to (i + 4) is
as indicated in Fig. 7, the change in the current flow
will also be affected by the change in machine internal an-
gles. The complex line current flow changes will be propor-
tionally distributed satisfying Kirchhoff’s current law, i.e.,
ΔĨi(i+1) = ΔĨ(i+1)(i+2) + ΔĨ(i+1)(i+3) + ΔĨ(i+1)(i+4). Thus, it
becomes possible to trace how the current oscillations are
being divided among multiple lines/paths and propagated
across the entire network.

To obtain the change of the voltage magnitude (ΔVi) and
angle (Δθi) at the i-th bus of the network with respect to
the change of machine internal angles we obtain the Taylor
series expansion of Vi and θi about an equilibrium. Denot-
ing N as the total number of machines in the system, n
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Ĩ(i+1)(i+4)
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Figure 7: Changes in the network variables with respect to
changes in δj ’s

the total number of buses in the system, and ignoring the
higher order terms, the change of voltage magnitude at bus
i due to the change in the machine internal angles is given
by

ΔVi =
(

∂Vi

∂δ1

)∣∣∣
0
Δδ1 +

(
∂Vi

∂δ2

)∣∣∣
0
Δδ2 + . . .

+
(

∂Vi

∂δn

)∣∣∣
0
Δδn

(7)

where (∂Vi/∂δj)|0 is the sensitivity of the i-th bus voltage
magnitude to the j-th machine angle at the equilibrium
point. In matrix form, the voltage magnitude changes at
buses i = 1, . . . , n due to the change in the machine internal
angles are given by

2
64

ΔV1

...
ΔVn

3
75

| {z }
ΔV

=

2
66664

“
∂V1
∂δ1

”˛̨̨
(0)

. . .
“

∂V1
∂δj

”˛̨̨
(0)

...
. . .

...“
∂Vn
∂δ1

”˛̨̨
(0)

. . .
“

∂Vn
∂δj

”˛̨̨
(0)

3
77775

| {z }
CVδ

2
64

Δδ1

...
Δδn

3
75

| {z }
Δδ

(8)

where ΔV is the vector of bus voltage magnitude changes
of size (n× 1), and CVδ is the bus voltage magnitude sen-
sitivity matrix of size (n×N).

Sensitivities may also be obtained for any other network
variable can be obtained similarly. For the bus voltage angle
changes, we have

Δθ = CθδΔδ (9)

where Cθδ is the bus voltage angle sensitivity matrix of size
(n×N).

In a power system, with a total number of � trans-
mission lines connecting the sending end buses, f , to
the receiving end buses, t, the current magnitude and
angle changes w.r.t. the machine angle changes are given by

ΔI ft = CIftδΔδ (10) Δφft = CφftδΔδ (11)

where ΔI ft and Δφft are the current magnitude and an-
gle changes, respectively. Matrix CIftδ is the current mag-
nitude sensitivity matrix while Cφftδ is the current angle
sensitivity matrix, both of size (�×N).

GN
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Figure 8: n-bus network extended to the machine internal
nodes

In general, the sensitivity matrices CVδ and Cθδ are ob-
tained by numerical perturbation using simulation software
such as PST [17]. Analytical expressions may provide fur-
ther insight on their properties and the parameters affecting
them. In the next section we provide closed form expres-
sions of different network sensitivities.

4.2 Analytical Derivation of the Network Sensitivities

The first step to develop closed form expressions of the
different sensitivities is to obtain a general expression of
the network variables as a function of the machine inter-
nal nodes. To this aim it is possible to write nodal voltage
equations that extended to the machine internal nodes, as
shown in Fig. 8. To include E′

j , the voltage behind tran-
sient reactaces x′dj , we add N buses to the n-bus power
system network, thus extending the admittance matrix to
the machine internal nodes.

The internal machine buses are denoted by n+ 1, . . . , n+

j, . . . , n + N , which are the buses behind the transient
reactances, x′dj . The resulting admittance matrix differs
from the admittance matrix used in load flow analysis in
that the additional internal machine buses are included to
account for the machine internal voltages, Ẽ′

j . In addition,
loads are modeled as constant admittances and included in
the diagonal elements of the admittances of the extended
Ỹ matrix. As a result, injected currents in all nodes other
than the generator internal nodes are zero, i.e. Ĩi = 0,
i = 1, . . . , n.

Denoting all the generator current injections as ĨN , gen-
erator voltages as Ẽ

′
N , and bus voltages as Ṽ n, the node

voltage equations are[
0

ĨN

]
=

[
Ỹ nn Ỹ nN

Ỹ
T

nN Ỹ NN

] [
Ṽ n

Ẽ
′
N

]
(12)

From (12) an expression for the bus voltage phasors as a
function of the machine internal voltages is obtained as

Ṽ n = −Ỹ
−1

nnỸ nN Ẽ
′
N (13)

where Ỹ
−1

nnỸ nN is referred to as the bus voltage reconstruc-
tion matrix and has a size of (n×N). Let the bus voltage
reconstruction coefficient matrix be given by

κ̃ = −Ỹ
−1

nnỸ nN = κ∠γ (14)
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Ṽf Ṽt
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Figure 9: Current flows in the π-model of a transmission
line

where κ and γ are the magnitude and angle of k̃. We can
now obtain a generalized expression relating the voltage
phasor at bus i with the machine internal voltages using
(14)

Ṽi = κ̃i1Ẽ
′
1 + κ̃i2Ẽ

′
2 + . . .+ κ̃iN Ẽ

′
N =

N∑
j=1

κ̃ijẼ
′
j (15)

Hence the voltage at the i-th bus is a function of the ma-
chine internal angles δj . In this expression, Ṽi depends on
the value of the machine internal voltage magnitudes at
the equilibrium, E′

j , and the admittances in the voltage
reconstruction coefficient matrix κ̃ij , with j = 1, . . . , N .

