
(Mini) Tutorial:
Getting Started with

Power System Modeling using
Modelica and the OpenIPSL

Prof. Luigi Vanfretti
Professor @ http://ALSETLab.com
Rensselaer Polytechnic Institute
Troy, NY, USA

1

http://alsetlab.com

Content

● Preliminaries:
○ Startup checklist and set-up
○ Intended Learning Outcomes for this Tutorial

● Modelica in Brief
● OpenModelica Overview
● OpenIPSL Overview
● Tutorial:

○ Example 1: SMIB Model Implementation and Simulation
● Stretch Goal:

○ SMIB Model Analysis using OMNotebook
● Where to go from here?

2

Startup Checklist

3

Get the slides, solution/model and notebook in the following link
or use the QR code above to go to the directory:
https://tinyurl.com/23-OpenIPSL-Tutorial
Did you installed OpenModelica? (Y/N)
○ If “No”, get a copy from one of my USB sticks (it takes a long time to download and

install… ~ 1GB installer, yikes!)
Where you able to install OpenIPSL in OpenModelica using OpenModelica’s package
manager? (Y/N)
○ If “No”, go to the “Quick Start Guide” and follow the instructions in slides 7 and 8.

Where you able to run the OpenIPSL model as described in the “Quick Start Guide”?
(Y/N)
○ If “No”, it is going to be hard to do the tutorial with your computer.
○ Find a partner to work with!

https://tinyurl.com/23-OpenIPSL-Tutorial
https://docs.google.com/presentation/u/0/d/1HJZhOAGS8j00Xy9k04CqJ21F-yallIAJv-yyZJdO9HE/edit
https://docs.google.com/presentation/u/0/d/1HJZhOAGS8j00Xy9k04CqJ21F-yallIAJv-yyZJdO9HE/edit

Intended Learning Outcomes

4

● To gain a general understanding of Modelica.
● To obtain basic familiarity with the OpenModelica environment.
● To provide a brief introduction to the OpenIPSL and help you gain

basic understanding of it’s uses for power system simulation.
● To implement a basic power system model using OpenIPSL, to simulate it,

and to analyze it using different methods available in the OpenModelica
environment.

● Milestones!
○ Complete Example 1, using OMEdit.
○ Stretch Goal: interactive analysis using OMNotebook on the Model

from Example 1, including simulation and linearization.

Content

● Preliminaries:
○ Startup checklist and set-up
○ Intended Learning Outcomes for this Tutorial

● Modelica in Brief
● OpenModelica Overview
● OpenIPSL Overview
● Tutorial:

○ Example 1: SMIB Model Implementation and Simulation
● Stretch Goal:

○ SMIB Model Analysis using OMNotebook
● Where to go from here?

5

● Non-proprietary, object-oriented,
equation-based
modeling language
for cyber physical systems .

● Open access (no paywall) & standardized
language specification (link), maintained by the
Modelica Association

● Open source Modelica Standard Library with
more than 1,600 components models.

● Supported by 9 tools natively, both proprietary
(Dymola, Modelon Impact, etc.) and Open Source
(OpenModelica)

● A vast number of proprietary and open-source
Modelica Libraries

What is an Open Access Standard
From Wikipedia: An open standard is a standard that is openly accessible and usable by anyone. It is also a prerequisite to use open
license, non-discrimination and extensibility. Typically, anybody can participate in the development.

Modelica:
a language, a community and much more!

● Organizations supporting Modelica lang and
community development:

● And the development of other sister open access
standards for M&S with interoperability at their
core:

6

https://github.com/modelica/ModelicaSpecification
https://www.modelica.org/association
https://mbe.modelica.university/components/packages/msl/
http://dymola.com
https://www.modelon.com/modelon-impact/
https://www.openmodelica.org/
https://modelica.org/libraries

Modelica + Sister OA Stds (FMI, eFMI, etc):
Scope Separation Enables Multiple Uses of the Model

Simulation Code Generation and
Computation

by Modelica-Compliant
Software Tools (Computer)

Code
Generation

Acausal, Transparent, Reusable Models in
Modelica-Compliant Tools

Procedural Code

Modeling by the Human

Optimization

Embedded
Systems

Diagrams

Equations

Algorithms

Exploit for Multiple Purposes
And Applications

Simulation and
Linearization

Control

Interoperable and Portable Models in
non-Modelica Environments via Sister

Open-Access Standards
(e.g. C/C++, Python, MATLAB)

Export

W
ith

in
 M

o
d

elica-C
o

m
p

lian
t SW

 (e.g., D
ym

o
la)

O
th

er SW
 E

nv./H
W

One Open-Access Standardized
Modeling Language

With Interoperability and Portability in
Modelica-Compliant and FMI-Compliant Tools
Multiple Tools

Natively Supporting
the Modelica

Language

Multiple Tools
Compliant with the FMI

Model Exchange and Co-Simulation
Standards

Supported by more than 170 tools!
https://fmi-standard.org/tools/

Modelica + Sister OA Stds (FMI, eFMI, etc):
One model portable across multiple tools!

