

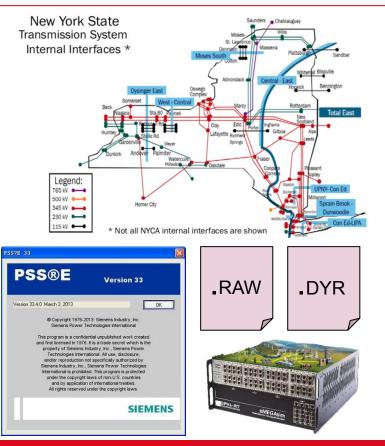
Model Transformation for Smart Grid Applications

Marcelo de Castro^{1†}, Giuseppe Laera¹, Manuel Navarro², Luigi Vanfretti^{1‡} and Glenn Halley³.

¹Rensselaer Polytechnic Institute, ²Electric Reliability Council of Texas, ³City Utilities of Springfield E-mail: [†]decasm3@rpi.edu and [‡]luigi.vanfretti@gmail.com

- Introduction:
 - Motivation
 - Previous Efforts
 - Goals
- Methods:
 - Implementation in Modelica and Model Verification
 - Assessment of Models' Portability
 - Transformation Tool Design and Implementation
 - Assessment of Tool's Performance
- Final Considerations

Motivation



Future Energy Scenario

- Addition of large number of renewable energy sources in the grid
- New modeling and simulation capabilities and tools will be required
 - Clean technologies can be properly studied and models can be easily shared

Today's Scenario

- Lock-in: Few specific and proprietary software tools bound models to single tool.
- Lack of interoperability: Files retain parameter details but no information on equations
- Duplication and Inconsistency: Many different models are created to represent the same system, difficult to obtain the same results.

Background

Proposed Solution and Presentation Scope

ALSET

- Our Solution: Open Source and Open Standards-based Interoperable Models
 - Model Transformation Tool
 - Using PSSE and CIM as source models
 - Outputs Modelica (OpenIPSL) as target models
 - Why Modelica?
 - We need model description to facilitate interoperability:
 - Strict mathematical representation: DAEs
 - Open access standard for object-oriented equation based modeling (language spec implemented by multiple tools).
 - OpenIPSL Library:
 - Modelica-based power system dynamic models
 - In development for several years.
 - FMI Standard Compliant: Supported by +100 tools
 - Models can be exported into many other different tools as FMUs

Scope

- PSSE to Modelica: template-based approach written in Python
- **CIM to Modelica:** XSLT-based approach for transforming XML files into Modelica

Implementation in Modelica and Model Verification

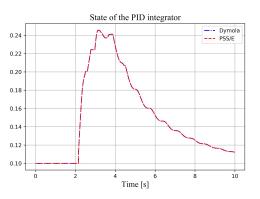
Main Challenges

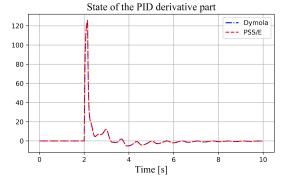
- For a translation to work, it is necessary to be sure that models are consistent between tools
 - Mapping needs to be precise
 - Models need to be
 - Implemented in Modelica
 - Automatically tested
 - Verified against PSSE
 - Testing routine should be automatic:
 - Continuous Integration Framework

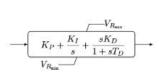
Overcoming Barriers

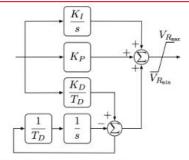
- Basic components (Machines, Exciters ...) are tested under different conditions in tiny models assembled using Modelica and OpenIPSL
- Regression testing to be implemented
- Continuous integration for library consistency

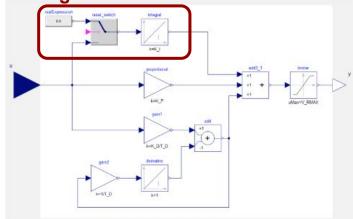
PSS®E **OpenIPSL** is the means to represent PSSE and **CIM models in Modelica OpenIPSL** must have the component being mapped and its behavior must be