It is also possible to develop a generalized expression for
the complex line current flow through any line of the power
network. Consider the π-equivalent of a transmission line
shown in Fig. 9, the current from bus f to bus t is given
by

Ĩft = (ỹft + ỹf0) Ṽf − ỹftṼt (16)

Letting Ỹft0 = ỹft + ỹf0 and Ỹft = ỹft, and writing the
voltage for buses f and j in terms of the internal machine
voltages using (15), we obtain

Ĩft =

N∑
j=1

(
Ỹft0κ̃fj − Ỹftκ̃tj

)
Ẽ′

j =

N∑
j=1

Ψ̃FTjẼ
′
j (17)

where Ψ̃FTj = ΨFTj∠ψFTj , and

ΨFTj =

∣∣∣Ỹft0κ̃fj − Ỹftκ̃tj

∣∣∣ ,
ψFTj = ∠

(
Ỹft0κ̃fj − Ỹftκ̃tj

) (18)

The complex line current flow in Line f -t is a function of the
machine angles δj . The phasor Ĩft depends on the value of
the machine internal voltage magnitudes at the equilibrium,
E′

j , the admittances in the voltage reconstruction coefficient
matrix κ̃ij , and the admittances and shunts between buses
f and t. Expressions (15) and (17) are used to derive closed
form expressions of the network sensitivities, a complete
derivation can be found in [12].

4.2.1 Voltage Sensitivities. Given an N -machine power
system, the bus voltage magnitude sensitivities for the i-th
bus with respect to the j-th machine angle are given by

∂Vi

∂δj
=

1

|Ṽi|
(α) , j = p ;

∂Vi

∂δj
=

1

|Ṽi|
(−α) , j �= p (19)

where

|Ṽi| =

√(∑N
j=1 κ̃ijẼ′

j

)2

(20)

α = −PN−1
p=1

PN
q=p+1 κipκiqE

′
pE

′
q sin (δp + γip − δq − γiq)

+
PN−1

p=1
p �=j

PN
q=p+1

q �=j

κipκiqE
′
pE

′
q sin (δp + γip − δq − γiq) (21)

For the bus voltage angle
∂θi

∂δj
= 1

|Ṽi|2 [κ2
ijE

′2
j +∑N

q=1
q �=j

κijκiqE
′
jE

′
q cos (δj + γij − δq − γiq)]

(22)

is the closed form formula to obtain the sensitivity of the
i-th bus voltage angle to the j-th machine angle.

4.2.2 Current Sensitivities. The line current magnitude
sensitivities in any line from bus f to bus t with respect to
the j-th machine angle are given by

∂Ift

∂δj
=

1

|Ĩft|
(β) , j = p ;

∂Ift

∂δj
=

1

|Ĩft|
(−β) , j �= p (23)

where

|Ĩft| =

r“PN
j=1 Ψ̃F TjẼ′

j

”2

(24)

is the equilibrium value of the line current magnitude, and
β is given by (25) at the top of p. 7.

For the line current angle
∂φft

∂δj
= 1

|Ĩft|2
[Ψ2

F TjE
′2
j +

PN
q=1
q �=j

ΨF TjΨF TqE
′
jE

′
q cos

`
δj + ψF Tj − δq − ψF Tq

´
]

(26)

is the closed form formula to obtain the sensitivity of φft

with respect to the j-th machine angle.

Finally, the sensitivities of the real and imaginary part of
the line current (16) are given by

∂�{Ĩft}
∂δj

= −
N∑

j=1

ΨFTjE
′
j sin (δj + ψFTj) (27)

∂�{Ĩft}
∂δj

=

N∑
j=1

ΨFTjE
′
j cos (δj + ψFTj) (28)

Similar expressions can be obtained for the current from bus
t to f by substituting the subscripts ft and FT with tf and
TF , and using the appropriate coefficients and admittances.



