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Estimation of the Nigerian Power System
Electromechanical Modes using FDR Measurements

Luigi Vanfretti, Joe H. Chow, Usman Aliyu, Luke Dosiek,
John W. Pierre, Daniel Trudnowski, Rodrigo García-Valle, and James A. Momoh

Abstract—This paper reports on an ongoing research effort
between researchers in North America and Africa on the study
of the dynamics of loosely regulated and rapidly growing power
systems, with focus on the Nigerian power network. A description
of the implementation of Virginia Tech’s FDR (Frequency Distur-
bance Recorder) at Bauchi, Nigeria is provided. We discuss the
nature of the frequency dynamics observed throughout multiple
hours of a day in Nigeria and other power systems. To cater to
the loosely regulated nature of the system frequency in Nigeria,
we propose an appropriate method for signal conditioning which
prepares the data for ambient analysis. Parametric and non-
parametric block processing techniques are applied to prolonged
frequency recordings ranging from 8 to 19 hours, and estimates
of modal frequencies and damping are obtained by computing
power spectrum densities and applying a mode meter algorithm
to the ambient data. The estimated modes from ambient analysis
are in agreement with other studies based on power system
models.

Index Terms—frequency disturbance recorder, power system
identification, power system monitoring, power system parameter
estimation

I. I NTRODUCTION

REnsselaer Polytechnic Institute (RPI) and Abubakar
Tafawa Balewa University (ATBU) have established a

collaboration to study the dynamics of loosely regulated and
rapidly growing power systems, with particular interest in
the Nigerian power system. A frequency disturbance recorder
(FDR) has been installed at ATBU and several recordings
have been made. In two previous papers we have reported
on FDR data analysis from disturbance events and proposed a
university-based frequency monitoring network for the Nige-
rian power system [1], [2]. Here we focus on the estimation
of electromechanical modes from prolonged frequency record-
ings using spectral techniques. First, we provide a summary
of the implementation of the FDR at Bauchi, Nigeria, and
analyze the nature of the system frequency over prolonged
recordings. Compared to system frequency measurements of
other interconnected power networks, the loosely unregulated
nature of the Nigerian frequency posses a challenge for
appropriately applying mode estimation techniques that have
been used with data from tightly regulated power networks.
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Spectral analysis techniques have been successfully applied
to characterize the small signal oscillatory modes in the US
WECC interconnection [3], [4] and more recently in the US
Eastern Interconnection [5]. Ambient data analysis is used to
estimate the inherent oscillatory modes of the power system
when the main source of excitation of the system modes are
random load variations resulting in a low amplitude stochastic
time series referred to as “ambient noise” [6]. Non-parametric
and parametric techniques, such as the Welch periodogram
[7], [8], [9] and Yule-Walker method [10], [4], can be used
to determine system modes, which are visible peaks in the
spectrum estimate. Spectral estimates may also be used for
mode shape estimation, the cross spectral function (CSD)
can be used to estimate the phasing of the mode among
the system generators, and coherency can be determined by
the squared coherency function [11], [12]. Because these
algorithms rely on block processing of data windows, they
require several minutes of time-synchronized phasor data from
different locations in the power network. This study focuses
on the application of block processing spectral techniquesfor
mode estimation only. Due to the loosely unregulated nature
of the frequency in the Nigerian network we propose a pre-
processing method that prepares the data for use with the mode
estimation techniques discussed above.

Finally, we compare the mode estimates obtained from
ambient data analysis to those obtained from a model-based
mode estimation study [13] which uses ringdown techniques
on simulated data. Although the model used for this study is a
simplified representation of the Nigerian power network, there
is a good agreement for several of the modes estimated with
ambient analysis techniques. Further studies will be needed
to determine the nature of the modes that were not observed
in the simplified Nigerian power system model. This paper
should be seen as an initial step on developing techniques for
electromechanical mode estimation that cater to the loosely
regulated nature of the power system data obtained from
rapidly growing power systems such as the Nigerian network.

