&

23
€O TUDelft AT < IEEE

11th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems

San Antonio, Texas, USA, May 9, 2023

(Mini) Tutorial:

Getting Started with

Power System Modeling using
Modelica and the OpenlPSL

Prof. Luigi Vanfretti

Professor @ http://ALSETLab.com
Rensselaer Polytechnic Institute
Troy, NY, USA

http://alsetlab.com

\ Content
e Preliminaries:

o Startup checklist and set-up

o Intended Learning Outcomes for this Tutorial
Modelicain Brief
OpenModelica Overview
OpenlPSL Overview
Tutorial:

o Example 1: SMIB Model Implementation and Simulation
e Stretch Goal:

o SMIB Model Analysis using OMNotebook

e Whereto go from here?

Startup Checklist

Language x
Get the slides, solution/model and notebook in the following link

or use the QR code above to go to the directory: @ SCAN ME

Did you installed OpenModelica? (Y/N)
o If“No” get a copy from one of my USB sticks (it takes a long time to download and
install... ~ 1GB installer, yikes!)

Where you able to install OpenlPSL in OpenModelica using OpenModelica’s package
manager? (Y/N)

o If*No”, gotothe” " and follow the instructions in slides 7 and 8.
Where you able to run the OpenlPSL model as described in the ”?
(Y/N)

o If“No’ itis goingto be hard to do the tutorial with your computer.
o Find a partner to work with!

https://tinyurl.com/23-OpenIPSL-Tutorial
https://docs.google.com/presentation/u/0/d/1HJZhOAGS8j00Xy9k04CqJ21F-yallIAJv-yyZJdO9HE/edit
https://docs.google.com/presentation/u/0/d/1HJZhOAGS8j00Xy9k04CqJ21F-yallIAJv-yyZJdO9HE/edit

\ Intended Learning Outcomes

modenica OpenModelica 8§

Language

e Togainageneral understanding of Modelica.

To obtain basic familiarity with the OpenModelica environment.

e Toprovide a brief introduction to the OpenlPSL and help you gain
basic understanding of it’s uses for power system simulation.

e To , to simulate it,
and to analyze it using different methods available in the OpenModelica
environment.

e Milestones!
o Complete Example 1, using OMEdit.
o Stretch Goal: interactive analysis using OMNotebook on the Model
from Example 1, including simulation and linearization.

\ Content

Modelica in Brief
OpenModelica Overview
OpenlPSL Overview
Tutorial:

o Example 1: SMIB Model Implementation and Simulation
e Stretch Goal:

o SMIB Model Analysis using OMNotebook

e Whereto go from here?

Modelica:
a language, a community and much more!

e Non-proprietary, object-oriented, e Organizations supporting Modelica lang and
equation-based community development:

modeling language m o d e I ICd The North America
for cyber physical systems. 4 Language m o d o I ca m Modelica Users’
e Open access (no paywall) & standardized Association | o GrEusounce roup

language specification (link), maintained by the
Modelica Association

e Opensource Modelica Standard Library with
more than 1,600 components models.

e Andthe development of other sister open access
standards for M&S with interoperability at their

X . core:
e Supported by 9 tools natively, both proprietary
- | * Functional Mock-
(Dymola, quelon Impact, etc.) and Open Source -fm puoncclflzga e‘fml Functional Mock-up
(OpenMOdellca) Interface =————temmm—— embedded systems
e Avast .num.ber qf proprietary and open-source Ss dC Distributed
Modelica Libraries System Structure p Co-Simulation
& Parameterization Protocol

What is an Open Access Standard
From Wikipedia: An open standard is a standard that is openly accessible and usable by anyone. It is also a prerequisite to use open
license, non-discrimination and extensibility. Typically, anybody can participate in the development. 6

https://github.com/modelica/ModelicaSpecification
https://www.modelica.org/association
https://mbe.modelica.university/components/packages/msl/
http://dymola.com
https://www.modelon.com/modelon-impact/
https://www.openmodelica.org/
https://modelica.org/libraries

Modelica + Sister OA Stds (FMI, eFMI, etc):

Scope Separation Enables Multiple Uses of the Model

Modeling by the Human

Equations

Diagrams

Algorithms

Acausal, Transparent, Reusable Models in
Modelica-Compliant Tools

Interoperable and Portable Models in
non-Modelica Environments via Sister
Open-Access Standards
(e.g. C/C++, Python, MATLAB)

Simulation Code Generation and

And Applications

Computation
by Modelica-Compliant T
Software Tools (Computer) f / | f\ AR A
Code S
Generation " .

LLLLLLLLLLLLLLLLLL

dt tFin/N

1 =178

TBC =

Procedural Code

T2 = T8

time = 0

icom = 1

open (lun, FILE='results.txt')
t Perform integration

doi-=1,

N, 1
TO + amp * dsin{2x3.1

Simulation and
Linearization

Optimization

Control

Embedded

Exploit for Multiple Purposes A

M

> <E|OUJAG “89) MG Juel|dwoD-ed1[dPoIA Uy

&

Modelica + Sister OA Stds (FMI, eFMI, etc):

One model portable across multiple tools!

One Open-Access Standardized

Modeling Language
/ : @
Modelica) @‘
™.
ke
B 6 S
— st

With Interoperability and Portability in
Modelica-Compliant and FMI-Compliant Tools

Multiple Tools
Natively Supporting
the Modelica
Language

2
2S D4YMmoLA

SIMULALION X v, @1

S+¢ MapleSim'

>

™)
Wolfram ;@SystemModeler"
OpenModelica

Multiple Tools
Compliant with the FMI
Model Exchange and Co-Simulation
Standards

m " Functional
| Mock-Up
Interface

Supported by more than 170 tools!
https://fmi-standard.org/tools/

https://fmi-standard.org/tools/

Power system phenomena

that can be 944
\modeled In the m’odelfca

Electromechanical]

Transients

ine switchi

N\ [Quasi-Steady State
Dynamics

A

SubSynchronous Resonances,

transformer enerizo’rion. N

—

Elec’rromogne’ric Transients

Positive Sequence /RMS / or
Phasor Time-Domain Simulation

https://youtu.be/IKdECHSO9wc
https://youtu.be/dniUYU7Ka34

\ Content

e OpenModelica Overview
e OpenlPSL Overview
e Tutorial:
o Example 1: SMIB Model Implementation and Simulation
e Stretch Goal:
o SMIB Model Analysis using OMNotebook
e Whereto go from here?

10

Understanding the OpenModelica
Environment

e OpenModelicais anentire ecosystem, Open MOdehCCI

which at its core has the OpenModelica
Compiler (OMC).

Poud| O Motebook OMPython
. . Interactive Python
e There are many ways to interact with the Notebooks / Scripting
OMC, and in this tutorial, we will use . —
maily OMEdit. UML Modelica |, InteracS‘u';:?i?rompﬂer — : S{I:gs;;eu
and requirement i ' Scﬁ:ﬁ;;
. verification
e OMEdit: —
o Object-oriented graphical & [OMEdi Graptic OMOptim
modeling. B T e
o Tobuild, edit and simulate Simulation
Debugger [:
models. MDT | Denga [+ e [B
Eclipse Plugin Visualization

e More about OpenModelica’s
Environment:
https://openmodelica.org/doc/OpenM
odelicaUsersGuide/1.21/

https://openmodelica.org/doc/OpenModelicaUsersGuide/1.21/
https://openmodelica.org/doc/OpenModelicaUsersGuide/1.21/

OMEdit - OpenModelica Graphical

Modeling and Simulation Environment

qﬁ OMEdit - OpenModelica Connection Editor
File Edit View SSP Simulation Data Reconciliation Sensitivity Optimization Debug Tools Help

e BHE &~

Libraries Browser & X

Filter Classes : ~_E 4

- [m] X

Documentation Browser F X

AR AR 4
info rev header

Libraries
> E] OpenModelica
> Modeli...rvices =
Recent Files || Latest News
> B Complex
> 7% Modelica B Cy/Users/vanfr/Drop £> MODPROD 2023 ~
(2
< >
v
Clear Recent Files Reload For more details visit our website www.openmodelica.org
erer e o
Messages Browser g X
Al Notifications Warnings Errors
[1] 16:58:16 Scripting Notification
Automatically loaded package Complex 4.0.0 due to uses annotation from Modelica. o
[2] 16:58:16 Scripting Notification
Automatically loaded package ModelicaServices 4.0.0 due to uses annotation from Modelica. v

€ welcome & Modeling

8 Plotting

‘ Debugging

12

Loading OpenlPSL to OMEdit’s Library
Browser

% OMEdit - OpenModelica Connection Editor =

file Edit View SSP Simulation DataReconciliation Sensitivity Optimization Debug Tools Help

F New >

W& Open Model/Library File(s) Ctri+0 Iit-OpenModeIica Connection Editor OpenIPSL ShOUId be Ioaded nOW and ready tO Use!