β = −∑N−1
p=1

∑N
q=p+1 ΨFTpΨFTqE

′
pE

′
q sin (δp + ψFTp − δq − ψFTq)

+
∑N−1

p=1
p �=j

∑N
q=p+1
q �=j

ΨFTpΨFTqE
′
pE

′
q sin (δp + ψFTp − δq − ψFTq)

(25)
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Figure 10: Two-machine system one-line diagram and its extension to the machine internal nodes

4.3 Explicit Sensitivity Expressions for a Longitudinal
Two-Machine System

As an illustration, explicit sensitivity expressions for the
two-machine system with the parameters given in Fig. 10a
are derived. Figure 10b shows the network extended to the
machine internal nodes. The admittance matrix extended
to the machine internal nodes is

Ỹ =

⎡
⎢⎢⎢⎢⎣
Ỹ11 Ỹ12 0 Ỹ14 0

Ỹ21 Ỹ22 Ỹ23 0 0

0 Ỹ32 Ỹ33 0 Ỹ35

Ỹ41 0 0 Ỹ44 0

0 0 Ỹ53 0 Ỹ55

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−j x�+2xd1
xd1x�

j 2
x�

0 j 1
x′

d1
0

j 2
x�

−j 4
x�

j 2
x�

0 0

0 j 2
x�

−j x�+2xd2
xd2x�

0 j 1
x′

d2

j 1
x′

d1
0 0 −j 1

x′
d1

0

0 0 j 1
x′

d2
0 −j 1

x′
d2

⎤
⎥⎥⎥⎥⎥⎥⎦

from which the bus voltage reconstruction coefficients can
be computed using (14). Substituting the parameters
shown in Fig. 10b, and letting

det(Ỹ nn) = Ỹ11Ỹ22Ỹ33 − Ỹ11Ỹ
2
23 − Ỹ33Ỹ

2
12

= j4
(

x′
d1+x′

d2+x�

x′
d1x′

d2x2
�

) (29)

we obtain the κ̃ matrix

κ̃ =

⎡
⎢⎢⎣

x�+x′
d2

x′
d1+x′

d2+x�

x′
d1

x′
d1+x′

d2+x�

1
2

(
2x′

d2+x�

x′
d1+x′

d2+x�

)
1
2

(
2xd1+x�

x′
d1+x′

d2+x�

)
x′

d2
x′

d1+x′
d2+x�

x�+x′
d1

x′
d1+x′

d2+x�

⎤
⎥⎥⎦ (30)

note that the phase angles of the elements of κ̃ are
zero, i.e., γ = 0. The bus voltage magnitude sensi-
tivities can be obtained as follows. For Bus 1 they are

∂V1

∂δ1
= −num∂V1∂δ1

den∂V1∂δ1

(31) ∂V1

∂δ2
= −∂V1

∂δ1
(32)

where

num∂V1∂δ1 = x′d1

(
x� + x′d2

x′d1 + x′d2 + x�

)
E′

1E
′
2 sin(δ1 − δ2)

den∂V1∂δ1 =
[
(x� + x′d2)

2E′2
1 + x′2d1E

′2
2

+2x′d1(x� + x′d2)E
′
1E

′
2 cos(δ1 − δ2)]

1
2

For Bus 2 the voltage magnitude sensitivities are

∂V2

∂δ1
= −1

2

num∂V2∂δ1

den∂V2∂δ1

(33) ∂V2

∂δ2
= −∂V2

∂δ1
(34)

where

num∂V2∂δ1 =
(x� + 2x′d1)(x� + 2x′d2)

x′d1 + x′d2 + x�
E′

1E
′
2 sin(δ1 − δ2)

den∂V2∂δ1 =
[
(x� + 2x′d2)

2E′2
1 + (x� + 2x′d1)

2E′2
2

+2(x� + x′d1)(x� + x′d2)E
′
1E

′
2 cos(δ1 − δ2)]

1
2

and for Bus 3

∂V3

∂δ1
= −num∂V3∂δ1

den∂V3∂δ1

(35) ∂V3

∂δ2
= −∂V3

∂δ1
(36)

where

num∂V3∂δ1 = x′d2

(
x� + x′d1

x′d1 + x′d2 + x�

)
E′

1E
′
2 sin(δ1 − δ2)

den∂V3∂δ1 =
[
x′2d2E

′2
1 + (x� + x′d1)

2E′2
2

+2x′d2(x� + x′d1)E
′
1E

′
2 cos(δ1 − δ2)]

1
2

The bus voltage angle sensitivities are, for Bus 1

∂θ1
∂δ1

=
num∂θ1∂δ1

den∂θ1∂δ1

(37)
∂θ1
∂δ2

=
num∂θ1∂δ2

den∂θ1∂δ2

(38)

where

num∂θ1∂δ1 = (x�+x
′
d2)

2E′2
1 +x′d1(x�+x

′
d2)E

′
1E

′
2 cos(δ1−δ2)



den∂θ1∂δ1 = (x� + x′d2)
2E′2

1 + x′2d1E
′2
2 +

2x′d1(x� + x′d2)E
′
1E

′
2 cos(δ1 − δ2)

num∂θ1∂δ2 = x′2d1E
′2
2 + x′2d1(x� + x′d2)E

′
1E

′
2 cos(δ1 − δ2)

den∂θ1∂δ2 = (x� + 2x′d2)
2E′2

1 + x′2d1E
′2
2 +

2x′d1(x� + x′d2)E
′
1E

′
2 cos(δ1 − δ2)

For Bus 2 the sensitivities are

∂θ2
∂δ1

=
num∂θ2∂δ1

den∂θ2∂δ1

(39)
∂θ2
∂δ2

=
num∂θ2∂δ2

den∂θ2∂δ2

(40)

where
num∂θ2∂δ1 = (x� + 2x′d2)