II. FDR IMPLEMENTATION AND RECORDINGS

A frequency disturbance recorder (FDR) manufactured at
Virginia Institute of Technology and State University was
provided by researchers from RPI to ATBU researchers to
obtain dynamic measurements of the Nigerian Power System.
The FDR digitally records the voltage from a 230 V wall
socket outlet. The voltage measurement is time tagged using
GPS signals. From the voltage measurement, frequency is
internally computed by the FDR. A data rate of 10 samples
per second is captured with a personal computer and can
be transmitted over the internet to the frequency monitoring
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Figure 1. FDR installation at ATBU, and proposed locations of additional
FDRs that could enable a university-based frequency monitoring network

network (FNET) server at Virginia Institute of Technology and
State University VTech), Blacksburg, Virginia, USA.

Figure 1a shows the low-voltage power supply installation
and data transfer set-up adopted by ATBU’s researchers. The
power supply for the FDR consists of a 230 V supply rail, two
programmable switches, two PSUs (Power Supply Unit) and
an UPS (Uninterruptible Power Supply). The programmable
switches are used to switch on the FDR for scheduled data
gathering. The PSUs are used to convert voltage and frequency
from a 230V/50 Hz to a 110V/50 Hz supply. Note that the
FDR was designed for operation at either power supply. The
Ethernet devices (serial device server and router) used in the
installation, however, are not designed for230V/50 Hz. The
data transfer set-up consists of a serial device server (MOXA
Box [14]) extracting data from the FDR through the serial
port and sending it to a router. The router is enabled to send
data to VTech’s Information Management System (IMS) server
and allows a dedicated PC to receive the information for
local storage (local storage is preferred). The physical location
of the FDR is shown in Fig.1b along with the proposed
locations of additional FDRs that could enable a university-
based frequency monitoring network (FNET). A description
of this proposed FNET is given in [2].
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Figure 2. Comparison of the system frequency in different power systems
over a 4-hour period. The steady state frequency at the US EI has been shifted
by 10 Hz to coincide with the system frequencies of the Nigerian and Nordic
networks.

III. F REQUENCY DYNAMICS OBSERVED FROM

PROLONGEDFDR RECORDINGS

Power systems constrained by insufficient generation ca-
pacity experience noticeable frequency changes when subject
to disturbances or control actions. In these types of systems
the primary concern is to maintain the load and generation
balance, and therefore, frequency regulation is loose. Consider
the frequency measurements taken for a time window of
four hours as shown in Fig2. This plot compares frequency
measurements from two different types of power systems: a
loosely regulated power system given by the Nigerian power
system, and two tightly regulated power networks, the US
Eastern Interconnection (EI) and the Nordic Power System.
The measurements of the US Eastern Interconnection are taken
from a phasor measurement unit (PMU) in the northern part
of the EI, and the measurements of the Nordic System where
obtained from a substation in Eastern Denmark.

From these four hour recordings we observe that the fre-
quency regulation band in the US Eastern Interconnection
ranged from 49.95 to 50.05 Hz (∆f = 0.1 Hz), while the
frequency regulation band in the Nordic system varied from
49.9 to 50.15 Hz (∆f = 0.25 Hz). Compared with these power
systems, the frequency in Nigeria is loosely regulated with
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variations ranging from 49 to 51 Hz, a full 1 Hz variation
from the steady state of 50 Hz. In addition to the upper and
lower bounds of frequency variation, it is also important to
note that frequency can vary between these bounds in less
than 10 minutes, with abrupt frequency changes of 0.4-0.5
Hz in 1 min. windows. In contrast, both the US EI and the
Nordic System have a tightly regulated operation maintaining
frequency variations closely between the frequency bands
discussed above. Because the frequency variations in these
systems are close to their steady state frequency, it is possible
to obtain suitable “ambient data” for spectral analysis with
limited pre-processing of the measurements.

Due the loosely regulated nature of the system frequency
in the Nigerian grid, it is necessary to first condition the
measurement data so that spectral analysis techniques can be
applied. We discuss a methodology for this purpose in the next
section.