Open/Convert Modelica File(s) With Encoding

Load Library Latest News

R L || & wooeron202 &% OMEdit - OpenModelica Connection Editol

Open Result File(s) Ctrl+Shift+0

File Edit View SSP Simulation Data
Open Transformations File

W Open Composite Mocdelt) Click on “File” and Scroll Libraries Browser
g Down to “System IFI:er Classes l z 4
Libraries>OpenlPSL>3.0.1" : i
P Libraries

il and click! @ i
B swea ' OpenModelica

i|'||| th
} | X

ModelicaServices

e > , @,j,‘ Complex

Export >
> 77 Modelica
System Libraries. » Complex »
- ¥ OpenipsL
Manage Libraries > Modelica » t p
e » ModelicaServices P |
OpenlPSL » 3.1.0 (pre-release build master)

Clear Recent Files

301
& Print. Ctrl+P 1 3
Quit Cri+Q

\ Content

e OpenlPSL Overview
e Tutorial:
o Example 1: SMIB Model Implementation and Simulation
e Stretch Goal:
o SMIB Model Analysis using OMNotebook
e Whereto go from here?

14

The Openl|PSL Project - Origins

KTH SmarTS Lab (my former research team in Sweden) actively participated in the group or partners
developing iPSL from 2012 until the end of the EU FP7 project iTesla project (March 2016)

iPSL was a nice prototype, but we identified the following issues:

Need for compatibility with OpenModelica, Fork: a software project
(better) use of object orientation and O ‘ ? going in a different

o .. development direction
Poor harmonization, lack of code factorization, etc.

The development workflow was complex
m Different parties with disparate objectives, levels of knowledge, philosophy, etc.

o Theseissues lead to a need of a different approach.

e OpenlPSL started as a fork of iPSL in 2016, and has now largely evolved!
e OpenlPSL is hosted on GitHub at http://openipsl.org

e OpenlPSL is actively developed by members and friends, as a research and education oriented
library for power systems.

15

http://openipsl.org/

The OpenlIPSL Library — Key Features

OpenlPSL is an open-source Modelica library
for power systems that

v ¥ OpeniPsL

C Copyright
e Contains a set of power system © usersGuide
components for phasor time domain > Examples
modeling and simulation of power Electrical
systems NonElectrical

e Models have been verified against a 4| interface-
number of reference tools (mainly PSS/E) i lcons

OpenlPSL enables: L Types

P Tests

e Unambiguous model exchange

e Formal mathematical description of & o0t
models 1 GenCLs

e Separation of models from tools/IDEs] GenRoE
and solvers] cenrou

e Use of object-oriented paradigms || GensaE
| GENSAL 16

v PSSE

BaseClasses

The OpenlPSL Library
VerSIonS Year MSL ver Library ver License

e Major updates to the library:

Work starts! FP7 iTesla

2012 MSL 3.2.1 .
e What's different between versions - see previous project funded for 4 years!
publications of OpenlPSL: _
o [1]is pre-fork > 5/2016 MSL 3.2.1 iPSL v1.0.0. MPLv2.0
o [2]isfor OpenlPSLv1.5.0 i) .
e Latest paper of OpenlPSL for Version 2.0.0: D Fork!
o Marcelo de Castro, Dietmar Winkler, Giuseppe E
Laera, Luigi Vanfretti, Sergio A. Dorado-Rojas, Tin 5 12/2016 MSL 3.2.1 OpeniPSL MPLV2.0
Rabuzin, Biswarup Mukherjee, Manuel Navarro, e VUL
Version [OpenlPSL 2.0.0] - [iTesla Power Systems 8‘ OpeniPSL
Library (iPSL): A Modelica library for phasor °© 112017 MSL 3.2.2 e o MPLv2.0
time-domain simulations], SoftwareX, Volume 21, a>.> -
2023,101277,1SSN 2352-7110, a 612022 MSL 3.2.3 OpeniPSL 3_Clause
https://doi.org/10.1016/j.softx.2022.101277 < v2.0.0 BSD
e OpenlPSL Version 3.XY paper in preparation, will contain
major updates of forthcoming PRs. 6/2022 MSL 4.0.0 Opzn(i)P1SL 3-3';‘3)86
Vo.U.

[1] L. Vanfretti, T. Rabuzin, M. Baudette, M. Murad, iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations, SoftwareX, Available online 18 May 2016, ISSN 2352-7110,
http://dx.doi.ora/10.1016/j.s0ftx.2016.05.001

[2] M. Baudette, M. Castro, T. Rabuzin, J. Lavenius, T. Bogodorova, L. Vanfretti, “OpenlPSL: Open-Instance Power System Library — Update 1.5 to “iTesla Power Systems Library (iPSL): A Modelica library for phasor 17
time-domain simulations™, SoftwareX, Volume 7, 2018, Pages 34-36, ISSN 2352-7110, https://doi.ora/10.1016/j.s0ftx.2018.01.002

https://github.com/OpenIPSL/OpenIPSL/releases
https://doi.org/10.1016/j.softx.2022.101277
http://dx.doi.org/10.1016/j.softx.2016.05.001
https://doi.org/10.1016/j.softx.2018.01.002

Status and Coverage in Modelica Tools

Dymola A

Modelon Impact
SIMULALION X +, @/ &+¢ MapleSim'
:)
Open Modelica Wolframﬁ 7 SystemModeler

v.3.0.1 Mostly Compatible Partial Compatibility

Pre-release development build - v.3.0.1-dev Improved Compatibility

18

Openl|PSL - Library Structure

* Thelibrary is divided in the following sub-packages:

o

o

Examples: different types of power system models, from textbooks and the real-world.

Electrical: power system components (e.g. synchronous machines, excitation systems, v 3¢ OpenlPSL
loads, etc.) C' Copyright
0 UsersGuide

Non-electrical: functions used by different components in the electrical package (e.g.

, , o > Exampl
saturation functions, specialized integrators, etc.) : a:‘p els
ectrica
Interfaces: specialized “pin” for acasual electrical coupling and other (future) interfaces. e s s
Icons: defines icon for verified models (those checked against PSS/E). 4 Interfaces
Types: defines type units such as voltage, current, etc., and provides nominal values useful f Icons
for scaling during initialization. L Types
P Tests

Tests: unit testing models for all library components. Meant for functional testing of

implementation, not for illustration/analysis purposes.
19

OpenlPSL - Electrical

* The Electrical package contains most of the components that comprise
an actual power network model.

* Itincludes electrical machines (synchronous generators, motros),
transmission lines, loads, excitation systems, turbine+governors, etc.

o These are used to build the power system network models.

* Under each category, you can find different types of models organized
according to their original source, the main ones are:

o PSAT: validated against Prof. Milano’s PSAT sw.
o PSS/E:validated against PSS/E.

o Generic: models taken from standards or literature without
verification against another tool.

v },ﬁ OpenlPSL

v

C ' Copyright
0 UsersGuide
P Examples
Electrical
SystemBase
Controls
Banks
Branches
Buses
Events
FACTS
Loads
Machines
“4* Sensors
Solar
» Sources
ThreePhase
Wind

Essentials

Branches

[Pwline
Generic
Simulink
PSSE

PSAT

Machines

PSAT
PSSE

€ Plant

|} GENCLS

| GENROE
| GENROU
| GENsaE
| GENsaL

BaseClasses

20

OpenlPSL - NonElectrical

N, NonElectrical

N Continuous

| Derivativelag

.| IntegratorLimVar

j Leadlag
v %¢ OpenipsL | LeadLagLim
. . . . C Copyright] e
The NonElectrical sub-package is comprised by functions, blocks or o N | Rk mar s
. . . . UsersGuide | Simplelag
models, which are used to build the the models in the Electrical = .
P Examples | SimpleLagLim
SUb_paCkage: Electrical SimpleLagLimVar
. . i “| SimpleLagRateLimBlock
« Transfer functions, logical operators, etc. ¥ S ey s kel
Continuous * | SimpleLagRatelimVar
They perform specific operations which were not available in the Functions y | SimpleLead
Modelica Standard Library (MSL) Logical
Nonlinear NonElectrical
Necessary to replicate the behavior of proprietary tools for basic AR interfaces Continuous
functionalities, e.g. integrators with limiters..., all the way to complex 1 | lcons v L] Functions
. . displayP
functions (generator saturation model). { Types) dEplayPowet
P Tests sk
Extremely important when aiming to reproduce PSS/E behavior. ImSE_exp
f) SE
f SE_exp 21

Openl|PSL - Interfaces v Y OpenipsL

C Copyright
.) . UsersGuide
e The Interfaces package contains a set of specifically developed Modelica connectors to Bt
. . . . 1 ampies
make acasual connections between the electrical models in this library A

* The most important is PwPin a connector, which contains voltage and current
quantities in phasor representation (real and imaginary components of the vd
complex number). \

e Acontainer to build up a “source” or “sink” sub-system (e.g. a power plant with
multiple machines, etc.) is also included.