2E′2
1 +

(x� + 2x′d1)(x� + 2x′d2)E
′
1E

′
2 cos(δ1 − δ2)

den∂θ2∂δ1 = (x� + 2x′d2)
2E′2

1 + (x� + 2x′d1)E
′2
2 +

2(x� + 2x′d1)(x� + 2x′d2)E
′
1E

′
2 cos(δ1 − δ2)

num∂θ2∂δ2 = (x� + 2x′d1)
2E′2

2 +

(x� + 2x′d1)(x� + 2x′d2)E
′
1E

′
2 cos(δ1 − δ2)

den∂θ2∂δ2 = (x� + 2x′d2)
2E′2

1 + (x� + 2x′d1)E
′2
2 +

2(x� + 2x′d1)(x� + 2x′d2)E
′
1E

′
2 cos(δ1 − δ2)

and for Bus 3 the sensitivities are

∂θ3
∂δ1

=
num∂θ3∂δ1

den∂θ3∂δ1

(41)
∂θ3
∂δ2

=
num∂θ3∂δ2

den∂θ3∂δ2

(42)

where

num∂θ3∂δ1 = x′2d2E
′2
1 + x′d2(x� + x′d1)E

′
1E

′
2 cos(δ1 − δ2)

den∂θ3∂δ1 = x′2d2E
′2
1 + (x� + x′d1)

2E′2
2 +

2x′d2(x� + x′d1)E
′
1E

′
2 cos(δ1 − δ2)

num∂θ3∂δ2 = (x�+x
′
d1)

2E′2
2 +x′d2(x�+x

′
d1)E

′
1E

′
2 cos(δ1−δ2)

den∂θ3∂δ2 = x′2d2E
′2
1 + (x� + x′d1)

2E′2
2 +

2x′d2(x� + x′d1)E
′
1E

′
2 cos(δ1 − δ2)

More general expressions can be obtained for the two-
machine system when n buses are between the two
machines. In such case, the generalized closed form
expressions for the i-th bus of the two-machine power
system will be given by

∂Vi

∂δ1
= −num∂Vi∂δ1

den∂Vi∂δ1

(43) ∂Vi

∂δ2
= −∂Vi

∂δ1
(44)

num∂Vi∂δ1 = κi1κi2E
′
1E

′
2 sin(δ1 + γi1 − δ2 − γi2)

den∂Vi∂δ1 =
[
κ2

i1E
′2
1 + κ2

i2E
′2
2 +

2κi1κi2E
′
1E

′
2 cos(δ1 + γi1 − δ2 − γi2)]

1
2

∂θi

∂δ1
=

num∂θi∂δ1

den∂θi∂δ1

(45)
∂θi

∂δ2
=

num∂θi∂δ2

den∂θi∂δ2

(46)

num∂θi∂δ1 = κ2
i1E

′2
1 + κi1κi2E

′
1E

′
2 cos(δ1 + γi1 − δ2 − γi2)

den∂θi∂δ1 = κ2
i1E

′2
1 + κ2

i2E
′2
2 +

2κi1κi2E
′
1E

′
2 cos(δ1 + γi1 − δ2 − γi2)

num∂θi∂δ2 = κ2
i2E

′2
2 + κi1κi2E

′
1E

′
2 cos(δ1 + γi1 − δ2 − γi2)

den∂θi∂δ2 = κ2
i1E

′2
1 + κ2

i2E
′2
2 +

2κi1κi2E
′
1E

′
2 cos(δ1 + γi1 − δ2 − γi2)

Table 1: Bus Voltage Sensitivities obtained from Explicit
Analytical expressions and Numerical Perturbation

Bus Voltage Magnitude Sensitivities
Bus Explicit Formula Numerical Pert.
No. ∂Vn/∂δ1 ∂Vn/∂δ2 ∂Vn/∂δ1 ∂Vn/∂δ2
1 -0.111750 0.111750 -0.111751 0.111749
2 -0.153664 0.153664 -0.153665 0.153662
3 -0.088830 0.088830 -0.088831 0.088829

Bus Voltage Angle Sensitivities
Bus Explicit Formula Numerical Pert.
No. ∂θn/∂δ1 ∂θn/∂δ2 ∂θn/∂δ1 ∂/∂δ2
1 0.800117 0.199883 0.800117 0.199884
2 0.516748 0.483252 0.516749 0.483252
3 0.214599 0.785401 0.214598 0.785401

4.3.1 Comparison of Analytical Sensitivities vs Numerical
Sensitivities. Next, we compare the analytical sensitivity
expressions against sensitivities obtained by numerical per-
turbation using PST [17]. In Table 5.1 the values of the bus
voltage magnitude and angle sensitivities from the explicit
expressions (31)-(42) are presented along their correspond-
ing values from numerical perturbation. The maximum ab-
solute error between the explicit formula and the numerical
perturbation values is 1×10−6 pu for the voltage magnitude
sensitivities, and 2.5 × 10−7 rad. for the voltage angles.

By partitioning the transmission lines in Fig. 10 into several
segments and adding buses between the two machines, it
is possible to compare the numerical sensitivities against
the generalized expressions (43)-(46). Figure 11 shows the
values for the different sensitivities, noting that the absolute
errors are within the range indicated above for the explicit
expressions. There is an excellent agreement between the
numerical and analytical expressions.