8

https://fmi-standard.org/tools/

Power system phenomena
that can be
modeled in the

10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104

Lightning

Line switching

SubSynchronous Resonances,
transformer energization…

Transient stability

Long term dynamics
Daily load following

seconds

Electromechanical
Transients

Electromagnetic Transients

Quasi-Steady State
Dynamics

All of it!

Using
OpenI
PSL

See more information about Modelica for
power systems: here

See example: here

Positive Sequence / RMS / or
Phasor Time-Domain Simulation

9

https://youtu.be/IKdECHSO9wc
https://youtu.be/dniUYU7Ka34

Content

● Preliminaries:
○ Startup checklist and set-up
○ Intended Learning Outcomes for this Tutorial

● Modelica in brief
● OpenModelica Overview
● OpenIPSL Overview
● Tutorial:

○ Example 1: SMIB Model Implementation and Simulation
● Stretch Goal:

○ SMIB Model Analysis using OMNotebook
● Where to go from here?

10

• OpenModelica is an entire ecosystem,
which at its core has the OpenModelica
Compiler (OMC).

• There are many ways to interact with the
OMC, and in this tutorial, we will use
maily OMEdit.

• OMEdit:
○ Object-oriented graphical

modeling.
○ To build, edit and simulate

models.

• More about OpenModelica’s
Environment:
https://openmodelica.org/doc/OpenM
odelicaUsersGuide/1.21/

Understanding the OpenModelica
Environment

11

https://openmodelica.org/doc/OpenModelicaUsersGuide/1.21/
https://openmodelica.org/doc/OpenModelicaUsersGuide/1.21/

OMEdit - OpenModelica Graphical
Modeling and Simulation Environment

12

Loading OpenIPSL to OMEdit’s Library
Browser

OpenIPSL should be loaded now and ready to use!

Click on “File” and Scroll
Down to “System
Libraries>OpenIPSL>3.0.1”
and click!

13

Content

● Preliminaries:
○ Startup checklist and set-up
○ Intended Learning Outcomes for this Tutorial

● Modelica in brief
● OpenModelica Overview
● OpenIPSL Overview
● Tutorial:

○ Example 1: SMIB Model Implementation and Simulation
● Stretch Goal:

○ SMIB Model Analysis using OMNotebook
● Where to go from here?

14

• KTH SmarTS Lab (my former research team in Sweden) actively participated in the group or partners
developing iPSL from 2012 until the end of the EU FP7 project iTesla project (March 2016)

• iPSL was a nice prototype, but we identified the following issues:
○ Development: Need for compatibility with OpenModelica,

(better) use of object orientation and proper use of the Modelica
language features.

○ Maintenance: Poor harmonization, lack of code factorization, etc.
○ Human issues: The development workflow was complex

■ Different parties with disparate objectives, levels of knowledge, philosophy, etc.

○ These issues lead to a need of a different approach.

• OpenIPSL started as a fork of iPSL in 2016, and has now largely evolved!
• OpenIPSL is hosted on GitHub at http://openipsl.org
• OpenIPSL is actively developed by ALSETLab members and friends, as a research and education oriented

library for power systems.

The OpenIPSL Project - Origins

Fork: a software project
going in a different
development direction

15

http://openipsl.org/

OpenIPSL is an open-source Modelica library
for power systems that

● Contains a set of power system
components for phasor time domain
modeling and simulation of power
systems

● Models have been verified against a
number of reference tools (mainly PSS/E)

OpenIPSL enables:

● Unambiguous model exchange
● Formal mathematical description of

models
● Separation of models from tools/IDEs

and solvers
● Use of object-oriented paradigms

The OpenIPSL Library – Key Features

16

● Major updates to the library:
https://github.com/OpenIPSL/OpenIPSL/releases

● What’s different between versions - see previous
publications of OpenIPSL:

○ [1] is pre-fork
○ [2] is for OpenIPSL v1.5.0

● Latest paper of OpenIPSL for Version 2.0.0:
○ Marcelo de Castro, Dietmar Winkler, Giuseppe

Laera, Luigi Vanfretti, Sergio A. Dorado-Rojas, Tin
Rabuzin, Biswarup Mukherjee, Manuel Navarro,
Version [OpenIPSL 2.0.0] - [iTesla Power Systems
Library (iPSL): A Modelica library for phasor
time-domain simulations], SoftwareX, Volume 21,
2023, 101277, ISSN 2352-7110,
https://doi.org/10.1016/j.softx.2022.101277

● OpenIPSL Version 3.X.Y paper in preparation, will contain
major updates of forthcoming PRs.