NonElectrical

Interfaces

B ~ein

(" Generator

1 lcons
e Other interfaces under development, e.g. multi-domain interface to couple B e
mechanical+thermofluidic models of turbines, etc., will be included here in the future. B ek

Icon View Text View

1 within OpenIPSL.Interfaces;

connector PwPin
"Connector for electrical blocks treating voltage and current as complex variables"
Types.PerUnit vr "Real part of the voltage";
Types.PerUnit vi "Imaginary part of the voltage";
flow Types.PerUnit ir(start=Modelica.Constants.eps) "Real part of the current";
flow Types.PerUnit ii(start=Modelica.Constants.eps) "Imaginary part of the current"; 22
annotation (| .s.);

end PwPin;

OpenlPSL — Examples

| v|[»] Examples

v |®] Tutorial
v [E Example_1 . .
® Baiple 1 Klein-Rogers-Kundur 2-Area 4-Machine System
> % Generator > [(») IEEE14 e
’ Network 3 E] KundurSMIB -F = -bu 11_ ‘b 3
(® modal_analysis =, »] N44 & ; - ”Xi "X
Ry o o
> [»] Example_2 > [»] NamsskoganGrid > B bugs
: E} Example_4 ’ [E] pSATSyStemS PF_re... Lo\aﬁ7 Two-Area System Loads Xhu
5 % AKD 3 B Rap|dExper|ments Prabha Kundur, "Power Syste..
> DAEMode >
S [»] SevenBus IEEE 9 Bus IEEE 14 Bus
> (») IEEE9 > [»] TwoAreas
6}0 — o i st i i 29 Sys‘,:\vns:a‘?enitjﬂ MVA| 2 PRS
iz A?gu‘ | e \P/RZ
IEK LL
10ADPQ ‘[' <§>_
H : A: Syste.m Data
6

Openl|PSL - Examples

But can you model/simulate large networks?

Simulation performance depends on the simulation tool, not the
model!
o Example: OpenlPS.Examples. DAEMode.N44_Original_Systems
o While you can simulate this model in several Modelica tools,
some tools have better performance than others.
Key: The Modelica standard enables model portability, and thus,
facilitates competition between software tools!
Dymola 2019FDO02 has shown to be faster than PSS/E, as reported in
the following paper:
https://github.com/OpenlPSL/20192 Modelica Conf DAESolvers4Lar
geHybridModels

DAE Solvers for Large-Scale Hybrid Models

=== Dymola
=% = PSS/E

DAE Solvers for Large-Scale Hybrid Models

0.985

Erik Henningsson! Hans Olsson! Luigi Vanfretti?

V [5304] (p.u.)

IDassault Systemes AB, Lund, Sweden, {Erik.Henning Table 1. CPU-times for the three Nordic 44 fault scenarios.
ZRensselaer Polytechnic Institute, Troy, NY, U

4
©
@©

Fault Rkfix2 Dassl
\ ODE mode ODE mode DAE mode
0.975
0 2 4 6 8 10 Line 587 s 2015 421s
Time (s) Bus 3100 270s 7810s 33.7s 24

Bus 5603 344 s 49 800 s 121's

https://github.com/OpenIPSL/2019_Modelica_Conf_DAESolvers4LargeHybridModels
https://github.com/OpenIPSL/2019_Modelica_Conf_DAESolvers4LargeHybridModels

v Y¥ OpenlPsL
C Copyright
) 0 UsersGuide
OpenlPSL - Examples.Tutorial v [Bomples
> v @ Tutoerial
P Example_1
P Example 2
e Examples.Tutorial: B Ecample.3
* Inthis tutorial, the Tutorial package will be used to illustrate v [»] Tutoria P> Example 4
basic use examples of the library v Wl Example 1 B AKD
> » Example_1 » DAEMode
v Generator » |EEES
5 step_1 > IEEE14
* Inthe packages Example_1, ..., all steps to build the models are 0 Step2 » KundurSMIB
provided. 0 Step 3 > Na4
'“;* Generator » NamsskoganGrid
« The final "answer” (i.e. model) is shown with a “Play” icon. - ok > OpenCPs
M| step_1 P PSATSystems
M| step_2 P RaPldExperiments
M| step_3 P SevenBus
M| step_4 P TwoAreas
M Step 5) Electrical

k OpenlPSL - Providing a good “initial guess”

e The power system needs to be in equilibrium before running the simulation or if
stable, after a disturbance is applied, it must converge to an equilibrium.
- Q: How can we find this equilibrium?
- A: Set derivatives to zero and solve for all unknown variables!

x = f(x,y,u) 0 = f(x,y,u) —compliant tools
0 = g(X7Y? u) 0 = g(x,y,u)
e Need for a good initial guess: f
- Let equation set g be separated in two sets, g, and g, T e = |
- (1) describes the d.ynamics (e.g. generators apd their contrql syst-ems, etc.), they depend f e | T 1
on both x and y, i.e. you have both differential and algebraic variables. oo e

- (2) Is the network model, consisting of transmission lines and other passive components
which only depends on algebraic variables, y.

e Finding the equilibrium for (1) and (2) is a difficult numerical problem, we address this
) S x f(x,y,u)
by providing a good initial guess: (1)
- Our models in OpenlPSL derive these initial guesses from power flow input data, i.e. the ____0____?____9_1_(_}_{_’_3_’2_1})___
solution of (2) which only solves for . 0 = g y,u) (2)
- Note that a solution of (2) from a power flow solver helps, but does not guarantee an 26

equilibrium, i.e. solution to both (1) and (2).

OpenlPSL - Providing a good “initial guess”

e Aninitial guess for all algebraic, continuous and discrete variables need to be provided to solve a numerical problem!

— For example, when solving differential equations, one needs to provide the initial guess of the state variables at rest.

* In Modelica, the initial values of states can be either solved or specified in many ways:
e Usinginitial equation

- Setting the () attribute when instantiating a model when the start value is known (or possible to
calculate)
- If nothing is specified, a default would be a guess value will be set by the Modelica-tool, such as ().

¢ Inthe OpenlIPSL models we do the following:
- We compute an initial guess value for all required variables in the parameter section of the model definition.
- Theinitial guess value is then set with () for the solution of the initialization problem.

¢ Inthe OpenlIPSL models we do the following:
- We obtain these values from a power flow solution via an external tool (e.g. PSS/E).
- Thisisused as a starting point to compute initial guess values through parameters within each model.
- The power flow solution is NOT the initial guess value itself, it helps to provide a starting value to the Modelica-tool to solve
the initialization problem.

27

Parameters

General Modfiers

Initalzation
deltastart [[delia) migad
u]
O
o
S | Fa—
= | r—
= |E—
pmstart [
anglev.start []
vdstrt [v
vastart

wistart
v.start
P.start
Reactive power [pu]
Field voltage [pu]

Mechanical power [pu]
Bus voltage angle
daxs voltage
s voltage
id.stert s urrent
iq.start qraxis current
Power flon data
sb [poeesy | [WANE
v G
f Hz | systemfrequency
b0 (o] [v scove power
Qo0 [iLessasssosse1 | [mver v

| Base voltage of the

Inital mechanical power [pu]

bus

W [1 witelvolagemapn
o —
Machine parameters

o @] [WA] powerratng

" 60 vltage ratng

P - —

x1d |0.302 1

o b]

deais

Damping coefficent

oK

itude

) 24 (Ws/VA]

v

Cancel

Power flow data

s, OpenlPSL - Providing a good “initial guess’

!

b [sysData.5 b | wa Systembase power
vb [a00 | {kv v | Base voltage of the busI
fn [SysData.fn | iz System frequency
PO |16.0352698692006 | iMw v: Initial active power . .
1 within OpenIPSL.Electrical.Machines.PSAT.BaseClasses;
QO [11.859436505981 2 partial model baseMachine "Base machine for PSAT models™
v_0 [1 3 extends OpenIPSL.Electrical.Essentials.pfComponent (
J protected
angle 0 [0 81 Types.PerUnit pe(start=pm00) "electrical power transmitted thr|
y 82 Types.PerUnit vEf MB=vi*V b/Vn "field voltage on machine base”;
Initialization
delta.start [|deltan rad Rotor angle
w.start O Rotor speed [pu] within OpenIPSL.Electrical.Machines.PSAT;
v.start D Generator terminal { 2 model Order2 "Second Order Synchronous Machine with Inputs and
= Outputs™
P.start D Active power [pu] 3 extends BaseClasses.baseMachine (vf(start=v£00), =xg0=x1d):;
) ., 4 protected
Q.start D g0 Reactive power [pu = parameter Real K=1/(ra”2 + x1d"2) "a constant for scaling";
I—l" : 6 parameter Real cl=ra*K "scaled ra";
Ivf.start D vf00 Field voltage [pu] I 7 parameter Real c2=x1d*K "scaled x'd";
pmostart [[pmoo | Initial mechanical pa ~ poemete Bee o pRow AR e as s : =
4 2 I parameter Types.PerUnit vf00=V_MBtoSB* (vg0 + ra*ig0 + x1d*id0)
\=2=0 g ,
10 eqguation
11 id = -cl*vd - c3*vqg + vf_MB*c3;

ig = c2*yd — cl*vg + vEf_MB*cl;
13 f0 = v£00;
14> annotacion (Documentation(revisions="<html> [...); |

end Order2;

\ Content

e Tutorial:

o Example 1: SMIB Model Implementation and Simulation
e Stretch Goal:

o SMIB Model Analysis using OMNotebook
e Whereto go from here?

