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Abstract—This paper presents analysis results of 
synchronized phasor data from 10 disturbance events 
recorded in the US Eastern Interconnection (EI).  The phasor 
data covers a wide region in the EI, allowing for the study of 
disturbance propagation, interarea modes, and oscillations in 
voltages and currents. The analysis is not straightforward 
because the EI is a meshed system with adequate interarea 
mode damping.  Disturbances involving tripping a single large 
generator unit produce very short interarea swing responses.  
Islanding events involving regions at the perimeter, however, 
provide more prominent responses for analysis.     
 

Index Terms—Synchronized phasor measurement data, 
phasor measurement units, disturbance analysis, US Eastern 
Interconnection 

I. INTRODUCTION 

HE US Eastern Interconnection (EI) is a tightly meshed 
power grid with many regional control areas.  It consists 

of the power system in eastern US and Canada, extending 
from the Atlantic Ocean to the Rocky Mountains, excluding  
Quebec and Texas.  Many control regions have significant 
transfer paths and interchange agreements with neighboring 
regions.  Despite the high level of power transfer, the network 
can be considered quite strong, since it does not have lightly 
damped interarea modes, which are quite prevalent in the 
Western US Power System [1].  As a result, with the 
exception of several blackout studies [2, 3, 4], the disturbance 
response of EI has not been studied extensively [5, 6]. 
However, as a result of the 2003 August 14 NE US blackout, 

 
J. H. Chow, L. Vanfretti, A. Armenia, and S. Ghiocel are with Rensselaer 

Polytechnic Institute, Troy, NY 12180, USA (e-mail: chowj@rpi.edu, 
vanfrl@rpi.edu, andrew@asquaredlabs.com, ghiocs@rpi.edu). 

S. Sarawgi and Navin Bhatt are with American Electric Power, Gahanna, 
OH 43230, USA (sksarawgi, Navin_bhatt@aep.com). 

D. Bertagnolli, M. Shukla, and X. Luo are with ISO-New England, Holyoke, 
MA 01040, USA (e-mail:dbertagnolli, mshukla, xluo@iso-ne.com). 

D. Ellis and D. Fan are with NYISO, Rensselaer, NY 12144 (email:dellis, 
dfan@nyiso.com). 

M. Patel is with PJM Interconnection, Norris Town, PA 19403 
(email:patelm3@pjm.com). 

A. M. Hunter and D. E. Barber are with FirstEnergy, Reading, PA 19612 
(amhunter, debarber@firstenergycorp.com). 

G. L. Kobet is with TVA, Chattanooga, TN 37402, USA (glkobet@tva.gov).  
This work is supported in part by AEP, FirstEnergy, NE-ISO, NYISO, and 

PJM, and by NSF through grant ECS-0622119.  

the North American Synchro-Phasor Initiative (NASPI) [7] 
was organized by the North American Electric Reliability 
Council (NERC), to install phasor measurement units (PMU) 
[8] across the EI so stresses in power systems across control 
regions can be better assessed.   

One of the NASPI activities is the establishment of a Super 
Phasor Data Concentrator (SPDC) located at the Tennessee 
Valley Authority (TVA) to collect via the Internet phasor data 
from PMUs located in many control regions.  PMU data from 
the SPDC was given to the Rensselaer research team for 
significant disturbance events in 2007 and 2008, ten of which 
are listed in Table 1.  These PMU data from the TVA SPDC 
were supplemented by data retrieved directly from the PMUs 
and other PDCs.    

This paper provides some preliminary analysis of the 
disturbance data.  The scope of the work is not to identify the 
cause of the events, but rather, how the disturbances spread to 
the other regions and the disturbance responses observed.  
Furthermore, the disturbance analysis will focus on extracting 
certain common features from the disturbances. We will 
analyze interarea oscillatory modes, but exclude local 
oscillations such as those due to line trips, which generally 
have a small geographical impact.     

The paper is organized as follows.  In Section II, we 
provide the locations of the disturbance events and PMUs 
whose data will be analyzed,.  In Section III, a scheme to 
handle the large amount of PMU data for each event is 
discussed.  Section VI provides data analysis in the time 
domain, from the initial transient to the post-disturbance state.  
Section V discusses frequency domain analysis, where we 
compute the interarea mode frequencies and damping, using 
data from multiple channels simultaneously.     