The OpenIPSL Library
Versions

Fork: copy of a project going in a
different development direction

[1] L. Vanfretti, T. Rabuzin, M. Baudette, M. Murad, iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations, SoftwareX, Available online 18 May 2016, ISSN 2352-7110,
http://dx.doi.org/10.1016/j.softx.2016.05.001
[2] M. Baudette, M. Castro, T. Rabuzin, J. Lavenius, T. Bogodorova, L. Vanfretti, “OpenIPSL: Open-Instance Power System Library — Update 1.5 to “iTesla Power Systems Library (iPSL): A Modelica library for phasor
time-domain simulations””, SoftwareX, Volume 7, 2018, Pages 34-36, ISSN 2352-7110, https://doi.org/10.1016/j.softx.2018.01.002

MSL 3.2.2

iPSL v1.0.0.

MSL 3.2.12012

12/2016

5/2016

11/2017

6/2022

MSL 3.2.1

OpeniPSL
v1.5.0 MPLv2.0

MPLv2.0

OpeniPSL
v1.0.0.MSL 3.2.1 MPLv2.0

MSL 3.2.3 OpeniPSL
v2.0.0

3-Clause
BSD

MSL 4.0.0 OpeniPSL
v3.0.1

3-Clause
BSD

Year

6/2022

Library verMSL ver License

D
ev

el
op

m
en

t H
is

to
ry

Fork!

Work starts! FP7 iTesla
project funded for 4 years!

17

https://github.com/OpenIPSL/OpenIPSL/releases
https://doi.org/10.1016/j.softx.2022.101277
http://dx.doi.org/10.1016/j.softx.2016.05.001
https://doi.org/10.1016/j.softx.2018.01.002

Status and Coverage in Modelica Tools

v.3.0.1

Pre-release development build - v.3.0.1-dev

Future: v.3.0.x

Mostly Compatible Partial Compatibility

Improved Compatibility

18

OpenIPSL - Library Structure

• The library is divided in the following sub-packages:

○ Examples: different types of power system models, from textbooks and the real-world.

○ Electrical: power system components (e.g. synchronous machines, excitation systems,

loads, etc.)

○ Non-electrical: functions used by different components in the electrical package (e.g.

saturation functions, specialized integrators, etc.)

○ Interfaces: specialized “pin” for acasual electrical coupling and other (future) interfaces.

○ Icons: defines icon for verified models (those checked against PSS/E).

○ Types: defines type units such as voltage, current, etc., and provides nominal values useful

for scaling during initialization.

○ Tests: unit testing models for all library components. Meant for functional testing of

implementation, not for illustration/analysis purposes.
19

OpenIPSL - Electrical

• The Electrical package contains most of the components that comprise
an actual power network model.

• It includes electrical machines (synchronous generators, motros),
transmission lines, loads, excitation systems, turbine+governors, etc.

○ These are used to build the power system network models.

• Under each category, you can find different types of models organized
according to their original source, the main ones are:

○ PSAT: validated against Prof. Milano’s PSAT sw.

○ PSS/E: validated against PSS/E.

○ Generic: models taken from standards or literature without
verification against another tool.

20

OpenIPSL - NonElectrical

● The NonElectrical sub-package is comprised by functions, blocks or

models, which are used to build the the models in the Electrical
sub-package:

• Transfer functions, logical operators, etc.

● They perform specific operations which were not available in the

Modelica Standard Library (MSL)

● Necessary to replicate the behavior of proprietary tools for basic

functionalities, e.g. integrators with limiters…, all the way to complex

functions (generator saturation model).

● Extremely important when aiming to reproduce PSS/E behavior.

21

OpenIPSL - Interfaces

● The Interfaces package contains a set of specifically developed Modelica connectors to

make acasual connections between the electrical models in this library

• The most important is PwPin a connector, which contains voltage and current

quantities in phasor representation (real and imaginary components of the

complex number).