29

Example 1- Origins

* This example was originally presented in
the reference book:

(@)

P. Kundur, “Power System Stability
and Control”, McGraw-Hill Inc., Palo
Alto, California, 1994. See: Example
13.2, pp. 864 - 869.

IT is NOT exactly the same as in the

book; but can reproduce the same /m

phenomena.

Example 13.2

In this example, we analyze the transient stability of the system of Figure E13.1
(considered in Example 13.1) including the effects of rotor circuit dynamics and
excitation control. The system diagram is reproduced here as Figure E13.6 for

reference.
HT
LT Trans. T CCr] o
‘., j0.5 nfinite
F cCcT2f bus
0.15 AL
E JY. &
t b j0.93 E,
P~ =
Network reacw»n 2220 MVA base
Figure E13.6
10
180 . ;
AVR with no PSS~ AVR with no PSS
E Constant £ sk
&
S 120F
R-] 2
“w E‘ ok
E T Prefault \7/ L/ AVR and PSS =l
o \
1,=0.07 s
i 0 1 1 1 1
% 1 2 3 i S 0 1 3 3 4 5

Time 7 in seconds Time 7 in seconds

Figure E13.7 (a) Rotor angle response with fault cleared in 0.07 ¢ Figure E13.7 (d) Exciter output voltage response with fault cleared in 0.07 s

30

Example 1 - Background

« The model is used in senior/graduate courses for analysis of the so-called “transient stability” and
“small-signal stability” (linearized analysis, eigenanalysis, etc.) of the system including the effects of
rotor circuit dynamics and the excitation control system.

-

This phenomena observed in early days
of “interconnections” (circa 1960’s), and
first formally explained by de Mello and

\

-

Concordia in 1969.
__ J

_

F. P. Dmello and C. Concordiaq,
“Concepts of synchronous machine
stability as affected by excitation
control,” IEEE Trans. Power App. Syst., vol.
PAS-88, pp. 316-329, 1969.

\

J

It aims to represent a power plant (with many units) by using a single aggregate generating unit (with
all it’s voltage control systems) connected via transformer and parallel lines to an “infinite bus”.

o Hence the name Single Machine Infinite Bus (SMIB) system

o Inthe French-speaking world they also call it OMIB (One-Machine ...)

31

Example 1.
Gathering Parameter Data and Power Flow Results

PSAT

We need parameter data for the models as well as a power flow solution: recall need for
good initial guess!). -
To simplify the process, since we have models validated against PSAT, we will use data
from PSAT as it is open source software.

If you are interested in PSAT here is Prof. Milano’s page: http://faradayl.ucd.ie

You don’t need PSAT to do anything right now!

o The model used in this example exists as an example in PSAT and can be used for power flow

calculations and dynamic simulations. Federico Milano
o The parameter data used in the next slides, is that from PSAT’s model implementation. T c(,de_me
o Power flow results were obtained using PSAT’s power flow solution. i e e et s -jorju~
© |%d_kundur2
O Summary power flow solution: — »13.00 —=-13.00
—>19.98 =413 > 057 —— 1998

——6.99 ——= 699 +—>-087

1.0 +—>222 —+—0.30
0.49 rad 09443 09
0.35 rad 0 rad

http://faraday1.ucd.ie/

Example 1- Let's Start Implementing

Libraries Browser

= Our goal is to reproduce the model in OpenlPSL.Examples.Tutorial. Example_1.Example_1.

!F'te‘ (

e e The process is separated in two stages: (1) building the “Generator” and (2) building the “Network”.
[P] GretiNodtics e Each stage has multiple steps, which we will do on our own here.
B e e The package with the library gives you the “solution”, so you can open another instance of
& ;’; Z‘pdl'pSL OpenModelica to verify what you are doing.
C ' Copyright v P Example_1

Example 1: Single-machine infinite bus model*
> o UsersGuide | 4 Example_1
v P Examples

— W Generator
v \ﬂ‘J Tutorial Py Step 1
v P Example_1 1;7_;-,\ ep_
» ' Example_1]'.F-\iv"‘ Step_Z Stage (1) N bU i Id i ng
v ,,G enerator "' 1}'?\1,.} Step_3 t h “« G t ”»
",\..u‘ Step_1 B1 B2 = =3 83 EhRE e / = \ € enerator
=i, L I (= JF Generator
- @ ¥ i - -
.J: Step_3 = = _ _] v Jetwork
~_r Generator g M Step_1
" M o M| step2 Stage (2), building
M| ster2 % - (M| step.3 the “Network”
m Step_3 System Data M Step_4
m Step_4 System Base: 100 MVA ﬁ St 5 33
ep_
m Step_5 *p_ Kundur, "Power System Stability and Control”, Example 13.2 Frequency: 60 Hz ~T, .
f | modal_analysis f modal_analysls

See solution in: OpenlPSL.Examples.Tutorial.Example_]1

Example 1- Creating the package structure

v P MyExamplel

® First, we will setup a Generator
Network o% OMEdit - OpenModelica Connection Editor
ackage structure as such:
p g > Example_1 File Edit View SSP Simulation DataReconciliation Sensitivity Optimization Debug Tools He
P New > New Modelica Class ~ Ctrl+N

® To create the package structure for our example:

(A) InOM’s toolbar go to File > New > New Modelica Class.

(B) This will open up the following window (1): In Name we enter “MyExamplel”, Specialization we select “Package”
and make sure you click on the bottom check boxes the option “Save contents in one filé

(C) Press“Cntrl+S” so you can save it in an easy to find location, e.g., ./.../Documents/OpenModelica

s Open Model/Library File(s) Ctrl+0 New SSP Model

0& OMEdit - Create New Modelica Class ? X o& OMEdit - Save package MyExample1 as Modelica File X
<« v 4 <« Doc.. » OpenModelica v 0 O Search OpenModelica
Name: [MyExampIe 1 |
S Organize v New folder SEEi 4 o
Spedialization: Package s A
#P Saved Games A Name D
Extends (optional): l l Browse... ScopeView
No items match your search.
- . i Search
Insert in class (optional): | I Browse... 7 et
source
[partial Save contents in one file \idans NS 2
[] encapsulated File name: | MyExamplel.mo v
D State Save as type: | All Files (*.mo *.mol *.ssp) v

Cancel Hide Folders Cancel 34

See solution in: OpenlPSL.Examples.Tutorial.Example_]1

Example 1- Creating the package structure

® Click on “MyExample1” and then select the “Text View”, enter the following instruction:

extends Modelica.Icons.ExamplesPackage;

® Look at what happened to the icon of the package!

® You've just learned how to do inheritance in Modelica, yey!

Libraries Browser & X (7] of IeeE 14 Buses] off Two_are Libraries Browser & X i [1] of 1eee_14 Buses] o Two_Areas PssE) of Exemple_1 1] E

Filter Classes Z 43 b A E o Writable | Package | TextV Filter Classes 829 i AEHO lWritabIe |Package lTextVnew [MyExamplel lC:AJsers/vanﬁ'/Dro..Jic
Libraries [
Libraries package MyExamplel
package MyExamplel [E OpenModelica extends Modelica.Icons.ExamplesPackage;

) @ OpenModelica 2 end MyExamplel; s e 3 end MyExamplel;

> ModelicaServices Complex
> G Complex 770 Modelica
» 7% Modelica ¥¥ OpenlpsL

» MyExample1

4 ")ﬂ OpenlPSL e

PR

See solution in: OpenlPSL.Examples.Tutorial.Example_]1

Example 1- Creating the package structure

o} Open Class
® Now we continue building the package structure. Information
(A) Rightclick on “MyExample1” and select “New Modelica Class” from the context men ¥ New Modelica Class

(B) We now create a package called “Generator” and insert it in “MyExample1”, we now choose to extend graphically
theModelica.Icons.Packageicon by scrolling and finding the class through the window.
Yey! You just learned how to do inheritance graphically!
(C) Werepeat the process to create a package called “Network”
(D) We now have a nice package structure like the one in the OpenlPSL.Examples.Tutorial.Example_1 package

o& OMEdit - Create New Modelica Class ? < | o& OMEdit - Select Exten... ~ ? X Libraries
OpenModelica
Name: |Generator | [Filter Classes Z 45 @ [E] ;
Specialization: Model S Npe— = - ModelicaServices
gl
Extends (optional): [Modelica.lcons.Package | Browse... | Contact &y COmplex
1 ’m .
Insert in class (optional): [MyExampIel | Browse... ReleaseNotes < Modelica
[Partial References }‘f OpenlPSL
[] Encapsulated P ExamplesPackage b u MyExamplel
> Ex |
= . e Generator 36
o Cance
Network
| BasesPackaqe

A

See solution in: OpenlPSL.Examples.Tutorial.Generator.Step_1

Example 1 - Generator Model and “extends”

® We now build a model for the power plant, which includes a synchronous machine and an excitation control system, we
ignore the turbine and its controls in this example.