In [12] a comparison is made for the voltage magnitude and
angle, and current magnitude, current angle, and real and
imaginary current sensitivities for a more complex power
system.

4.4 Properties of the Network Sensitivities

We complete this discussion by providing some intrinsic
properties of the sensitivities discussed above. For the bus
voltage sensitivities the properties are1

N∑
j=1

(
∂Vi

∂δj

)
= 0,

N∑
j=1

(
∂θi

∂δj

)
= 1 (47)

and for the line currents the sensitivity properties are
N∑

j=1

(
∂Ift

∂δj

)
= 0,

N∑
j=1

(
∂φft

∂δj

)
= 1 (48)

Both voltage and current sensitivities have the same prop-
erty: the sum of sensitivities of the magnitude of the phasor

1A formal proof of these properties is found in the Appendix.
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Figure 11: Comparison of Bus Voltage Sensitivities ob-
tained from Explicit Analytical Expressions and Numerical
Perturbation

w.r.t. all the machine angles is zero, while the sum of the
sensitivities of the angle of the phasor w.r.t. machine angles
is equal to unity.

These sensitivity properties can be explained by using the
phasor diagram in Fig. 12. The voltage at the i-th bus of
a two-machine system, Ṽi = Viε

jθi , is perturbed by intro-
ducing small changes to the machine angles, Δδ1 and Δδ2,
resulting in the perturbed voltage Ṽ ∗

i = V ∗
i ε

jθ∗
i . When the

perturbations introduced to the machine angles are identi-
cal, the resulting perturbation to the bus angle will be equal
to the value used to perturb the machines. The perturba-
tion of each machine is appropriately scaled by the corre-
sponding sensitivity. Hence, the sum of all sensitivities is
one. Note that if only one of the machines is perturbed, the
bus angle will only be changed in the proportion dictated
by the sensitivity and the perturbation value.
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Figure 12: Illustration of the sensitivity properties

In addition, observe that the magnitude before the pertur-
bation is the same as the magnitude after the perturbation,
i.e. Vi = V ∗

i . Note from the phasor diagram that Δδ1 scaled
by ∂Vi/∂δ1 will oppose the change in the voltage magnitude
from Δδ2 scaled by ∂Vi/∂δ2. Note that the value of the bus
voltage sensitivities for this case is identical. Because both
sensitivities are equal with opposing signs the change in
the bus voltage magnitude, ΔV = 0. Hence, the sum of the
sensitivities is zero.

5 Sensitivity Mapping onto the Electrome-
chanical Mode Shapes

In this section we investigate how the eigenvector matrices
discussed in Section 3, can be used to separate the com-
ponents of each oscillatory mode contained in the total
change of the network variables. This result was previ-
ously exploited in [8], where we showed that it is possible
to compute the bus voltage magnitude and frequency mode
shapes. Here we extend this concept to include any type
of network variable, and to understand how by mapping
the network sensitivities to a particular mode shape from
Ā it is possible to replicate the phase shift observed in the
modal components of PMU measurements.

By mapping the network sensitivities onto the right eigen-
vector we obtain a network modeshape which indicates the
observability of a particular mode in a specific network
variable. The mode shapes as observed in the bus voltage
magnitudes and angles for all the network buses are given
by

SV = CVδW (49) Sθ = CθδW (50)

where W is of size (N ×N).

Similarly, for the line current magnitude and angle we have

SIft = CIftδW (51) Sφft = CφftδW (52)

where the subscript ft indicates that these are the modal
components from bus f to bus t. Modal components for
any other network variable can be obtained in similar
fashion.



When the eigenvectors are computed from Ā, the phase
shifts due to damping will be mapped onto the bus volt-
ages in a proportion dictated by the sensitivities, therefore
reproducing the phase shifts observed in the network vari-
ables measured by PMUs.

To illustrate, consider the two-area four-generator system
discussed in Section 3.2. The bus voltage magnitude sen-
sitivities of Bus 7 w.r.t. all machine angles are given by

CVδ(7,k) = [−0.0463 − 0.0270 0.0146 0.0587] (53)

Multiplying by the eigenvector column corresponding to the
inter-area mode, the inter-area component of the bus volt-
age magnitude at Bus 7 is

SV(7,2)
= ∂V7

∂δ1
W(1,2) + ∂V7

∂δ2
W(2,2) + ∂V7

∂δ3
W(3,2) + ∂V7

∂δ4
W(4,2)

SV(7,2)
= −0.0463 W(1,2) − 0.0270 W(2,2) + 0.0146 W(3,2)+

0.0587 W(4,2)

(54)

Observe how each sensitivity scales its corresponding ele-
ment of inter-area mode shape.