II. PMU LOCATIONS AND DISTURBANCE EVENTS  

The Power System Research Consortium (PSRC), 
consisting of research teams from four universities 
(Rensselaer Polytechnic Institute, Virginia Tech, Univ. of 
Wyoming, and Montana Tech), was founded to develop tools 
for PMU data analysis. Data can be made available to PSRC 
by the Industry Members (AEP, FirstEnergy, ISO-NE, 
NYISO, and PJM) and TVA.  For this paper, data were 
obtained from the 26 PMUs shown in Fig. 1. Note that not all 
PMU data were available for all events, so some entries in 
Table 1 are left blank.    
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TABLE 1. SUMMARY OF DISTURBANCE EVENTS   

DISTURBANCE EVENT DATE 
FREQUENCY 

CHANGE* 
MW CHANGE β  

(MW/0.1 Hz) 
CHANGE OF ANGLE* 

NY-AEP NY-TVA 
1.  Substation trip in Ontario. 01/30/2007 +39 mHz  +1170 MW**  +4˚  
2.  Loss of a generation unit in TVA. 02/09/2007 -35 mHz -1200 MW 3429   
3.  Loss of two generation units in South Carolina. 02/15/2007 -50 mHz -1692 MW 3384 +4˚  
4. Loss of a generation unit in Indiana. 03/13/2007 -40 mHz -1200 MW**    
5. Loss of a generation unit in Ohio. 03/23/2007 -55 mHz -1285 MW 2336 +5.5˚  
6. Generation trip in Ohio. 08/04/2007 -117 mHz -3600 MW**   +6˚ 
7. Islanding of Northwestern part in the Eastern Interconnection. 09/18/2007 -65 mHz -1950 MW**   +5˚  
8. Loss of HVDC in New England. 11/16/2007 -37 mHz -1419 MW 3835 -13.5˚  
9. Loss of generation and load in Oklahoma due to ice storm. 12/11/2007 -80 mHz -2400 MW**  +6˚  
10. Islanding of Maritime Provinces. 01/31/2008 -30 mHz -900 MW**   -7˚ 
* Approximate values. ** Calculated using β = 3000 MW/0.1 Hz 

 
 

 
Fig. 1. Location of PMUs available to PSRC 

 

We have selected the events in Table 1 because they 
involve changes in generation and load, which are usually 
flagged by the rate-of-frequency-change (df/dt) trigger.  Line 
switching events are not included because such switchings 
would only readjust the flows on the nearby lines, without 
major impacts on the neighboring areas.  The net changes in 
power are also listed in Table 1. For some of the generator 
trips, the pre-fault generations were known, from which we 
can calculate the frequency regulation constant β.  For events 
where the generator output was not known or loads were 
involved, we used a β of 3,000MW/0.1Hz in order to estimate 
the MW change [5].      

Events 6 and 9 had the largest frequency variations and 
hence the largest change in MW also, but they did not result 
in significant oscillations.  In Event 6, an initial fast frequency 
drop was followed by a slower decline, typical of a boiler 
runback in steam plants.  Such a slower decline is much less 
disruptive to the power system and hence the system 
characteristics are not as apparent in the time responses.  
Event 9 occurred in a part of the system remote and not 
strongly connected to the Northeastern part of the EI.  Thus 
the PMUs in Fig. 1 did not record a strong response.   

The two events of most interest are Events 7 and 10, which 
were disturbances resulting in the islanding two of the corners 
of the EI.  The analysis of some of the events is provided in 
Sections IV and V.     

 

 

III. PMU DATA MANAGEMENT  

A. Data Issues in the Startup Stage 

At this initial stage of the NASPI project, there are a 
number of disparities in the data set. Although most of the 
PMUs send data to the SPDC at 30 samples per second, there 
are PMUs with other sampling rates, such as 6 or 10 samples 
per second.  Occasionally, data were lost during the internet 
transmission due to the lack of bandwidth.  On other 
occasions, a PMU would be offline for upgrading hardware, 
software, and communication capability.  However, some of 
the data problems, such as phase shifts due to a different 
phase sequence and CT/PT scalings, can be readily 
compensated for.  