® Within the Generator sub-package all components related to the machine will be included within.

® We start by extending from the “Generator” interface from OpenIPSL.Interfaces.Generator

Right
Click

A Open Class

Information

— " New Modelica Class

Click

Name:
Spedialization:

Extends (optional):

o OMEdit - Select Exten... ? X

Fill in Click
lGenerator l
Model

* v

|OpenIPSL.Interfaces.Generator |

Browse...

Insert in class (optional): IMyExample 1.Generator

[] Partial
[[] Encapsulated
[state

l Browse...

Select

[oc 1]

\

Libraries

@ OpenModelica

ModelicaServices
E‘:} Complex
7% Modelica
V. }ﬂ OpenlPSL
C/ Copyright
0 UsersGuide
P Examples
Electrical
NonElectrical

v o | Interfaces

B rein

Cancel

e © oo

=

37

« We will use the 6" order model
from PSAT:
OpenlIPSL.Electrical.Mach
ines.PSAT.Orderb6

« Under the “Diagram View”, drag
the “Order6” model from the
library and dropping it to the
Generator sub-package that we
just created

e Give the name “machine” to the
component.

See solution in: OpenlIPSL.Examples.Tutorial. Generator.Step_1

Example T-Synchronous Machine Mode|

lcon View

o OMEdit - OpenModelica Connection Editor - [m] X

File Edit View SSP Simulation Data Reconciliation | Sensitivity Optimization Debug Tools

F-wBH

Libraries Browser

‘:”,,. -
ter Classes

E 6.9

Help

NOHOTH <=

Ny

<"

L
N 2N

Q S &-
oA [X]

Wi E 0 !Writable |Model [Diagram View |MyExanp|e1.Genaator.Generamr IC:AJserslvA.Axamplel.mo l o ‘

g X Generator®

& OMEdit - Enter Component Name ? X

Please choose a meaningful name for this component, to improve the readability of simulation results.

Name: Imachine|

[] Don't show this message again

Libraries
v Y¥¢ OpenlPsL

v

v Mach

C ' Copyright

Lo A

0 UsersGuide

P Examples
Electrical
SystemBas

rator

Controls

This diagram view is that of:
MyExamplel.Generator.Gene

v P MyExamplel
v Generator

" ¢ Generator

Banks
Branches
Buses
Events
FACTS
Loads

Network

pwPin

Ty

Drag and Drop!

/b =

‘ Orderd
Order5_Typel

{ Order5_Type2

Orderb

» Parametrize only the highlighted
area (for now) with the table on

the right- q

See solution in: OpenlIPSL.Examples.Tutorial. Generator.Step_1

Example 1- Synchronous

Double click on the machine

+ Order VI d.
/‘"uﬁ\\ v
!

e |
\

N i P
> machine q

’ Parameters

General Modifiers

st O :

Machine Model Parametrization ==

g-axis voltage
0 1 d-axis current
ig.start D 1 g-axis current
Power flow data
Sb l; ysData.5_b ‘ V.A System base power
Vb ‘V_b ‘ v Base voltage of the bus
fn ‘. ysData.fn ‘ Hz System frequency
PO ‘P_o ‘ w Initial active power
Sn 22 20 x’ ! q O . 2 5 Qo0 [Q_o] var Initial reactive power
v 0 ‘V_O ‘ 1, Initial voltage magnitude
V 400 TI 8 angle_0 ‘angle__o ‘ rad Initial voltage angle
n d,0
ﬁchlne parameters \
T, O _003 T’ O] xd 1 d-axis synchronous reactance
a q,
xq 1 g-axis synchronous reactance
xd] -8] T”d 0 O .03 x1q 1 Qg-axis transient reactance
’ x2d |0.23 1 d-axis sub-transient reactance
n x2q 1 q-axis sub-transient reactance
X, | 176 | T4 |0.07 '
24 T1do s d-axis open circuit transient time d
’ T1q0 !:I g-axis open dircuit transient time d C
¥a |03 Tae |0.002 : =
T2do s d-axis open circuit sub-transient tff —
x’q O 4 65 M 7 T2q0 s q-axis open circuit sub-transient ti i_l__
Taa |0.002 s d-axis additional leakage time con:
1) .
x4 O : 23 D O sn [2220 MVA v | Power rating

L E

ra 0.003 1
" '
M s

Voltage rating

Armature resistance

d-axis transient reactance
Mechanical starting time, 2H [Ws/VA]

Damping coefficient

=

Cancel

See solution in: OpenlPSL.Examples.Tutorial. Generator.Step_1

Example 1- Synchronous Mach.
Power Flow Input Data

. o’k C
* Next we learn to do parameter propagation. l
' Parameters
» Although we already know the specific values from the power |
flow that we need to enter, we would like to be able to enter all | General Modifiers]
of ’Fhe datg of the power flow of the “Generator” sub-systemin | .. O . T
a Slngle window . id.start | 1 d-axis current
o Inother words, we would like to propagate the ; — .
« # q.start E] 1 qg-axis current
parameters from the upper “Generator” layer, to
nel « ” rl»"ower flow data)
each of the components inside the “Generator
Sb |,C-_t] V.A System base power
« Usingthe variables (v _0, angle 0, etc.) allowsto vb b | Base voltage of the bus
propagate the parameters to the “upper layer” of the fn [sysData.fn | [Fe System frequency
generator component. Fill in Po [po | b Initial active power
Qo0 [qo | fvar Initial reactive power
* Notice that there are two greyed-out parametel.’s, S bandfn, & S | 1 Initial voltage magritude
as SysData.S band SysData. fn,don’t modify them, we'll anciach ngeoe | R il vottage angie
talk about the soon. \. o/

See solution in: OpenlIPSL.Examples.Tutorial. Generator.Step_2

Example 1 - Excitation Control System Model

Electrical.Controls.PSAT.AVR.AVRtype...

* The AC voltage at the terminals of a generator (stator) is P A; > : Erdir i de‘;> |
controlled by varying the DC voltage of the field winding (rotor). . 1 J 'l —
* We model this through the so-called “Automatic Voltage l_\/l P. ~ .
Regulator” using PSAT’s AVR Type lll model, and parametrize > : machine o>

it with the values in the table, drag and drop the component
from and give it the name avr: Fill in

OpenIPSL.Electrical.Controls.PSAT.AVR.AVRtypeIII = S \
Vf,max "
o% OMEdit - Enter Component Name ? X Vemin | -6.4 vfmax L
' N R
Please choose a meaningful name for this component, to improve the readability of simulation results. KO 200 Ko 200 1 regulator gain
Name: lavr| ‘ Tz 1 T2 s v regulator pole
[[] pon't show this message again Cancel Ty 1 mn s V| Regulator zero
T, 0.0001 Te s v | Field drcuit time constant
« Double click on the AVR model, and enter the parameter data T, |0.015 i B Measurement ime constant

in the table.

See solution in: OpenlIPSL.Examples.Tutorial. Generator.Step_2

k Example 1 - Set-point and External Input

“«_n

. . The value of “v” is received as an input, it comes from the synchronous
* AVR Set-pomt‘ All control syStems need a set-pomt, machine model as it has to correspond to the value of the required field

however, the value of the reference depends on the voltage, we see in the next step how to interface them.
measured voltage and other variables.

initial equati

. In OpenlPSL, the set-point for all controllers, needs - [Vret = v; |
to during during initialization using the initial : Sg: ngo
. . . . T v = v ;
equation construct and receiving it as an input. vm = v;
vr = RKO*(1 - T1/T2)* (vref + vs - vm);

» External Input: AVRs have external input signal ports for
different purposes, e.g. input from other sensors, other oA OMEdit - Enter Component Name 7 X
controls (e.g. PSS), etc.

Please choose a meaningful name for this component, to improve the readability of simulation results.

* Inthe Tutorial Example 2, this model is extended to Name: [pss_off |
add a PSS to the AVR, but for now, we will not model it. | [JDon'tshon this message agan Caree
* A constant block from the MSL will be used as a zero, e
get that from v
Modelica.Blocks.Sources.Constant ,setthe s | P Order VIes> .,
value of k=0 and name itpss off o .
N Modelica.Blocks.Sources.Constant » zm maChine Q

* To finish the generator model,
different signals need to be
connected as shown on the figure
on the right.

« Optionally, the “icon” generator
model can be altered from the i
“Ilcon View” to change the visual
appearance.