The eigenvector matrix computed from (3) has the inter-
area mode shape given by Column 2 of (4)

W(j,2)(A) = [−0.5930 − 0.5997 − 0.4539 0.2876]T (55)

Using this mode shape it is possible to compute the inter-
area component of the bus voltage magnitude at Bus 7 (54)

SV(7,2) (A) = (−0.0463)(−0.5930) + (−0.0270)(−0.5997)+

(0.0146)(−0.4539) + (0.0587)(0.2876) = 0.05391
(56)

Similarly, if the eigenvector matrix is computed from model
(1), the inter-area mode shape is given by Column 2 of (6),
and the inter-area component of the bus voltage magnitude
becomes

SV(7,2)(Ā) = 0.0534∠− 5.25◦ (57)

Comparing (57) to (56) helps in understanding the origin of
the phase shifts observed from phasor measurement data,
that is, the presence of damping.

5.1 Illustration with the Two-Area Four-Machine System

We extend our discussion to consider the different network
variables across the entire power system. The bus voltage
magnitude mode shapes (the mapping of the sensitivities
onto the electromechanical mode shapes) for all network
buses are shown in the one-line diagrams in Figs. 4 and 13
for the inter-area mode, for both the case without damping
and with damping, respectively, and the phasor diagrams in
Fig. 14. These figures clearly show that the damping in Ā
will give rise to the phase shifts across all bus voltage mag-
nitudes in the power system. Consider the phase shift intro-
duced to the voltage magnitude at Bus 1: when no damp-
ing is included SV(1,2)(A)=0.0544∠0◦ and, with the effect
of damping SV(1,2)(Ā)= 0.0547∠-7.14◦, thus the shift of -
7.14◦ is due to damping. Similarly for Bus 4, SV(4,2)(A)=
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Figure 13: Two-Area Four-Machine Power System and Voltage
Magnitude Oscillations from the Inter-area Mode (Model with
Damping)
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Figure 14: Vi Inter-area mode shape with and without damping

0.0085∠180◦, while SV(4,2)(Ā)= 0.0085∠176.14◦, the 3.86◦
of difference between these two last quantities are a result
of including damping. A more interesting case is Bus 8
which lies at the right end of the tie-line. Observe that
SV(8,2)(A)= 0.0057∠0◦, while SV(4,2)(Ā)= 0.0056∠-6.05◦,
the -6.05◦ being a result of the inclusion of damping.

It is worthwhile to note that these holds for any mode, for
example, consider the bus voltage magnitude mode shape
for Local Mode 1 shown in Fig. 15. In this case there is a
more prominent phase shift between Buses 1 and 12 than
in Fig. 14 because Local Mode 1 mostly involves G1 and
G2, this is also reflected in the voltage mode shapes. It
is also important to highlight that the observations above
also hold for any network variable. Consider the bus voltage
angle mode shapes in Fig. 16. In the case without damping
in Fig. 16a it is observed that the bus voltage angles are
either completely in phase or in anti-phase. In contrast,
Fig. 16b shows that the result of including damping is to
have phase shifts in all the mode shape. Another important
feature of this mode shape is that when comparing Fig. 16b
to Fig. 6b it is realized that the machine angles outline a
boundary within which the bus voltage angles exist. In
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Figure 15: Vi Local 1 mode shape with and without damping

other words, a bus voltage angle close to a generator will
have a smaller relative phase angle with the generator than
other further apart from it.

The relative time delay between the voltage magnitudes
at Buses p and q, can be calculated from the oscillatory
frequency of the k-th mode and the phase shift at each bus
by computing

τ(p−q,k) =
θ(p,k) − θ(q,k)

2π
× 1

fk
(58)

where fk is the frequency of the k-th mode of the system,
and

θ(p,k) = ∠
(
SV(p,k)

)
, θ(q,k) = ∠

(
SV(q,k)

)
(59)

are the k-th mode phase shifts of the voltage magnitude
oscillation in rad. at Buses p and q, respectively, and j =

1, . . . , N .

As an example consider the oscillations from Local Mode 1
at Bus 12, SV(12,3) , and Bus 1, SV(1,3) , as shown in Fig. 15.
The relative time delay is given by

τ(12−1,3) =
(5.6295) − (3.1291)

2π × 0.21516
= 1.8495 sec

this time delay is shown in Fig. 17, where we compare
oscillations for Local Mode 1 in the bus voltage magnitude
at Bus 1 and Bus 12.

Equation (58) can be used to compute the time delays for
any network oscillation by selecting the network sensitivity
and mode of interest. Conversely, the relative phase shift
between the buses can also be computed by knowledge of
the time-response of the network from

θ(p,k) − θ(q,k) = 2πfkτ(p−q,k) (60)

where fk is the frequency of the k-th mode of the system,
note that this frequency is different for any system mode,
i.e., the inter-area mode frequency is different from the Lo-
cal Mode 1 frequency. Using the expression above and se-
lecting a reference voltage magnitude we can obtain the
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Figure 16: θi Local 1 mode shapes with and without damping

mode shapes from a time response, or more importantly,
from PMU data.