• A container to build up a “source” or “sink” sub-system (e.g. a power plant with

multiple machines, etc.) is also included.

● Other interfaces under development, e.g. multi-domain interface to couple

mechanical+thermofluidic models of turbines, etc., will be included here in the future.

22

Icon View Text View

OpenIPSL – Examples

Klein-Rogers-Kundur 2-Area 4-Machine System

IEEE 9 Bus IEEE 14 Bus

Namsskogan Distribution Network

23

Yes!
● Simulation performance depends on the simulation tool, not the

model!
○ Example: OpenIPS.Examples.DAEMode.N44_Original_Systems
○ While you can simulate this model in several Modelica tools,

some tools have better performance than others.
● Key: The Modelica standard enables model portability, and thus,

facilitates competition between software tools!
● Dymola 2019FD02 has shown to be faster than PSS/E, as reported in

the following paper:
https://github.com/OpenIPSL/2019_Modelica_Conf_DAESolvers4Lar
geHybridModels

OpenIPSL - Examples
But can you model/simulate large networks?

24

https://github.com/OpenIPSL/2019_Modelica_Conf_DAESolvers4LargeHybridModels
https://github.com/OpenIPSL/2019_Modelica_Conf_DAESolvers4LargeHybridModels

OpenIPSL - Examples.Tutorial

• Examples.Tutorial:

• In this tutorial, the Tutorial package will be used to illustrate

basic use examples of the library

• In the packages Example_1, …, all steps to build the models are

provided.

• The final ”answer” (i.e. model) is shown with a “Play” icon.

25

• The power system needs to be in equilibrium before running the simulation or if
stable, after a disturbance is applied, it must converge to an equilibrium.

- Q: How can we find this equilibrium?
- A: Set derivatives to zero and solve for all unknown variables!

• Need for a good initial guess:
- Let equation set g be separated in two sets, g1 and g2

- (1) describes the dynamics (e.g. generators and their control systems, etc.), they depend
on both x and y , i.e. you have both differential and algebraic variables.

- (2) Is the network model, consisting of transmission lines and other passive components
which only depends on algebraic variables, y.

• Finding the equilibrium for (1) and (2) is a difficult numerical problem, we address this
by providing a good initial guess:

- Our models in OpenIPSL derive these initial guesses from power flow input data, i.e. the
solution of (2) which only solves for y.

- Note that a solution of (2) from a power flow solver helps, but does not guarantee an
equilibrium, i.e. solution to both (1) and (2).

OpenIPSL - Providing a good “initial guess”

26

Modelica –compliant tools
attempt to solve this problem

(1)

(2)

OpenIPSL - Providing a good “initial guess”

• An initial guess for all algebraic, continuous and discrete variables need to be provided to solve a numerical problem!

→ For example, when solving differential equations, one needs to provide the initial guess of the state variables at rest.

• In Modelica, the initial values of states can be either solved or specified in many ways:
• Using initial equation

 x = some_value OR x = expression to solve
• Setting the (fixed=true, start=x0) attribute when instantiating a model when the start value is known (or possible to

calculate)
• If nothing is specified, a default would be a guess value will be set by the Modelica-tool, such as (start= 0, fixed=false).

• In the OpenIPSL models we do the following:
• We compute an initial guess value for all required variables in the parameter section of the model definition.
• The initial guess value is then set with (fixed = false) for the solution of the initialization problem.

• In the OpenIPSL models we do the following:
• We obtain these values from a power flow solution via an external tool (e.g. PSS/E).
• This is used as a starting point to compute initial guess values through parameters within each model.
• The power flow solution is NOT the initial guess value itself, it helps to provide a starting value to the Modelica-tool to solve

the initialization problem.
27

OpenIPSL - Providing a good “initial guess”

28

Content

● Preliminaries:
○ Startup checklist and set-up
○ Intended Learning Outcomes for this Tutorial

● Modelica in brief
● OpenModelica Overview
● OpenIPSL Overview
● Tutorial:

○ Example 1: SMIB Model Implementation and Simulation
● Stretch Goal:

○ SMIB Model Analysis using OMNotebook
● Where to go from here?

29

Example 1 - Origins

• This example was originally presented in

the reference book:

○ P. Kundur, “Power System Stability

and Control”, McGraw-Hill Inc., Palo

Alto, California, 1994. See: Example

13.2, pp. 864 – 869.

○ IT is NOT exactly the same as in the
book; but can reproduce the same

phenomena.