—

\
-y
Y
\

| %name , W
\ ./

See solution in: OpenlIPSL.Examples.Tutorial. Generator.Step_3

pss_off

Example 1 - Interfacing all components

Ordgr VI de?:a>

y ‘
AVR.. b ’ vf
S P \
\ ¥

t ""machine g

1. Machine's terminal voltage to AVR's input signal\
2. AVR's output field voltage to machine's input

field voltage

3. Initially calculated mechanical power to input
signal of the machine's mechanical power input pm.

4. Constant pss_off to the PSS input at the AVR

5. Initial generator field voltage to initial AVR field

voltage.
s

6. Generator pin to External pin

See solution in: OpenlIPSL.Examples.Tutorial. Generator.Step_3

Example 1- Check!

» Now we can see if the “Generator” :)\
sub-system has been assembled correctly. o1 wn. bt w Order VI «s>

¢ |[n Modelica-tools we use the operation 'JI:_ ~) l—.
check (modelName) to determine if the EY i :;
model is “balanced” (same number of .

equations as unknowns), and perform other
checks about your model (e.g. missing or

broken connections, etc). eseie rcnes
. h | k d | d th | " All Notifications Warnings Errors
o ng t ClIICK On your model an en seilec [4] 12:36:52 Scripting Notification
theicon Q Check of MyExample 1.Generator.GeneratorAVR ¢
Class MyExample 1.Generator.GeneratorAVR has 41 equation(s) and 41 variable(s).
e |f you see asimilar message in the 17 of these are trivial equation(s).

“Messages Browser” then that means the
model has passed the check.

44

See solution in: OpenlPSL.Examples.Tutorial.Network.Step_1

FACTS 4 OpenCIa;s

Loads Information
Example 1 - Network Model Setup = 7855 ,

Solar [j -

ThreePhase

® The power network model will be implemented in the Network package we Copy Path CtrieC

Created. E Instantiate Model
a0 @ Check Model
/ > [icons & Check All Models
® Right clicking on the Network package, and select “New Modelica Class” B e & Duplicate
> [P Tests ¥ Delete Del
L4 . “« »” v P MyExamplel Export N
The name of the network model will be “Example_1" and you should select the oot
Generate Verification Scenarios
specialization “Modeln. VIMﬁ 17 of these are trivial equation(s).
o4 OMEdit - Create New Modelica Class ? X
Name: [Example_1| | Fill in: “Example_1"
Spedalization: | Model v |
Extends (optional): I] Browse...
Insert in class (optional): lMyExample 1.Network | Browse...
[] partial
[] Encapsulated
State
M) 45
==

See solution in: OpenlPSL.Examples.Tutorial.Network.Step_1

A

Example 1— Network Components

» Dragand drop the generator model that we created = = =
and name it G1. I I

» Dragand drop a bus model three times, and name them | y |
B1,B2 and B3; use: OpenIPSL.Electrical .Buses.Bus — s sl s

* Dragand drop a system data block from: B o

OpenlPSL.Electrical.SystemBase and name it SysData
o Double click on SysData and enter: fn = 60.
o Look at the text view, and you will find the following
statement: Parameters

General Modifiers

inner OpenIPSL.Electrical.SystemBase SysData(fn = 60) Component
Name: SysData
Comment:

o& OMEdit - Element Parameters - SysDatain... ? X

o Thiswill allow all the components that use variables s b

Class

and fn to access the value defined in the top layer of the T
mOdeI. Comment: System Base Definition

o Notethat s bisnotin parenthesis, this is because we Parameters
will use the default value of 100 MVA, so we don’t need 3 BB e booe
to modify it fn Hz | System frequency

46

oK Cancel

* Add the following transmission lines and transformer
models (leave default names):
* OpenIPSL.Electrical.Branches.PSAT.TwoWin
dingTransformer
e OpenIPSL.Electrical.Branches.PwLine

* Parametrize the new components:

Transformer

Power flow

Sb [S;:-[uata.s_b

System base power

v_b [a00

w | Sending end bus voltage

Transformer parameters

Sn |2220000000 VA v

Vn
T

xT |0.15

[l

Resistance(transformer base)

Reactance(transformer base)

Line parameters

-

-

(=

-

R o |
X [0.5%100/2220 |
G o |
B o]

|

s_b 100000000

=

See solution in: OpenlPSL.Examples.Tutorial.Network.Step_2

Example 1— Network Branches

B1 B2 - - B3
w=transf... m-
[-~
Vpu Vpu - - Vpu
Angle Angle = Angle
System Data
System Base: 100 MVA i -
Frequency: 60 Hz
Line 2
Line parameters
Resistance R |0 I 1 Resistance
Reactance X [0.93=100/2220 | 1 Reactance
Shunt half conductance ¢ [o | 1 Shunt half conductance
Shunt half susceptance B |0 I 1 Shunt half susceptance

System base power

s_b (100000000

V.A | System base power

Optional fixed tap ratio

47

See solution in: OpenlPSL.Examples.Tutorial.Network.Step_3

Example 1— Network External Grid and Gl
Dispatched Power

It is quite common to use an “Infinite Bus” to model the connection of a plant to the rest of the power

transmission network.

* Draganddrop the "Infinite Bus” model from OpenIPSL.Electrical.Buses.InfiniteBus

andcallitinfiniteBus

Parametrize both the generator and infinite bus using the power flow data!

Gl

Power flow data

Sb [sysData.5 b | s
vb [400 | kv
fn [sysData.fn | Hz
PO [1997.99999999364 | {mw
Q0 [957.924969906573 | [Mvar
v_0 [1 | 1
angle_0 [28.34291446292456 | |deg

<

<

<

v

B1 B2
W= transf... =
B B

Vpu
Angle

System Data
System Base: 100 MVA
Frequency: 60 Hz

infiniteBus

-l
-

Infinite bus

Power flow data

S_b SysData.S_b V.
v X
fn SysData.fn Hz
o
Qo Mvar
v.0 !

) Ca—

Note: such type of power flow would be unfeasible in an actual network. Observe the voltfage magnitude and powers — this is truly a textbook example.

<

<

<

<

See solution in: OpenlIPSL.Examples.Tutorial. Network.Step_4

Example 1 - Fault Event

* We would like to simulate how the system behaves

when exposed to a large disturbance. . I — I
« The disturbances that are most critical for power | | | { -
networks are 3-phase-to-ground faults. o e e e
System Data L
« To model this, we add the block from s e AR - =
Frequency: 60 Hz pwFault
OpenIPSL.Electrical.Events.PwFault +*1
« Parametrize the fault as follows /
R |0 t1 10.5

X 10.01*100/2220 |t2 |0.57

See solution in: OpenlPSL.Examples.Tutorial.Network.Step_5

Example 1- The Final Model!

* The network model is completed by connecting all of
the components together as shown in the diagram.

infiniteBus

B3

 Before simulating, we should “check” the model, you
should get something similar if the model is balanced.

e Right click on your model and then the check icon 0
¢ If you see a similar message in the “Messages - .
Browser” then that means the model has passed the — pywhault
System Base: 100 MVA '*]
CheCk. Frequency: 60 Hz =

Messages Browser
All Notifications Warnings

[2] 13:43:31 Scripting Notification
Check of MyExample 1.Network.Example_1_final
Class MyExample 1.Network.Example_1_final has 132 equation(s) and 132 variable(s).

65 of these are trivial equation(s).

Errors

o4 OMEdit - Simulation Setup - MyExamplel.Example_1 ? X
Simulation Setup - MyExamplel.Example_1
Exa I I l p | e -I General Interactive Simulation Translation Flags Simulation Flags Output
° Simulation Interval
Let’s simulate! i M ==
[]
Stop Time: [10 | secs
@ Number of Intervals: 10000 5
O Interval: [0.002 | secs
. « ”» :
(A) Double click on the “Example_1" model. Integration
. . . Method: | dassl v [A
(B) Next, right click on the model and click on the
Tolerance: |1e-6 I
simulation setupicon: |S Jacobian v
. o Options
(C) Configure the solver as shown in the window on »
Root Finding
. . «]
the right and then click on “OK A Restart Afer Event
Initial Step Size: [|
v P MyExamplel A IO:En CI:ss Maximum Step Size: [I
nformation
Generator Maximum Integration Order: |5 s I
f" New Modelica Class
Network j
“z Order 4
m Example 1 C/C++ Compiler Flags (Optional): [|
% e 0 IPSL - = Simulate I Number of Processors: 1 5 U* 1 processor if you encounter problems during compilation.
en -] .
y P @ Simulate with Transformational Debugger] Build Only [] Launch Transformational Debugger
® Simulate with Algorithmic Debugger [Launch Algorithmic Debugger [Launch Animation
é Simulate with Animation
S| Simulation Setup
/ W Duplicate Save experiment annotation inside model i.e., experiment annotation
x Delete Del [[] save translation flags inside model i.e., _ OpenModelica_commandLineOptions annotation
S » [] save simulation flags inside model i.e., _ OpenModelica_simulationFlags annotation
Update Bindings
— ==

Example T
Let’s plot!