Also of interest is the mapping for the complex line current
flows. In Fig. 18 the mapping of W (Ā) for the complex
line current flow is shown. Note from Fig. 18 that the
phase shift is also mapped onto these network variables.
Moreover, the phase lags shown in the phasor diagram in
Fig. 18a will translate to the different time delays that can
be observed in Fig. 18b. More important, it is interesting
to observe how the oscillations distribute in different lines
as shown in the one-line diagram in Fig. 18c. Note that in
Fig. 18c, it is possible to compute the current balance for
the real and imaginary part, and that we can also deter-
mine how the oscillations are distributed in each line. This
new capability to “track” the oscillations has important im-
plications as discussed next.
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Figure 17: Time delay between SV(12,3) and SV(1,3)

6 Application for Inter-area Mode Tracing,
PMU Siting, and Control Signal Synthe-
sis

This section outlines several applications network originat-
ing from this new understanding of power system oscilla-
tions.
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(b) Real Line Current Oscillations - Damping
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Figure 18: Inter-area Mode Ĩft Mode Shapes with and
without Damping (Imaginary quantities in the one-line di-
agrams are shown inside parenthesis)

The first use of the previous results is mode “tracing” or
“tracking”. Consider for example the line current flows in
Fig. 18c. From Line 7-8, it is possible to see that the largest
inter-area component in the line is provided by the cur-
rent flow coming from Line 8-9. Tracing back this current
flow, we see that the largest proportion of the inter-area
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Figure 19: Inter-area Mode Active Power Mode Shapes

mode contributions of G4 goes directly through Line 8-9,
while the remaining contribution of G4 first has to be dis-
tributed among Loads L5, L6, and L14 before reaching Line
7-8. This new ability to trace the propagation of inter-area
modes is certainly of interest when analyzing power system
dynamics over a large network, and it has many additional
implications, one being measurement placement. For ex-
ample, if a local or remote current measurement is to be
used as input signal for damping control in G4, it becomes
obvious from the discussion above that the line where the
mode is the most observable is Line 8-9, and thus, this line
is the best candidate location to place the PMU for such
an application. The mapping for the active power flows has
similar characteristics and implications as depicted in the
network diagram in Fig. 19 showing the inter-area compo-
nents of the active power flow components. The placement
will become more obvious as the transmission lines with the
highest inter-area components should be prioritized to be
equipped with PMUs.

In the network in Fig. 19 there is only one line interconnect-
ing Area 1 and Area 2. For the sake of discussion, consider
the case when multiple lines are connecting the areas as
in [8]. By applying the mapping it is possible to deter-
mine which line will carry the highest contribution of the
inter-area oscillation. The placement will also become more
obvious as the transmission lines with the highest inter-
area components should be prioritized to be equipped with
PMUs.

Line current magnitudes and remote bus voltage angles
with relevant modal contents are in general desirable feed-
back control signals for FACTS controllers [18, 19]. Our
analysis here will clearly show the magnitude of the inter-
area mode present in the signals. In the case of using re-
mote bus voltage angles, this approach will be helpful in
selecting two bus locations whose bus angle difference con-
tains predominantly the inter-area mode to be controlled.
The phase of the inter-area mode would be useful in de-
signing the appropriate phase compensation in a damping
controller.

Although not discussed in this paper, a signal having ro-
bust inter-area mode contents under various contingency
conditions would be more preferable for feedback control.



7 Conclusions

The results presented in this paper provide a novel under-
standing of power system oscillations as viewed from net-
work variables. Furthermore, they have many potential ap-
plications for inter-area mode monitoring, PMU placement,
and damping of power system oscillations.
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Notation

x state vector
A system state matrix without damping
Ā system state matrix with damping
W right eigenvector matrix or mode shapes
i = 1, ..., n buses in the network, n being the

total no. of buses
j = 1, ..., N machines in the network, N being the

total no. of machines
δj , ωj internal machine angle and

speed for the j-th machine
Ṽi,Vi,θi bus voltage phasor, magnitude,

and angle for the i-th bus
f , t “from” bus, “to” bus
� total number of lines in the power system
Ĩft,Ift,φft line current phasor, magnitude,

and angle for line ft
Δδ vector of perturbed machine angles
ΔV ,Δθ vector of perturbed bus voltage magnitudes

and angles
ΔI ft,Δφft vector of perturbed line current magnitudes

and angles
CVδ, Cθδ bus voltage magnitude and angle output

matrices w.r.t. δj

C Iftδ , Cφftδ line current magnitude and angle output
matrices w.r.t. δj

x′
dj transient reactance of the j-th machine

E′
j voltage behind the transient reactance

Ẽ′
j internal machine voltage

Ỹ extended admittance matrix
Ỹ

−1

nnỸ nN bus voltage reconstruction matrix
κ̃ = κ∠γ bus voltage reconstruction coefficient matrix
Ψ̃F Tj = line current reconstruction coefficient matrix

SV bus voltage magnitude mode shape
Sθ bus voltage angle modal mode shape
SIft line current magnitude mode shape
Sφft line current angle mode shape
τ(p−q,k) time delay between Bus p and Bus q for the

k-th mode
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Apprendix: Proof of the Network Sensitivity Properties

In this appendix we give proofs for the expressions of the sensitivity properties in Section 4.4. For the bus voltage
magnitude, the sensitivity properties are

N∑
j=1

(
∂Vi

∂δj

)
= 0 (61)

N∑
j=1

(
∂θi

∂δj

)
= 1 (62)

Proof of property (61)
We obtain property (61) by adding the expressions in (19)