30

Example 1 - Background

• The model is used in senior/graduate courses for analysis of the so-called “transient stability” and

“small-signal stability” (linearized analysis, eigenanalysis, etc.) of the system including the effects of

rotor circuit dynamics and the excitation control system.

• It aims to represent a power plant (with many units) by using a single aggregate generating unit (with

all it’s voltage control systems) connected via transformer and parallel lines to an “infinite bus”.

○ Hence the name Single Machine Infinite Bus (SMIB) system

○ In the French-speaking world they also call it OMIB (One-Machine …) 31

This phenomena observed in early days
of “interconnections” (circa 1960’s), and
first formally explained by de Mello and

Concordia in 1969.

F. P. Dmello and C. Concordia,
“Concepts of synchronous machine

stability as affected by excitation
control,” IEEE Trans. Power App. Syst., vol.

PAS-88, pp. 316–329, 1969.

Example 1:
Gathering Parameter Data and Power Flow Results

• We need parameter data for the models as well as a power flow solution: recall need for

good initial guess!).

• To simplify the process, since we have models validated against PSAT, we will use data

from PSAT as it is open source software.

• If you are interested in PSAT here is Prof. Milano’s page: http://faraday1.ucd.ie

• You don’t need PSAT to do anything right now!

○ The model used in this example exists as an example in PSAT and can be used for power flow

calculations and dynamic simulations.

○ The parameter data used in the next slides, is that from PSAT’s model implementation.

○ Power flow results were obtained using PSAT’s power flow solution.

○ Summary power flow solution:

32

http://faraday1.ucd.ie/

Example 1 – Let’s Start Implementing

Our goal is to reproduce the model in OpenIPSL.Examples.Tutorial.Example_1.Example_1.

• The process is separated in two stages: (1) building the “Generator” and (2) building the “Network”.

• Each stage has multiple steps, which we will do on our own here.

• The package with the library gives you the “solution”, so you can open another instance of

OpenModelica to verify what you are doing.

33

Stage (1), building
the “Generator”

Stage (2), building
the “Network”

Example 1 – Creating the package structure
• First, we will setup a

package structure as such:

• To create the package structure for our example:

(A) In OM’s toolbar go to File > New > New Modelica Class.

(B) This will open up the following window (1): In Name we enter “MyExample1”, Specialization we select “Package”

and make sure you click on the bottom check boxes the option “Save contents in one file”
(C) Press “Cntrl+S” so you can save it in an easy to find location, e.g., ./…/Documents/OpenModelica

34

See solution in: OpenIPSL.Examples.Tutorial.Example_1

A

B C

Example 1 – Creating the package structure

• Click on “MyExample1” and then select the “Text View”, enter the following instruction:

extends Modelica.Icons.ExamplesPackage;

• Look at what happened to the icon of the package!

• You’ve just learned how to do inheritance in Modelica, yey!

35

See solution in: OpenIPSL.Examples.Tutorial.Example_1

Example 1 – Creating the package structure

• Now we continue building the package structure.

(A) Right click on “MyExample1” and select “New Modelica Class” from the context menu:

(B) We now create a package called “Generator” and insert it in “MyExample1”, we now choose to extend graphically

the Modelica.Icons.Package icon by scrolling and finding the class through the window.

Yey! You just learned how to do inheritance graphically!

(C) We repeat the process to create a package called “Network”

(D) We now have a nice package structure like the one in the OpenIPSL.Examples.Tutorial.Example_1 package

36

See solution in: OpenIPSL.Examples.Tutorial.Example_1

A

B

D

• We now build a model for the power plant, which includes a synchronous machine and an excitation control system, we
ignore the turbine and its controls in this example.

• Within the Generator sub-package all components related to the machine will be included within.

• We start by extending from the “Generator” interface from OpenIPSL.Interfaces.Generator

Example 1 – Generator Model and “extends”

37

Fill in Click

Select

Right
Click

Click

See solution in: OpenIPSL.Examples.Tutorial.Generator.Step_1

Example 1 – Synchronous Machine Model

• We will use the 6th order model
from PSAT:
OpenIPSL.Electrical.Mach
ines.PSAT.Order6

• Under the “Diagram View”, drag
the “Order6” model from the
library and dropping it to the
Generator sub-package that we
just created

• Give the name “machine” to the
component.

See solution in: OpenIPSL.Examples.Tutorial.Generator.Step_1

Drag and Drop!

Icon View

This diagram view is that of:
MyExample1.Generator.Gene
rator

38

Example 1 – Synchronous
Machine Model Parametrization

• Double click on the machine

• Parametrize only the highlighted
area (for now) with the table on
the right.