After clicking “OK”, OpenModelica entered the
plotting mode.

If the simulation was successful, the “Messages
Browser” will indicate that:

The simulation finished successfully.

(@)

You can now use wildcards to search for specific
variables to plot.

o Inthe“Variables Browser’youcanenter
“B* .v" tosearch for all variables that contain
the structure.

o SelectBl.v,B2.v,and B3.v,these correspond

to the generator bus, the high side of the
transformer bus and the infinite bus voltage.

This example shows that the model is unstable when the fault
is applied, this is the behavior that we wanted to reproduce.

Libraries Br... x

o @ww g e, 8,

Libraries

@ Open..lica
Mode...ices

EZQ\:} Complex
7% Modelica
v P MyEx.plel
Gen...tor

Network

@ Exa...e_1

3¢ OopeniPsL

o& OMEdit - OpenModelica Connection Editor

File Edit View SSP Simulation DataReconciliation Sensitivity Optimization Debug Tools Help

O X 98 XP|-|# 4 S *

I_ Plot: 1
L2 T
R A =g 3 = I
Blv (1) B2v(l)) —— B3.w(1)
1.4 5
1.2+
. vvvv
0.6 -
0.4 —
0.2 H
04
0.2 T T T T 1
0 2 4 6 8 10
time (s)
Messages Browser g x
Al Notificatons ~ Warnings ~ Errors Example_1

Simulation of MyExamp...xample_1 s finished. 100% Cancel Simulation

woilation Output

. Output File » M

: initialization finished successfully without homotopy method.
_## STATISTICS ###
The simulation finished successfully.

A

v

& welcom

‘v

Vanables Browser =

Simulation Time Unit |s

i
K> [l o |

x

v

v

Variables Value A
Y. @ (Active...ample_1
v Bl
Ovb 400
[enableV_b 0
[enablev_0 1
vp
Ovi 0.1z
Owr 0.99:
v 1.00
Ov.o 1.0
v
Ovb 400
[enableV_b 0
[] enablev_0 1
vp
Ovi -0.0¢
O wr 0.96¢
v 097
Ovo E
v B3
Ovb [200”
[] enableV_b 0
[enablev_0 1
vp
Ovi 0
Owr 0.90(
0.90(
Ovo E
v Gl
< >

Documentation Browser &

&

T4

X

Plotting @ Debugging

\ Content

e Stretch Goal:
o SMIB Model Analysis using OMNotebook
e Whereto go from here?

53

Using OMNotebook for Interactive Analysis

* The OpenModelica installation includes a very handy tool called OMNotebook.

* OMNotebook allows you to interact with the OpenModelica Compiler (OMC),
and at the same time analyze the model.

» This gives you a basic “lab notebook” where you do your tests before you create
a script for automated analysis (called .mos scripts).

o Similar to Jupyter Notebooks or Mathematica Notebooks.

0

p\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

* We use OMNotebook next to load the model developed, and simulate it
interactively.

v > ThisPC » Documents > OpenModelica v O 2 Search OpenModelica

A

[Name Date modified Type Size
L; 2023_MSCPES_OpenlPSL_Tutorial.zip 7:02 PM Compressed (zipp... 2,360 KB
Open the Notebook Epemer
35 MyExamplel.onb 5/3/2023 6:21 PM OpenModelica No... 5,018 KB

* Uncompress the files in the .zip file distributed for this tutorial in a
directory that you can find easily (e.g., “Documents/OpenModelica”)

« The OpenModelica Notebook file you need is called:
MyExamplel.onb

o Double click it to open it using OMNotebook.
o The OMN window will appear as shown below.

B OMNotebook: MyExamplel.onb = a X
File Edit Cell Format Inset Window Help

N = e N [0 | 2-v <4 $ 4 X 9
Example 1 - Interactive Analysis
with OMNotebook

Prof. Luigi Vanfretti, 2023-05-03 }

Part 1: Model Simulation

1 //Load the MSL

2 //loadModel (Modelica) ;

3 // Load the model we just made

4 loadFile("C:/Users/vanfr/Dropbox/PC/Documents/OpenModelica/MyExamplel.mo"); // <———- Don't 55
forget that the path should be be within ""

5 // Check what's inside

6 list (MyExamplel.Example_ 1)

Set-up your path & evaluate cells!

1//Load the MSL Set your path to where “MyExamplel.mo” is

2 //loadModel (Modelica) ; - located

3 // Load the model we just made :

4 loadFile ("C:/Users/vanfr/Dropbox/PC/Documents/OpenModelica/
MyExamplel.mo"); // <———- Don't forget that the path should be be
within "";

S5 // Check what's inside

€ list (MyExamplel.Example 1) \
— N

true . .
"model Example 1 N Evaluate each cell using “Shift+Enter”
OpenIPSL.Electrical.Buses.Bus Bl annotation(
Placement (visible = true, transformation(origin
extent = {{-10, -10}, {10, 10}}, rotation = 0))); o o 0
OpenIPSL.Electrical.Buses.Bus B2 annotation(Thls ShOU|d gIVe YOU as OUTpUT The mOdel S
Placement (visible = true, transformation(origin {0, O}, exten! Con-l-en-l-s
= {{-10, -10}, {10, 10}}, rotation = 0))); :

{-60, 0},

1// Instantiate the model

2 instantiateModel (MyExamplel.Example 1); . .

3// Let's try suppressing some warning messages — Instantiate and Simulate the Model!

4 setCommandLineOptions ("-——dsmoMode") ; 47

S // Simulate the model

6 simulate (MyExamplel.Example 1, stopTime=11, 56
numberOfIntervals=1000) ;

Plotting Results

1// What? You can you plot! 1// Let's look inside Gl, the output of the avr!
2plot({Bl.v,B2.v,B3.v}) 2plot(Gl.avr.vf)
true] [true
Auto Scale =~ Fitin View | Grid v [JiogXx [JilogY Setup Save Print Auto Scale Fitin View | Grid - [OJtoax [JLogY Setup Save Print
— Blwv B2.v B3.v —— Gl.avr.vf
1.4 - 10 4
1.2 i
1-—/\\/\/\/\/\/\/\\#\& N |]
VYV v !
0.6 - o]
0.4 1
0.2 5]
0] -
-0.2 4 "
0 2 4 6 8

Linear Model

* Let’s now do a bit more analysis on the system’s stability by using linear analysis.

 This will allow us to determine the system’s damping with the current value of the AVR’s gain (K=200).

1// Linearize the model
2 setCommandLineOptions ("-—demoMode") ;
3 linearize (MyExamplel.Example 1, stopTime=0)

true
record SimulationResult
resultFile = "MyExamplel.Example 1 res.mat",
messages = "stdout | info | Linearization will be performed at point of time: 0.000000
LOG_SUCCESS | info | The initialization finished successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
stdout | info [SRS -1 S B oA R S WS C - \ \Users\\vanfr\\&ppData\\Local\\Temp\\OpenModelica/linearized model.mo

» After evaluating the cell, you can see the model is linearized successfully.
* OpenModelica will provide you with not only the linear model’s matrices, but also with a linear model

Ca”ed' llnearlzed—mOdel o l1e v <« Windows (C:) » Users » vanfr > AppData > Local » Temp > OpenModelica >

* This can be found in the temporary directory] Name 8 Date modified Wi
created by OM & can be opened in OMEdit too. OMEdit 5/3/2023 6:50 PM Fie folder
023 7:44 PM MO File

linearized_model.mo 5/3/20

58

I
b
8
=
+
tw
£

Linear Model; *(®
y(t) = Cx(t) + Du(t)

1 model linearized model "MyExamplel Example 1"

parameter Integer n = 9 "number of states"; Initial Values Of States at t =i O.
parameter Integer m = 0 "number of inputs";

parameter Integer p = 0 "number of outputs";

parameter Real x0[n] = {2.420701642076923, 0.9999999999978895, 0, 1.224247464412502, 0.4107654957801095, 1.027487023635741, 0.5742496657880959, 0.9593327097152919, 1};
parameter Real uO[m] = zeros(0):

parameter Real A[n, n] =
£ [-10000.00001883346, -1999999.999378514, 10000.00001354202, 0, O, O, O, O, O;
10 0, —-66.66666664595046, 0, —-9.193998345826454, 0, 0, 29.2553682625086, 33.36361954749715, 0;

11 o, -0, -1, 0, 0, 0, 0, 0, O; .
o, 0, 0, 0, 0, 0, 0, 0, 376.9911183132299; State Matrix
0, 0, 0, 0.4610795512010082, —1.000000000041094, 0, -1.489428946030061, 0.006336423644081421, 0; BAD
0.1249687499798185, 0, 0, -0.2257865952918631, 0, —-0.1249999999489799, —0.001104105600415562, —-0.2668898897808112, 0 A

15 0, 0, 0, 2.621558613874123, 14.2857142778662, 0, -22.75415595991815, 0.03602698209807199, 0;
3 0.008333362194389848, 0, 0, -2.972830809488642, 0, 33.33333331972797, -0.01453727042272217, -36.84735279887008, 0;
0, 0, 0, -0.1593501175246141, 0, 0, 0.06000759120939158, -0.1730203086148071, 0];

1€ parameter Real B[n, m] = zeros(n, m);
. paremeter mes Cip, nl = zereso, my; Matrices B, C and D are zeros because we did not define any
T inputs or outputs in the model (which can be done!)