IV. M ODE ESTIMATION FROM FDR AMBIENT DATA

Ambient data analysis is used to estimate the inherent
oscillatory modes of the power system when the main source
of excitation of the system modes are random load variations
resulting in a low amplitude stochastic time series referred to
as “ambient noise” [6]. There is a significant array of different
methods available to perform ambient data analysis [6]. Here,
we limit the discussion to block processing non-parametric
and parametric methods. Block processing algorithms can de-
termine mode estimates from a window of data, each window
providing a new estimate. Therefore, these methods requirea
large amount of phasor measurement data, and may not be
suitable for real-time applications.

A specially robust non-parametric spectral estimation
method is the Welch periodogram [7], [8], [9], which gives
an estimate of a signal’s strength as a function of the fre-
quency. Here the dominant modes will be shown as significant
peaks in the spectral estimate. This method is very insightful
and uses limited assumptions. However, numerical estimates
of the damping ratio and mode frequency are not directly
provided. The most popular parametric method is the Yule-
Walker algorithm [10], [4] which is used to estimate the sys-
tem modes using an autoregressive-moving-average (ARMA)
model. Several variations of this method have been proposed
in the literature [6].

In this study we have used parametric and non-parametric
algorithms, the Yule-Walker and Welch algorithms, respec-
tively; to obtain spectrogram estimates of thebus frequency
measurements at Bauchi, Nigeria. To obtain damping ratio
estimates we use an energy technique implemented within a
mode meter algorithm similar to [4], [6]. As a comprehensive
discussion of the methods is beyond the scope of this paper,
the reader is referred to the cited references for further details.

A. Data Pre-processing for Ambient Analysis

To cater to the loosely regulated nature of the system
frequency of the Nigerian network we propose a method to
pre-process the measurement data and obtain suitable ambient
noise that can be used with the mode estimation techniques we
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Figure 3. Proposed method for pre-processing FDR data from the Nigerian
power system to be used in ambient data analysis

described before. Figure3 shows a block diagram of the pre-
processing method, while Fig.4 shows the results of applying
the method to a 10 min. data block from the Tue, Jan. 23,
2007 (N17) recording.

The method starts by taking the raw frequency measurement
from the FDR (f ) and applying a detrending algorithm [15]
to remove the steady state bias from the data. The result
of applying this step to the 10 min. data block is shown
in Fig. 4a with a solid blue line (“Detrended Frequency” in
the legend). The next step is to apply a high pass filter with
cutoff frequency of 0.02 Hz to the data, this is shown by a
red solid line in Fig.4a (“Filtered ∆f Signal” in the legend).
By applying this filter to the data we have effectively removed
the moving average of the frequency which corresponds to the
slowest mode frequencies in the signals (below 0.02 Hz). In
Fig. 4awe show in a magenta dashed line the moving average
calculated by subtracting the “Detrended Frequency” to the
“Filtered ∆f Signal”. The frequency components removed
by this steps correspond to the frequency of the process
involved in balancing the load and generation in the Nigerian
network. Therefore, we have obtained an ambient signal which
comprises mostly the electromechanical modes of the system.

The final step in the pre-processing method is to remove
outliers from the filtered signal. To this aim we compute the
mean and standard deviation of the filtered signal. Any point
which exceeds the mean by 3.5 standard deviations is removed
from the filtered signal (this point is not replaced by a zero).
Figure 4b shows the removed outliers in red stems and the
filtered signal with outliers removed in solid blue, the later is
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Figure 4. Appling the pre-processing method to a 10 min. data-window from
the Tue, Jan. 23, 2007 (N17) data recording.

used for ambient data analysis. Next we apply ambient analysis
techniques to prolonged frequency measurements from the
Nigerian network, all of the data blocks involved in these
calculations are subject to the pre-processing method described
above.