39

Fi
ll i

n

See solution in: OpenIPSL.Examples.Tutorial.Generator.Step_1

Example 1 – Synchronous Mach.
Power Flow Input Data

• Next we learn to do parameter propagation.

• Although we already know the specific values from the power
flow that we need to enter, we would like to be able to enter all
of the data of the power flow of the “Generator” sub-system in
a single window

○ In other words, we would like to propagate the
parameters from the upper “Generator” layer, to
each of the components inside the “Generator”

• Using the variables (V_0, angle_0, etc.) allows to
propagate the parameters to the “upper layer” of the
generator component.

• Notice that there are two greyed-out parameters, S_b and fn,
as SysData.S_b and SysData.fn, don’t modify them, we’ll
talk about the soon. 40

See solution in: OpenIPSL.Examples.Tutorial.Generator.Step_1

Fill in

Example 1 – Excitation Control System Model

• The AC voltage at the terminals of a generator (stator) is

controlled by varying the DC voltage of the field winding (rotor).

• We model this through the so-called “Automatic Voltage

Regulator” using PSAT’s AVR Type III model, and parametrize

it with the values in the table, drag and drop the component

from and give it the name avr:
OpenIPSL.Electrical.Controls.PSAT.AVR.AVRtypeIII

• Double click on the AVR model, and enter the parameter data

in the table. 41

Fill in

See solution in: OpenIPSL.Examples.Tutorial.Generator.Step_2

Example 1 – Set-point and External Input
• AVR Set-point: All control systems need a set-point,

however, the value of the reference depends on the

measured voltage and other variables.

• In OpenIPSL, the set-point for all controllers, needs

to during during initialization using the initial
equation construct and receiving it as an input.

• External Input: AVRs have external input signal ports for

different purposes, e.g. input from other sensors, other

controls (e.g. PSS), etc.

• In the Tutorial Example 2, this model is extended to

add a PSS to the AVR, but for now, we will not model it.

• A constant block from the MSL will be used as a zero,

get that from

Modelica.Blocks.Sources.Constant , set the

value of k=0 and name it pss_off
42

See solution in: OpenIPSL.Examples.Tutorial.Generator.Step_2

The value of “v” is received as an input, it comes from the synchronous

machine model as it has to correspond to the value of the required field

voltage, we see in the next step how to interface them.

Example 1 – Interfacing all components

• To finish the generator model,
different signals need to be
connected as shown on the figure
on the right.

• Optionally, the “icon” generator
model can be altered from the
“Icon View” to change the visual
appearance.

A. 1. Machine's terminal voltage to AVR's input signal
B. 2. AVR's output field voltage to machine's input

field voltage
C. 3. Initially calculated mechanical power to input

signal of the machine's mechanical power input pm.
D. 4. Constant pss_off to the PSS input at the AVR
E. 5. Initial generator field voltage to initial AVR field

voltage.
F. 6. Generator pin to External pin

A

B

C

FD

E

See solution in: OpenIPSL.Examples.Tutorial.Generator.Step_3

43

Example 1 – Check!

• Now we can see if the “Generator”
sub-system has been assembled correctly.

• In Modelica-tools we use the operation
check(modelName) to determine if the
model is “balanced” (same number of
equations as unknowns), and perform other
checks about your model (e.g. missing or
broken connections, etc).

• Right click on your model and then select
the icon

• If you see a similar message in the
“Messages Browser” then that means the
model has passed the check.

44

See solution in: OpenIPSL.Examples.Tutorial.Generator.Step_3

Example 1 – Network Model Setup
• The power network model will be implemented in the Network package we

created.

• Right clicking on the Network package, and select “New Modelica Class”

• The name of the network model will be “Example_1” and you should select the

specialization “Model”.

45

Fill in: “Example_1”

See solution in: OpenIPSL.Examples.Tutorial.Network.Step_1

Example 1 – Network Components
• Drag and drop the generator model that we created

and name it G1.
• Drag and drop a bus model three times, and name them

B1, B2 and B3; use: OpenIPSL.Electrical.Buses.Bus
• Drag and drop a system data block from:

OpenIPSL.Electrical.SystemBase and name it SysData
○ Double click on SysData and enter: fn = 60.
○ Look at the text view, and you will find the following

statement:

 inner OpenIPSL.Electrical.SystemBase SysData(fn = 60)

○ This will allow all the components that use variables S_b
and fn to access the value defined in the top layer of the
model.