2 Real x[n] (start=x0);
27 input Real u[m];
28 output Real y[pl;

; Real 'x Gl.avr.vEfl' = x[11; Names 35 equatlon

31 Real 'x Gl.avr.vm' = x[2]; A " o

32 Real 'x:Gl.avr.vr' = x[3]1; Ofthe o der (X) - A * X + B * u;
eal 'x Gl.machine.delta' = x[4];
;{eal 'x:gl.machine.eldi': = x[5]1; States \; 1 y — C L3 > 4 + D & u;

35 Rea:_ ’x_Gl.mach%ne.elq' = x[6]; o < z
Beni 'a il machine.eoq: — <181" “© end linearized model;

Real ‘'x Gl.machine.w' = x[9];
equation
40 der(x) = A * x + B * u;
41 Y, =€ *:x D ¥y
end linearized model;
=

59

Linear Analysis

6 loadFile ("C:/Users/vanfr/AppData/Local/Temp/OpenModelica/linearized model.mo");
7 instantiateModel (linearized model)

1// Exctract the A matrix and display it

2 Astr:=getParameterValue (linearized model, "2");
3writeFile("evalA.mos", "A := " + Astr + ";");
4 runScript ("evalA.mos")

 We now load and instantiate the linear model:
* Then we extract the A-matrix and display it:

"[-10000.00001883346, -1999999.999378514, 10000.00001354202, 0, 0, O, O, O, 0; 0O, -66.66666664595046, 0, -9.193998345826454, O,
0, 29.2553682625086, 33.36361954745715, 0; 0, -0, -1, 0, O, O, O, O, O0; O, O, O, O, O, O, O, O, 376.9911183132299; 0, 0, O,
0.4610795512010082, -1.000000000041094, 0O, -1.489428946030061, 0.006336423644081421, 0; 0.12495687499798185, 0, O,

-0.2257865952918631, 0, -0.1249999999489799, -0.001104105600415562, -0.2668898897808112, 0; 0, 0, 0, 2.621558613874123,
14.2857142778662, 0, —-22.75415595991815, 0.03602698209807199, 0; 0.008333362194389848, 0, 0, -2.972830809488642, 0,
33.33333331972797, -0.01453727042272217, -36.84735279887008, 0; O, 0, O, -0.1593501175246141, O, 0, 0.06000759120939158,

-0.1730203086148071, 01"

* Now we can extract the eigenvalues:

[1//Extract the eigenvalues from the A matrix
2 (eval,evec) := Modelica.Math.Matrices.eigenValues (&) ;
3eval

{{ 10000.00535659224,0.0}

1 {-21.14153144010155,0.0} 4{0. 351753461532652 8. 065680500577381} {0. 351753461532652 -8. 065680500577381},

582281,-13.52584135625133},
{-1.790937636944537,0.0},{-1.0,0.0}}

This is the complex unstable mode we were looking for!

60

Parametric Sweep

Using OMNotebook, we can interact with the OMC
in order to analyze the behavior of the system.

The AVR’s output looks saturated.

The type of instability that we are observing it is
typically due to negative feedback from the AVR.

This was shown in the early 1900’s by Concordia
and De Mello!

A parametric sweep is used in OMC to simulate the
system’s response for different values of the gain of
the AVR, namely, KO.

Results from K=10 to K=50

—— Gi.avrlimiterl.y —— G1.avr.limiterl.y —— G1.avr.limiterl.y —— G1.avr.limiter1.y

2.5550, 4.9492

\‘AAA |
Vvyvv

/ |
Al

“l\

6 8 10

Parametric Sweep

* When performlng several simulations that Only [// Build the model once to simulate multiple times
require a parameter change, “building” the model will |2 setCommandlineOptions ("~ —demomade") ;
. . 3 buildModel (MyExamplel .Example 1) ;
avoid generating new C-code for every new -
parameter value.
o Thiscreates an executable called: [® MyExamplel.Example_1.exe

» The executable can be run the system command,i.e. |57/ 5 the paramciric swen wsing = 1oom
2 for i in 1:10 loop

equivalent to running from a CMD console in B /% o ars thi parameter waing vRIGS
. 4 value := i*10;
W|ndOWS 5 // call the generated simulation code to produce a result files

%1% res.mat
—

° We pass the data we wa nt to mOd ify uS|ng the ﬂags: 6 system("MyExamplel.Example 1 —override=Gl.avr.R0="+String (value)

+" —r=Example 1 parametric " + String(i) + " res.mat");

I end for

-override = parameter.name= value
will set a new value to the AVR gain, G1.avr.KO”

-r = result file name.mat
gives a name to the result file at each new iteration.

1plot({Bl.v}, fileName="Example 1
parametric 1 res.mat");

1lplot({Gl.avr.limiterl.y}, fileNam

[done]

Auto Scale Fitin View | Grid v|Ogx »

—BLy

1.2

0.8

0.6

0.4

TR (Y 0 N N D N (AN C NN O A YOS T (o NN W AT |

0.2 T

o
N
-
(=]
[=-]
]

Example 1 parametric_1_res.mat

e="Example 1 parametric 1 res.ma
") ;
o r

‘ tdone]

Auto Scale Fitin View | Grid v|OLlogx »

—— G1l.avr.limiter1.y

o
~N
B
-
[=-]
-
o

Parametric Sweep - Plots

When plotting, we now need to refer to the specific output file we want to display results for:

Example 1 parametric 5 res.mat

1plot({Bl.v}, fileName="Example 1
parametric_5 res.mat")

true

1plot({Gl.avr.limiterl.y},fileNam
e="Example 1 parametric 5 res.ma
")

[done]
Auto Scale Fitin View | Grid v Orogx » L
) Auto Scale | Fitin View | Grid v|Otegx »
BN
— G1.avr.limiter1.y
1.2 4
1 10
4 8]
e 3
] 6
0.8 - 4 _:
N 2
0.6 —]
- 0__
4 2]
0.4 — g
] 4
0.2 L2 T N £ B P FI 2 S S) e | '6_'l'|'l'|-|-|-»-|-|-|
0 2 4 6 8 10 0 2 4 6 8 10

\ Content

e Whereto go from here?

64

Where to go from here?

Learn more about OpenlPSL
OpenlPSL overview video from 2020: https://voutu.be/2i3fvgFtc YA

o
o

Recent overview presentation on OpenlPSL and related

efforts: https://voutu.be/IKAECHSO%9wc

What should | learn to build some power system simulation models on my own?

o

O

o

Learn more about how to use OMEdit:

m Tutorial, courses, etc: https://openmodelica.org/useresresources/modelica-courses/

Go through the OpenlPSL full tutorial!
m Theinstructions are outdated (form 2017!), but it
to put together some system models.

should be good enough for you to learn how

m Linkto Github: https:/github.com/OpenlPSL/OpenlPSL/releases/tag/Tutorial CURENT ERC 2017 08 22

If you have Dymola, a recent tutorial also shows how to populate your model with the

power flow solution form GridCal (or PSS/E):

m Link to Github: https://github.com/ALSETLab/SMIB Tutorial

What about developing new models?

o

o

o

Learn about power system modeling, you can read these
m Federico Milano, Power System Modelling and Sc

books:
ripting, 2010.

m J.Chow and J. Sanchez-Gasca,Power System Mod

eling, Computation, and Control, 2019.

Learn about Modelica:

m Dr. Michael M. Tiller, Modelica by Example: https://mbe.modelica.university/

m P Fritzson, Principles of Object Oriented Modelin

g and Simulation with Modelica 3.3: A

Cyber-Physical Approach, 2014.
Learn about GIT and Github: https://git-scm.com/book/e

n/v2

Learn More about Modelica:

o

Modelica Association Website: https://modelica.org/

65

https://youtu.be/2i3fvgFtcYA
https://youtu.be/IKdECHSO9wc
https://openmodelica.org/useresresources/modelica-courses/
https://github.com/OpenIPSL/OpenIPSL/releases/tag/Tutorial_CURENT_ERC_2017_08_22
https://github.com/ALSETLab/SMIB_Tutorial
https://link.springer.com/book/10.1007/978-3-642-13669-6
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119546924
https://mbe.modelica.university/
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989166
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989166
https://git-scm.com/book/en/v2
https://modelica.org/

Thank you for your attention!
Beware of Pygmalion!
Happy Modeling!

http:/Openipsl.org

Prof. Luigi Vanfretti

Professor @ http://ALSETLab.com
Rensselaer Polytechnic Institute

OpenModelica Troy, NY, USA

http://openipsl.org
http://alsetlab.com