consistent with source



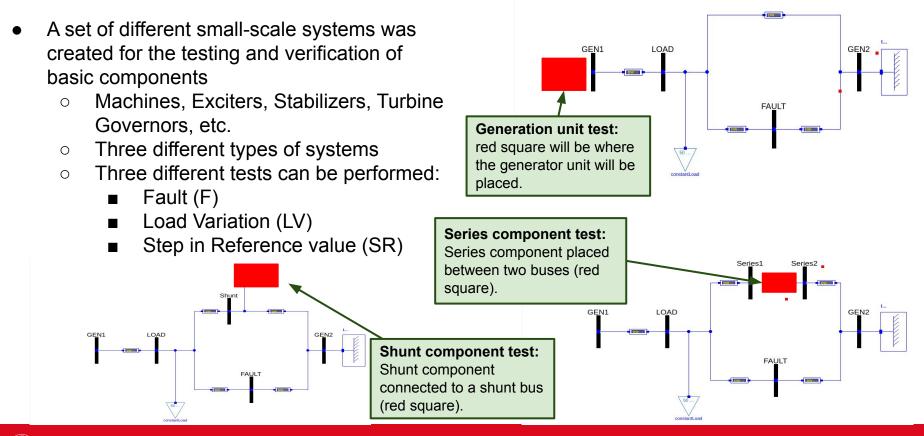

Implementation of Building Blocks


- Even simple blocks such as a limited output PID can have different implementations
 - When **only** block diagrams are used, the model can be ambiguous
 - Additional information is not always available or transparent
 - Different implementations can lead to different results



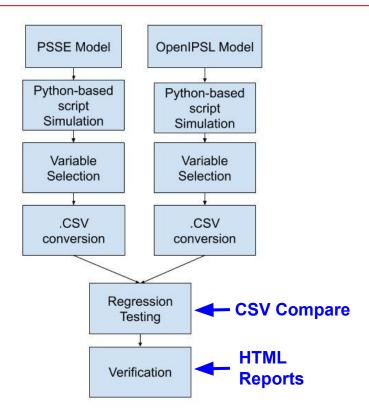
(a) Block diagram presenting an implementation for a limited output PID.

Freezing State


(b) Block diagram presenting an alternative and detailed implementation for the same limited output PID.

(c) Modelica implementation of the limited output PID block.

Templates: System Models for Verification of Basic Components ALSETIA



Rensselaer

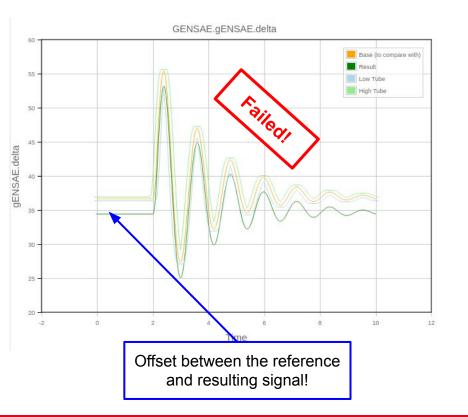
Regression Testing

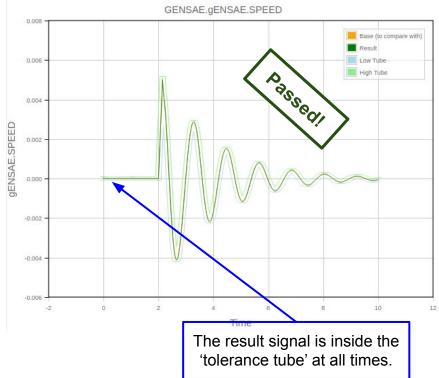
- Manual verification of models is tiresome and can be subjective
 - How close the two curves should be so they are considered to be capturing the same behavior?
- Automatic procedures is needed for consistency:
 - Base results from PSSE are generated from Python scripts and saved into CSV
 - For each basic component
 - For each disturbance scenario
 - Results from OpenIPSL are obtained automatically via Python script and converted into CSV
 - CSV Compare tool is used
 - 1% Tolerance Tube

CSV Compare Report Example (1/2)

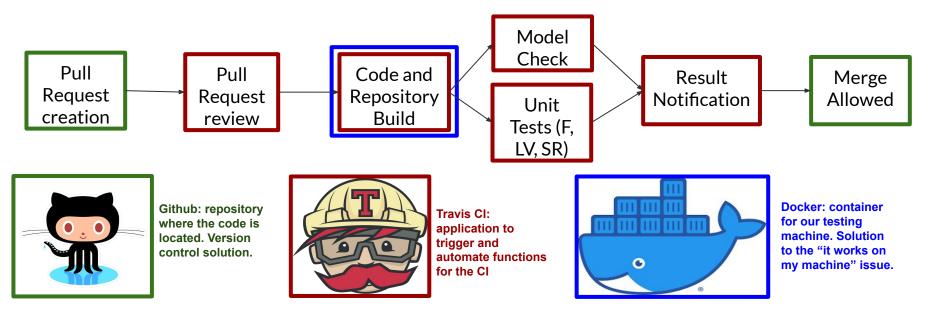
. . . .