○ Note that S_b is not in parenthesis, this is because we
will use the default value of 100 MVA, so we don’t need
to modify it.

46

See solution in: OpenIPSL.Examples.Tutorial.Network.Step_1

• Add the following transmission lines and transformer

models (leave default names):

• OpenIPSL.Electrical.Branches.PSAT.TwoWin
dingTransformer

• OpenIPSL.Electrical.Branches.PwLine

• Parametrize the new components:

Example 1 – Network Branches

47

See solution in: ./Tutorial/Example_1/Network/Step_2

Transformer

Line 1 Line 2

See solution in: OpenIPSL.Examples.Tutorial.Network.Step_2

• It is quite common to use an “Infinite Bus” to model the connection of a plant to the rest of the power
transmission network.

• Drag and drop the ”Infinite Bus” model from OpenIPSL.Electrical.Buses.InfiniteBus
and call it infiniteBus

• Parametrize both the generator and infinite bus using the power flow data!

Example 1 – Network External Grid and G1
Dispatched Power

48

Infinite busG1

Note: such type of power flow would be unfeasible in an actual network. Observe the voltage magnitude and powers – this is truly a textbook example.

See solution in: OpenIPSL.Examples.Tutorial.Network.Step_3

Example 1 – Fault Event

• We would like to simulate how the system behaves

when exposed to a large disturbance.

• The disturbances that are most critical for power

networks are 3-phase-to-ground faults.

• To model this, we add the block from

OpenIPSL.Electrical.Events.PwFault

• Parametrize the fault as follows

49

R 0 t1 0.5
X 0.01*100/2220 t2 0.57

See solution in: OpenIPSL.Examples.Tutorial.Network.Step_4

Example 1 – The Final Model!

• The network model is completed by connecting all of

the components together as shown in the diagram.

• Before simulating, we should “check” the model, you

should get something similar if the model is balanced.

• Right click on your model and then the check icon

• If you see a similar message in the “Messages

Browser” then that means the model has passed the

check.

50

See solution in: OpenIPSL.Examples.Tutorial.Network.Step_5

(A) Double click on the “Example_1” model.

(B) Next, right click on the model and click on the

simulation setup icon:

(C) Configure the solver as shown in the window on

the right and then click on “OK”

Example 1
Let’s simulate!

51

A

B

C

(A) After clicking “OK”, OpenModelica entered the
plotting mode.

(B) If the simulation was successful, the “Messages
Browser” will indicate that:

 The simulation finished successfully.

(C) You can now use wildcards to search for specific
variables to plot.

○ In the “Variables Browser” you can enter
“B*.v” to search for all variables that contain
the structure.

○ Select B1.v, B2.v, and B3.v, these correspond
to the generator bus, the high side of the
transformer bus and the infinite bus voltage.

This example shows that the model is unstable when the fault
is applied, this is the behavior that we wanted to reproduce.

Example 1
Let’s plot!

52
A

B

C

C

C

Content

● Preliminaries:
○ Startup checklist and set-up
○ Intended Learning Outcomes for this Tutorial

● Modelica in brief
● OpenIPSL Overview
● OpenModelica Overview
● Tutorial Examples

○ Example 1: SMIB Model Implementation
● Stretch Goal:

○ SMIB Model Analysis using OMNotebook
● Where to go from here?

53

Using OMNotebook for Interactive Analysis

• The OpenModelica installation includes a very handy tool called OMNotebook.

• OMNotebook allows you to interact with the OpenModelica Compiler (OMC),

and at the same time analyze the model.

• This gives you a basic “lab notebook” where you do your tests before you create
a script for automated analysis (called .mos scripts).

○ Similar to Jupyter Notebooks or Mathematica Notebooks.

• We use OMNotebook next to load the model developed, and simulate it

interactively.

54

Open the Notebook
• Uncompress the files in the .zip file distributed for this tutorial in a

directory that you can find easily (e.g., “Documents/OpenModelica”)
• The OpenModelica Notebook file you need is called:

 MyExample1.onb

○ Double click it to open it using OMNotebook.

○ The OMN window will appear as shown below.

55

Set-up your path & evaluate cells!

56

Set your path to where “MyExample1.mo” is
located.

Evaluate each cell using “Shift+Enter”

Instantiate and Simulate the Model!

This should give you as output the model’s
contents.

Plotting Results

57

Linear Model

• Let’s now do a bit more analysis on the system’s stability by using linear analysis.