B. Estimated Power Spectrum Densities and Mode Frequency
Estimates

For this investigation, we have used ambient data obtained
during prolonged periods resulting in data sets which range
from 2 hrs. to 19 hrs of continuous recording. We provide
results only for a limited number of these data sets. Some of
these data sets contained large gaps due to the loss of the GPS
signal. In addition, some portions of the data was corrupted
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Figure 5. Welch and Yule-Walker estimated PSDs of a pre-processed 10
min. data block of thef signal measured by the FDR. The PSDs in this plot
correspond to the∆f signal without outliers in Fig.4b.

by quantization errors, and thus they where removed from the
analysis. The data is segmented in blocks of 10 minutes, and
pre-processed with the method described in the section above.
1 To each 10 min. block of pre-processed data we apply the
Welch and Yule-Walker methods as described below.

We start by applying the Welch method to the pre-processed
data in Fig.4b to obtain its estimated periodogram spectrum.
We use 150 points in the FFT to calculate the Power Spectrum
Density (PSD) estimate. In addition, a Hanning window with
90% overlap is applied to the data. Figure5 shows the
estimated periodogram for the 10 min. data block in Fig.4b.

Next, we apply the Yule-Walker method to the same
block of pre-processed data. The estimated periodogram from
Welch’s method is used to refine the ARMA model order of the
Yule-Walker method by comparing the PSD of both methods
while trying to maintain the model order as low as possible. As
a result, excellent agreement was obtained between the PSDs
estimated from each method. In Fig.5 we show the Yule-
Walker PSD along with the one obtained by Welch’s method.

Subsequently, we applied both methods to other 10 min.
data blocks of pre-processed data from different dates in 2006
and 2007: Monday Jul. 3, 2003 (N02); Sunday Nov. 26, 2006,
(N07); Tuesday Nov. 28, 2006 (N09), Saturday Dec. 02, 2006
(N13, N14); Monday Jan. 22, 2007 (N16); Tuesday Jan. 23,
2007 (N17); and Friday Jan. 26, 2007 (N19). We show all
the estimated PSDs from the YW method in Fig.6 where
the dominant modes have distinctive peaks in the spectral
estimate. Comparing all the PSDs we have determined eight
dominant modes for the Nigerian power system that lie within
the bounds shown in Fig.6:

• Mode 1, 0.13 Hz with bounds of 0.12 - 0.2 Hz

• Mode 2, 0.40 Hz with bounds of 0.375 - 0.475 Hz

• Mode 3, 0.69 Hz with bounds of : 0.65 - 0.75 Hz

• Mode 4, 0.95 Hz with bounds of 0.915 - 1.025 Hz

• Mode 5, 1.20 Hz with bounds of 1.15 - 1.3 Hz

• Mode 6, 1.47 Hz with bounds of 1.4 - 1.55 Hz

• Mode 7, 1.74 Hz with bounds of 1.7 - 1.8 Hz

• Mode 8, 2.00 Hz with bounds of 1.95 - 2.05 Hz

1For convenience, the pre-processed signals are denoted by∆f .
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Figure 6. Yule-Walker PSDs for 10 min. data blocks of processed∆f signals
from different measurement sets obtained in 2006 and 2007. The frequency
bands show the modes that are common the recordings.
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Figure 7. Welch and Yule-Walker PSD contours for the∆f signal obtained
during Sun, Nov 26 ’07 (N07). The red colors represent maximum values
and the blue colors represent minimum values of the power spectrum density
[dB]. The time is given in hours in (UTC) starting from 02:04:54 hrs, local
time is given in UTC+1 hr.

We repeat the process described above for all the 10 min.
data blocks contained in the N07, N16, N17, and N19 data
sets. As a result, we obtained the contours shown in Figs.7,
9, and 8, respectively. Note that the data sets N16 and N17
form a continuous set of data recording. In the contours the red
colors represent maximum values and the blue colors represent
minimum values of the power spectrum density [dB].