As the NASPI project matures, many of these data issues 
will be resolved.  For the time being, our investigation will be 
limited due to incomplete data.   

B. PMU Data Processing Techniques 

1) Data Conversion Techniques 
Unlike the WECC, where the .dst format has been adopted 

for data exchange [9], the EI currently has no standard way of 
sharing data.  Moreover, the PMU data analyzed here is not 
necessarily extracted from a single PDC. 

The EI PMU Data is available from different sources: 
PMUs, IEDs, and PDCs. In addition to the different sources, 
the data is also exchanged in many different formats: 
COMTRADE [10] .cfg and .dat files, delimited text files such 
as .csv and MS Excel files, and database files from MS 
Access and MySQL. To handle the diversity of data sources 
and data formats, we have developed a PMU Data Conversion 
framework. 

The framework consists of consolidating PDC Data and 
device specific data as shown in Fig. 2. Each of the data 
conversion techniques deals with one data source. When the 
data comes from a PDC in text delimited format, a MySQL 
database is generated using the MySQL Client for MATLAB 
[11] or an Access database is generated using Visual Basic 
Macros. After the database is created (or when the database is 
available beforehand), either the MATLAB Database Toolbox 
[12] or the MySQL Client for MATLAB is used to create a 
MATLAB class.  
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When the data come from individual devices, a custom 
conversion routine has to be written for each PMU and data 
format. At the final stage, MATLAB data structures and 
classes are obtained. Observe that both techniques result in 
the same MATLAB class format, enabling the development of 
software applications. 
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Fig.  2. Data conversion framework   

 
2)  PMU Data Handling 

Using the techniques described above, we have created a 
repository of MATLAB data organized in classes for each 
event. Data structures and classes provide a compact and 
organized mean to handle PMU data for analysis: each PMU 
can be defined as a class, and each channel from the PMU can 
be defined as a field. To illustrate these features, some of the 
fields of the class for the PMU at Volunteer (TVA) are shown 
below: 
volu =  
      info: 'Jan 31, 2008 Disturbance Data for VOLU' 
      ttag: {140041x1 cell} 
     dtnum: [140041x1 double] 
     digv0: [1x1 struct] 
         f: [1x1 struct] 

Data analysis can be readily carried out by having all the data 
stored in data structures. Operations, manipulation, and 
visualization can be standardized and done quickly. Observe 
that the resulting class has different kinds of data structures, 
giving the maximum amount of data available for analysis and 
software development. As an illustration, the field volu.f 
includes information on the frequency channel. The use of 
data structures allows the inclusion of not only the data, but 
also specific information on the channel: 
>> volu.f  
ans =  
    data: [140041x1 double]  
    info: 'Channel 75: Volunteer ABB-521 Frequency'  

The features highlighted above have been used for data 
analysis and software development related to this paper. 
3) Further Application of OOP Concepts for Data Processing 
and Software Development 

With the latest object-oriented programming (OOP) 
features implemented in MATLAB R2008a, it is possible to 

apply OOP concepts for PMU data management for data 
processing, software development, and data exchange.  These 
features can be used for error checking, controlling data 
access, and implementation of methods, etc.  This approach 
will allow the software to be easier to use and maintain, while 
providing a platform for the development of new applications.  

IV. DISTURBANCE PROPAGATION  

A. Disturbance detection using bus frequency  

In an interconnected power system, the impact of a 
disturbance will spread to neighboring regions and beyond.  
The papers [13-15] provide analysis on how power 
imbalances travel as electromechanical waves on the 
transmission lines. This disturbance propagation is most 
readily seen by observing the bus frequencies.  