• This will allow us to determine the system’s damping with the current value of the AVR’s gain (K=200).

58

• After evaluating the cell, you can see the model is linearized successfully.

• OpenModelica will provide you with not only the linear model’s matrices, but also with a linear model

called: linearized_model.mo

• This can be found in the temporary directory

created by OM & can be opened in OMEdit too.

Linear Model:

59

Initial values of states at t = 0.

State Matrix
“A”

Matrices B, C and D are zeros because we did not define any
inputs or outputs in the model (which can be done!)

Names
of the
states

Linear Analysis

• We now load and instantiate the linear model:
• Then we extract the A-matrix and display it:

60This is the complex unstable mode we were looking for!

• Now we can extract the eigenvalues:

Parametric Sweep

• Using OMNotebook, we can interact with the OMC

in order to analyze the behavior of the system.

• The AVR’s output looks saturated.

• The type of instability that we are observing it is

typically due to negative feedback from the AVR.

• This was shown in the early 1900’s by Concordia

and De Mello!

• A parametric sweep is used in OMC to simulate the

system’s response for different values of the gain of

the AVR, namely, K0.
61

Results from K=10 to K=50

Parametric Sweep

• When performing several simulations that only

require a parameter change, “building” the model will

avoid generating new C-code for every new

parameter value.

○ This creates an executable called:

• The executable can be run the system command, i.e.

equivalent to running from a CMD console in

Windows

• We pass the data we want to modify using the flags:

-override = parameter.name= value
will set a new value to the AVR gain, G1.avr.K0”

-r = result_file_name.mat
gives a name to the result file at each new iteration. 62

Parametric Sweep - Plots
• When plotting, we now need to refer to the specific output file we want to display results for:

63

Example_1_parametric _1_res.mat Example_1_parametric _5_res.mat

Content

● Preliminaries:
○ Startup checklist and set-up
○ Intended Learning Outcomes for this Tutorial

● Modelica in brief
● OpenIPSL Overview
● OpenModelica Overview
● Tutorial Examples

○ Example 1: SMIB Model Implementation
● Stretch Goal:

○ SMIB Model Analysis using OMNotebook
● Where to go from here?

64

• Learn more about OpenIPSL
○ OpenIPSL overview video from 2020: https://youtu.be/2i3fvgFtcYA
○ Recent overview presentation on OpenIPSL and related efforts: https://youtu.be/IKdECHSO9wc

• What should I learn to build some power system simulation models on my own?
○ Learn more about how to use OMEdit:

■ Tutorial, courses, etc: https://openmodelica.org/useresresources/modelica-courses/
○ Go through the OpenIPSL full tutorial!

■ The instructions are outdated (form 2017!), but it should be good enough for you to learn how
to put together some system models.

■ Link to Github: https://github.com/OpenIPSL/OpenIPSL/releases/tag/Tutorial_CURENT_ERC_2017_08_22
○ If you have Dymola, a recent tutorial also shows how to populate your model with the

power flow solution form GridCal (or PSS/E):
■ Link to Github: https://github.com/ALSETLab/SMIB_Tutorial

• What about developing new models?
○ Learn about power system modeling, you can read these books:

■ Federico Milano, Power System Modelling and Scripting, 2010.
■ J. Chow and J. Sanchez-Gasca,Power System Modeling, Computation, and Control, 2019.

○ Learn about Modelica:
■ Dr. Michael M. Tiller, Modelica by Example: https://mbe.modelica.university/
■ P. Fritzson, Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A

Cyber-Physical Approach, 2014.
○ Learn about GIT and Github: https://git-scm.com/book/en/v2

• Learn More about Modelica:
○ Modelica Association Website: https://modelica.org/

Where to go from here?

65

https://youtu.be/2i3fvgFtcYA
https://youtu.be/IKdECHSO9wc
https://openmodelica.org/useresresources/modelica-courses/
https://github.com/OpenIPSL/OpenIPSL/releases/tag/Tutorial_CURENT_ERC_2017_08_22
https://github.com/ALSETLab/SMIB_Tutorial
https://link.springer.com/book/10.1007/978-3-642-13669-6
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119546924
https://mbe.modelica.university/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989166
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989166
https://git-scm.com/book/en/v2
https://modelica.org/

Thank you for your attention!

Beware of Pygmalion!

Happy Modeling!

http://Openipsl.org

Prof. Luigi Vanfretti
Professor @ http://ALSETLab.com
Rensselaer Polytechnic Institute
Troy, NY, USA

66

http://openipsl.org
http://alsetlab.com