For the N07 data set the contour constructed with the
PSDs from Welches’ method is shown in Fig.7a, and the
Yule-Walker contour in Fig.7b. Observe that the Welch and
Yule-Walker contours are in close agreement confirming the
existence of the modes and bounds discussed above. The
reduced mode frequency resolution in the Welch contours
is a result of using large averaging in computing the PSD,
however this does reduce the variability of the estimates. In
the time frame from approximately 1.8 to 4 hrs the contours
show a blue band, in this band there where data drops and
quantization errors, and thus, we have not computed the PSDs
for this time frame, i.e. the PSD has been set to zero for all
the frequencies within the time range. It is important to note
that the frequency and damping ratio of the electromechanical
modes are influenced by the system loading and configuration
of the power grid. Even with the loss of data, the contour
still aids in observing how the modes vary as the loading
condition of the power system changes. Hour zero corresponds
to 02:04:54 (UTC) (the local time is UTC + 1 hr.), the range
from 5 - 9 hrs corresponds to 8:00 - 12:00 in local time. Hence,
it is possible to see how as the loading of the power system
increases, the modes become more pronounced.

Similarly for the N19 data set, the Welch contour is shown
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Figure 8. Welch and Yule-Walker PSD contours for the∆f signal obtained
during Fri, Jan 26 ’07 (N19). The red colors represent maximum values and
the blue colors represent minimum values of the power spectrum density [dB].
The time is given in hours in (UTC) starting from 19:00:00 hrs, local time is
given in UTC+1 hr.

in Fig. 8a and the Yule-Walker contour in8b. This contours
cover the evening and night of a Friday where the system
is subject to a less stressed operating condition, and hence
the contours show a lower intensity on the modes (with the
exception of Mode 1). Nevertheless, the modes and bounds
discussed previously are also visible through this time period.
From these contours it is important to note that all spectrum
estimates are in agreement with regard to their dominant
modes. Finally, we present the Yule-Walker contour for cases
N16 and N17 in Fig.9, which had a data gap between
approximately 8.7 and 9.7 hrs. In this contour the variation
of the modes with the system stress becomes more noticeable
with the modes showing large excitation between 10 and 15
hrs., corresponding to 7 - 12 am of Tuesday the 23rd. This is
consistent with the N07 data set where we observed a good
degree of mode observability within that time window.

C. Mode Frequency and Damping Estimates

The Yule-Walker algorithm used above produced estimates
for different modes. Some of these modes are true system
modes, and others are numerical artifacts [6]. Here, we use
a modal energy method to determine which modes have the
largest energy in each of the ranges discussed above. An
algorithm similar to the one reported in [4], [6] was used for
this purpose.

In Fig. 10 and 11 we show the frequency and damping
estimates for the Fri, Jan 26 ’07 (N19) data set. Similar
results were obtained for the N07, N16, and N17 data sets.
However we have omitted the corresponding plots due to space
constraints. We plot the damping and frequency estimates

5



Figure 9. Yule-Walker PSD contour for the∆f signal obtained during Mon, Jan 22 ’07 and Tue., Jan 23 ’07 (N16 and N17). The red colors represent
maximum values and the blue colors represent minimum valuesof the power spectrum density [dB]. The time is given in hoursin (UTC) starting from
19:00:00 hrs, local time is given in UTC+1 hr.

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 10. Mode frequency and damping estimates computed using the mode meter algorithm applied to the∆f signal obtained during Fri, Jan 26 2007. In
the contours the red colors represent maximum values and theblue colors represent minimum values of the power spectrum density [dB]. The time is given
in hours in (UTC) starting from 19:00:00 hrs, local time is given in UTC+1 hr.
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Table I
MODE METER ESTIMATES FORDATA SET OBTAINED DURING FRIDAY

JAN . 26, 2007 (N19)

MODE f̄ (Hz) σf d̄ (%) σd

1 0.13212 0.00883 16.01679 6.43567
2 0.40013 0.02853 23.29541 5.90203
3 0.69430 0.02175 14.85070 5.20165
4 0.96062 0.02570 9.77720 2.78303
5 1.21054 0.03941 8.58043 3.89700
6 1.47489 0.03719 8.94971 6.27755
7 1.74164 0.02819 6.57345 2.49628
8 1.99151 0.02502 6.66627 6.75880

for each 10 min. block, and accompany them with their
corresponding PSD contour from the Yule-Walker method.
Observe that as a result of the load variation through the 9-
hr. period the estimated frequency and damping ratio for each
mode present changes. The most important characteristic to
note is that the the damping estimates are less variable as the
system becomes more stressed. In other words, the mode meter
algorithm estimates are more reliable as the system stress is
increased.