Events 7 and 10 clearly demonstrate the validity of the 
concepts in [13-15].  Fig. 3 shows the disturbance in Event 7 
traveling from west to east, reaching the PMUs in TVA and 
Virginia before the PMU in New York.  Fig. 4 shows the 
disturbance in Event 10 traveling from east to west, reaching 
first the PMU in New York, then the PMU in Ohio, before the 
TVA and Virginia PMUs.  
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Fig.  3. Frequencies measured by PMUs in three different regions  
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Fig.  4. Frequencies measured by PMU’s in four different regions in the 
Maritime event  
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These plots also show the difficulties in trying to estimate the 
direction and location of the disturbance location.  The 
disturbance travel time between NY and VA for Event 6 was 
0.65 seconds, and for Event 10 was 1.38 seconds.  These 
travel times are different because there are many parallel 
transfer paths.  An expert system for locating generator trip 
based on the FNET data is described in [16].   

B. Disturbance responses in bus voltage and line current 

After the initial onset, the subsequent propagation of a 
disturbance can be seen in the resulting oscillations of voltage 
and current measurements at strategic locations.  In certain 
locations, such as generator control buses and load centers, 
the voltage and current contents can be distorted by local 
control actions and load responses.  The locations to best see 
system oscillations are transmission buses with no nearby 
generators and loads. 
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Fig.  5. Voltage responses in three regions.  

 
Fig. 5 shows the voltages on a NY transmission bus close to 

the disturbance, a transmission bus in Virginia far from the 
disturbance, and a generator bus in Indiana.  The NY bus 
voltage shows large oscillations, with the local voltage 
regulation by a STATCOM visible (the dip when voltage goes 
high).  The VA bus voltage shows clear oscillations, but with 
smaller amplitude.  In addition, the voltage oscillations at the 
NY bus and the VA bus are in phase, although these two 
buses are several hundred miles apart.  The Indiana bus 
voltage behaved quite differently, as the excitation system of 
the generator reacted to boost the bus voltage, in order to 
provide more reactive power to the neighboring buses. 

For buses that are close by, the synchrony of voltage 
responses will be even more pronounced.  Fig. 6 shows the 
voltage responses for several buses in New York in the 
Northwest region islanding event. The upstate NY (USNY) 
bus and the western NY (WNY) bus have similar voltage 
responses.  The NY City (NYC) bus, however, has a very 
different voltage response.  This is not unexpected, given the 
large amount of load in the metropolitan area, which can have 
very nonlinear dynamic behaviors.  

In events involving loss of generation or load, the flows in 
the system will be redistributed in such a way with generators 

on regulation compensating for the power imbalance.  Fig. 7 
shows several line currents in the South Carolina unit trip 
event, where the flows in Lines 2 and 3 are scaled up by a 
factor of 2, for clarity. Line 1 is a major line near the tripped 
unit, showing a 3 pu decrease in current flow with a damped 
interarea oscillation initially close to 1 pu peak-to-peak (about 
100 MW peak-to-peak).  Line 2 is a line farther away, which 
showed a smaller jump of 0.1 pu and an oscillation amplitude 
of 0.15 pu peak-to-peak (about 15 MW).  Note that the 
current magnitude oscillations, like the bus voltage 
oscillations, are also in phase. Although the generation 
increase to compensate for the loss of load came from many 
regions, the increase in flow would cumulate in a few major 
lines leading into the region with the generation loss.  On the 
other hand, Line 3, which is geographically close to the 
generation trip area, did not experience a significant change in 
current magnitude, due to the fact that it is not electrically 
close. 
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Fig. 6. Voltages in NY 
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Fig. 7. Line Currents for three lines: Line 1 – Virginia, Line 2 – New York, Line 
3 – TVA 
 

Modal analysis results of the voltage and current plots in 
Figs. 5 and 7 will be presented in the next section.      

C. Post-disturbance steady-state angle change 

From a security assessment point of view, once a system 
settles to a post-disturbance steady state after loss of 
generation and/or loss of major transmission lines, there is a 
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need to investigate the additional stress on the overall system, 
because generation in the external regions would have 
increased, causing more power to flow into the region with 
generation deficiency. A good indicator of system stress is the 
incremental angular separation between control regions 
following the disturbance.   

Ideally, one should measure the angular changes between 
load centers in different control regions.  Because of the 
limited availability of PMU locations and data, only the 
incremental angular separations between a transmission bus in 
New York and two transmission buses, one in AEP and one in 
TVA, were computed, which are shown in the last two 
columns of Table 1.  