∑N
j=1

(
∂Vi

∂δj

)
=

( −∑N−1
p=1

∑N
q=p+1 κipκiqE

′
pE

′
q sin (δp + γip − δq − γiq)

+
∑N−1

p=1
p �=j

∑N
q=p+1
q �=j

κipκiqE
′
pE

′
q sin (δp + γip − δq − γiq)

)
j=p

+

( ∑N−1
p=1

∑N
q=p+1 κipκiqE

′
pE

′
q sin (δp + γip − δq − γiq)

−∑N−1
p=1
p �=j

∑N
q=p+1
q �=j

κipκiqE
′
pE

′
q sin (δp + γip − δq − γiq)

)
j �=p

= 0

(63)

the elements in the first parenthesis of (63) cancel with the elements of the second parenthesis, thus, the sum of all bus
voltage magnitude sensitivities at bus i is zero.

Proof of property (62)
Property (62) is proved as follows. Replacing expression (22) in (62) results in

N∑
j=1

(
∂θi

∂δj

)
=

1

|Ṽi|2

⎛
⎜⎜⎝ N∑

j=1

κ2
ijE

′2
j +

N∑
j=1

N∑
q=1
q �=j

κijκiqE
′
jE

′
q cos (δj + γij − δq − γiq)

⎞
⎟⎟⎠ (64)

Expanding the second summation term in (64)∑N
j=1

∑N
q=1
q �=j

κijκiqE
′
jE

′
q cos (δj + γij − δq − γiq) =

∑N
q=2 κi1κiqE
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1E
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(65)



Grouping all the summation terms in (65), except the j = N term, yields

∑N
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Next, we group all the other terms in (65) including the summation term for j = N ,

0︸︷︷︸
j=1

+ κi2κi1E
′
2E

′
1 cos(δ2 + γi2 − δ2 − γi1)︸ ︷︷ ︸

j=2

+

κi3κi1E
′
3E

′
1 cos(δ3 + γi3 − δ1 − γi1) + κi3κi2E

′
3E

′
2 cos(δ3 + γi3 − δ2 − γi2)︸ ︷︷ ︸

j=3

+

. . . +∑N−2
p=1 κi(N−1)κipE

′
(N−1)E

′
p cos(δ(N−1) + γi(N−1) − δN − γiN )︸ ︷︷ ︸

j=N−1

+
∑N−1

p=1 κimκipE
′
NE

′
p cos(δN + γiN − δp − γip)︸ ︷︷ ︸

j=N

=
∑(N−1)

p=1

∑N
q=p+1 κipκiqE

′
pE

′
1 cos(δp + γip − δq − γiq)

(67)

Expressions (66) and (67) can be used to rewrite (64) as∑N
j=1

(
∂θi

∂δj

)
= 1

|Ṽi|2
(∑N

j=1 κ
2
ijE

′2
j + 2

∑ ∑N−1
p=1

∑N
q=p+1 κipκiqE

′
pE

′
q cos (δp + γip − δq − γiq)

)
(68)

The Vi expression in (15) can be rewritten in rectangular form as follows

Ṽi =

N∑
j=1

κijE
′
j cos (δj + γij) + j

N∑
j=1

κijE
′
j sin (δj + γij) (69)

using (69) we derive an expression for the bus voltage magnitude

Vi =

√√√√√
⎛
⎝ N∑

j=1

κijE′
j cos (δj + γij)

⎞
⎠2

+

⎛
⎝ N∑

j=1

κijE′
j sin (δj + γij)

⎞
⎠2

(70)

To expand the two terms inside (70) we use the following identity(
n∑

k=1

akbk

)2

=

n∑
k=1

akbk + 2

n−1∑
i=1

n∑
j=i+1

aibiajbj (71)

The expanded form of the first term in the (70) is(∑N
k=1 κijE

′
j cos(δj + γij)

)2

=∑N
j=1 κ

2
ijE

2
j cos2(δj + γij) + 2

∑N−1
p=1

∑N
q=p+1 κipκiqE

′
pE

′
q cos(δp + γip) cos(δq + γiq)

(72)



and expanding the second term is
“PN

k=1 κijE
′
j sin(δj + γij)

”2

=PN
j=1 κ2

ijE
2
j sin2(δj + γij) + 2

PN−1
p=1

PN
q=p+1 κipκiqE

′
pE′

q sin(δp + γip) sin(δq + γiq)
(73)

Adding (72) and (73), and using the identity

cos θ1 cos θ2 + sin θ1 sin θ2 = cos(θ1 − θ2)

we obtain an expression for the voltage magnitude

Vi =

⎛
⎝ N∑

j=1

κ2
ijE

2
j + 2

N−1∑
p=1

N∑
q=p+1

κipκiqE
′
pE

′
q cos(δp + γip − δ1 − γiq)

⎞
⎠1/2

(74)

From (74) we note that the expression inside the parenthesis in the left hand side of (68) corresponds to |Ṽi|2, thus we
conclude that the property for the the bus voltage angle sensitivities is

N∑
j=1

(
∂θi

∂δj

)
= 1 (75)

The line current sensitivity properties given in (48) follow the same proof as shown above for the bus voltage magnitude
and bus voltage angle, and thus, are not shown here.