In addition, we have computed the average mode fre-
quencies and damping estimates along with their standard
deviations. We provide these statistics in TableI for Fri, Jan
26 ’07 (N19) data set, and in TableII for the data set obtained
during Sunday Nov., 26, 2006 (N07). Note that there is a close

(a) Mode 7

(b) Mode 8
Figure 11. Continuation of Fig.10

Table II
MODE METER ESTIMATES FORDATA SET OBTAINED DURING SUNDAY

NOV., 26, 2006 (N07)

MODE f̄ (Hz) σf d̄ (%) σd

1 0.12896 0.00616 14.50442 5.49251
2 0.39317 0.02380 19.25457 5.57782
3 0.69352 0.02431 13.14500 3.46854
4 0.96624 0.02528 8.51961 2.57832
5 1.21058 0.03877 9.17073 8.84033
6 1.46013 0.04066 7.59083 4.41675
7 1.75755 0.02424 6.51783 1.67768
8 1.97501 0.02985 7.28166 5.57282

agreement in the mode frequencies and damping estimates
computed for each different date.

The contour plots from Welch’s method accompanying the
mode frequency and damping estimates in Figs.10 and 11
provide insight into the damping ratio of each mode. A
broad frequency band in the contour as the one shown for
Mode 2 in Fig.10b (shown mostly in red between 0.35-0.5
Hz) corresponds to a high damping ratio, in this case the
average damping ratio is between 19-24%. Conversely, a less
distinctive frequency band will indicate a lower damping ratio.
For example Mode 6 has slightly narrower frequency band
approximately between 1.4 Hz and 1.55 Hz as shown Fig.10f
(shown mostly in yellow and red). This band corresponds to
a lower damping ratio whose average is between 7.5- 9%.

V. COMPARISON WITH ESTIMATED MODES FROM A

SYSTEM MODEL

In [13] the authors have applied three different mode iden-
tification methods to determine the electromechanical modes
of a simplified model of the Nigerian power system. Although
this is a simplified model of the network, several of the modes
identified in the study are also visible from the ambient data
analysis presented in this paper. Estimates are provided for
all the modes within the bounds defined in this paper, with
the exception of Modes 2, 3 and 8 (0.4, 0.7, and 2 Hz). The
damping estimates in [13] are more optimistic for Mode 1
which is determined to be the main interarea mode between
hydro and fossil fueled generation areas.

Further analysis of a more elaborate power system model
of the Nigerian power network will be necessary to determine
the nature of Modes 2, 3, and 8 which were not present in the
model-based study [13].

VI. CONCLUSIONS

We have reported on an ongoing collaborative research
effort between researchers in North America and Africa to
study the dynamics of loosely regulated power systems, with
focus on the Nigerian power network. This paper focused
on the application of spectral analysis techniques to ambient
data obtained at Bauchi, Nigeria. Due to the loosely regulated
nature of the Nigerian grid, we have proposed a methodology
to condition the measurement data. With this methodology its
possible to obtain ambient data suitable for use with ambient
data analysis techniques.

Using parametric and non-parametric methods, we have
computed eight dominant low-frequency modes that are con-
sistent through several prolonged FDR recordings obtained
during different dates in 2006 and 2007. The estimated modes
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are in close agreement with mode identification results ob-
tained from a simplified model of the Nigerian power system.
Further analysis of a more detailed power system model of
the Nigerian system will be necessary to determine the nature
of modes not present in the simplified model which where
observed from the FDR data. In addition, the installation of
additional FDRs will allow the creation of a wide-area fre-
quency measurement network from which measurements can
be obtained to compute the CSD, determine coherency, and
obtain mode shapes. The results in this paper should be seen as
an initial step on developing techniques for electromechanical
mode estimation that cater to the loosely unregulated nature of
the power system data obtained from rapidly growing power
systems such as the Nigerian network.
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