The changes in the bus angular separation in Events 3, 5, 6, 
7, 8, 9, and 10 are consistent with the location of loss of 
generation.  For example, in Event 5, with the loss of a unit in 
Ohio, the NY generators supplied additional power to Ohio, 
which advanced the bus angle in NY relative to that in AEP.  
On the other hand, in Events 8 and 10, with loss of generation 
to the east of NY, the AEP bus angle advanced more than that 
of NY. In Event 1, both NY and AEP provided additional 
power to Ontario from the east and the west, respectively.  
The angle change indicates that most of the additional flows 
had gone through NY.   

It would be desirable to develop some sensitivities on how 
the angle separations between NY-AEP and NY-TVA would 
depend on the amount of generation lost.  At this point, we do 
not have enough disturbance events and measurements to 
develop such sensitivities.  Furthermore, PMUs at additional 
locations would be desirable.     

V.  INTERAREA MODE FREQUENCIES, DAMPING, AND MODE-
SHAPES 

The Prony method has been popular in computing the 
interarea modes from measured responses [17]. Here we used 
the Hankel-matrix based Eigensystem Realization Algorithm 
(ERA) [18, 19] as it can be readily extended to simultaneous 
modal identification of multiple signals.  This ability is helpful 
in improving the accuracy of identified modes and reducing 
the probability of mis-identification.   
 The results of applying the ERA to the voltage and current 
signals in Figs. 5 and 7 are shown in Figs. 8 and 9, 
respectively.  The ERA has successfully identified the key 
oscillatory components in the signals and approximated them 
with a few oscillatory modes. For the simultaneous 
identification, only the interarea modes are plotted, 
emphasizing the in-phase voltage and current time responses 
at locations that are hundreds of miles apart.    

Table 2 shows the results of modal identification for the 
Event 1 signals in Fig. 8. Single-channel identification for the 
NY and VA voltages shows an interarea mode of about 0.4 Hz 
in each signal.  Using simultaneous multiple-channel 
identification, these two modes coalesce into a single mode at 
0.3781 Hz, and a 0.19 damping ratio is found. (A 0.19 

damping ratio in a second-order system would produce 2 
noticeable oscillations in a step response.)  
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Fig. 8.  ERA Identification for the Signals in Fig. 5.  (Single ERA: Single 
channel ERA Identification, Simul. ERA: Simultaneous Multiple channel Signals 
ERA Identification, Meas.: Measurement)  
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Fig. 9.  ERA Identification for the Signals in Fig. 7 
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Fig. 10. ERA Identification for Events in Table I showing only simultaneous identification: (a) Damping Ratio vs. Frequency, (b) ERA Residue vs. Frequency. Note: 
Max.Res.: Maximum Residue per Event. 

 
TABLE 2. MODAL IDENTIFICATION FOR EVENT NO. 1 

EVENT NO. 1 
SIGNALS 

FREQUENCY DAMPING RESIDUE ENERGY 

NY 0.3701 0.1264 1.8726 0.9794 

VA 0.3966 0.1176 14.1961 0.9081 

Simultaneous 
Identification 

0.3781 0.1928 17.5956 0.6319 

 
The ERA has also been applied to selective disturbances in 

Table 1 to compute the interarea mode frequencies and 
damping.  The results on modal frequencies, damping, and 
amplitude (residue) are plotted in Fig, 10.  In Fig. 10(a), the 
mode with the largest amplitude of oscillation in each event 
has been circled.  The damping ratios of these most 
significant modes are above 0.1, indicating at most 4-5 cycles 
of oscillations.   

VI. CONCLUSIONS 

In this paper, we have provided a preliminary analysis of 
the PMU data for a collection of events in the US Eastern 
Interconnection.  The events show that even for the trip of a 
large generator of about 1000 MW, the measured responses 
may not exhibit system characteristics suitable for detailed 
analysis.  This is partly due to interarea mode damping ratios 
higher than 0.1.   

Not covered in this report is ambient analysis of identifying 
the interarea modes and their damping from ambient data.  
This activity is ongoing [20] and will be reported separately. 
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