IC FLIC A


Meta repo	ort - CS\	/ file comparison
Timestamp:		12/16/2019 3:25:40 PM [UTC]
Mode:		CsvTreeCompare
Base directory:		/home/marcelo/Dev/Gitted_Reps/NYPAModelTransformation/OpenIPSLVerification /VerficationRoutines/Dymola/Results/Generators/
Compare direc	tory:	/home/marcelo/Dev/Gitted_Reps/NYPAModelTransformation/OpenIPSLVerification /VerficationRoutines/PSSE/Results/Generators/
Verbosity:		4
Tolerance:		1e-2
Compared files:		The compare directory contained 4 files. 4 files were tested. 1 file failed. Success rate is 75.0%.
Results		
		FAILED - At least one result failed its check with the base file. UNTESTED - No base file has been found or an exception occurred. SUCCEEDED - All results have been checked and are valid.
SUCCEEDED		GENROE.csy
SUCCEEDED		<u>GENSAL.csv</u>
SUC	CEEDED	<u>GENROU.csv</u>
FAILED	Ø0.24	GENSAE.csv


/home/marcelo/Dev/	Gitted_Reps/Result/Generators/GENSAE_report.html
Meta report:	/home/marcelo/Dev/Gitted_Reps/Result/Generators/
Base file:	<u>/home/marcelo/Dev/Gitted_Reps/NYPAModelTransformation/OpenIPSLVerification</u> <u>/VerficationRoutines/Dymola/Results/Generators/GENSAE.csv</u>
Compare file:	Inome/marcelo/Dev/Gitted_Reps/NYPAModelTransformation/OpenIPSLVerification /VerficationRoutines/PSSE/Results/Generators/GENSAE.csv
Tolerance:	0.01
Timestamp:	12/16/2019 3:25:40 PM [UTC]
Compared results:	The compare file contained 7 results. 7 results were tested. 1 result failed. Success rate is 85.7%.
Average relative error:	0.24
Failed tests:	GENSAE.gENSAE.delta

CSV Compare Report Example (2/2)



Continuous Integration

- OpenIPSL models are stored on a Github repository:
 - Need for an automatized procedure for code checking and model behavior verification
 - Continuous Integration Software Engineering Solution

ALSE

Assessment of Model's Portability

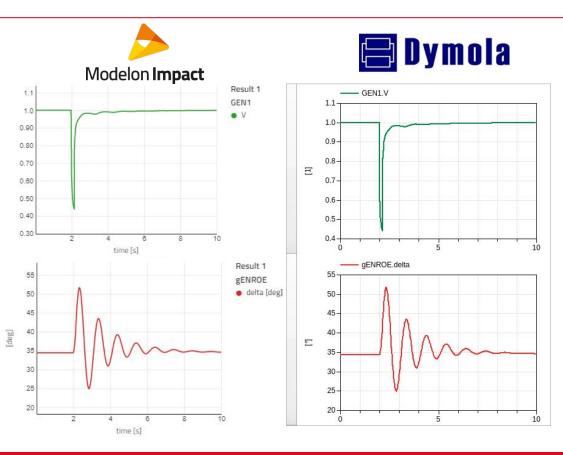
ALSET

Main Idea

- Assess the notable features that explain why Modelica was chosen as target model in this project:
 - Object-oriented equation-based
 - Ideal for complete model description rather than just parameter tables
 - Use different Modelica-compliant tools:
 - Dymola, OMEdit, SystemModeler, Impact
 - Compliant with Functional Mock-up Interface standard
 - Models can be exported to different tools!

Methods

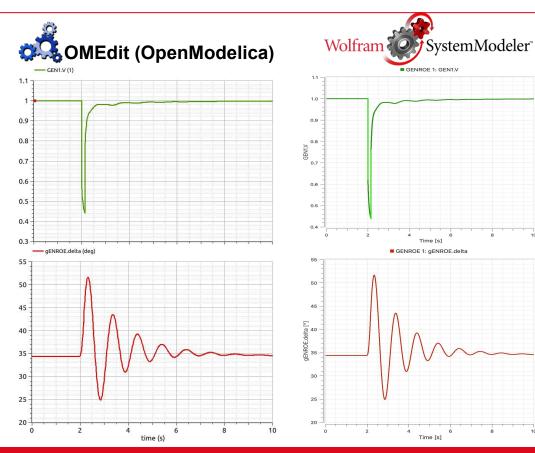
- Assess OpenIPSL in different modelica compliant tools
- Assess the simulation of Modelica models exported as FMUs in different tools



Models in OpenIPSL must work with maximum number of Modelica - compliant tools for interoperability

OpenIPSL models that are exported with FMUs must work in different simulation tools

Interoperability Between Modelica Tools (1/2)


• OpenIPSL Library must maximize its compatibility with different Modelica-compliant software tools

ALSF

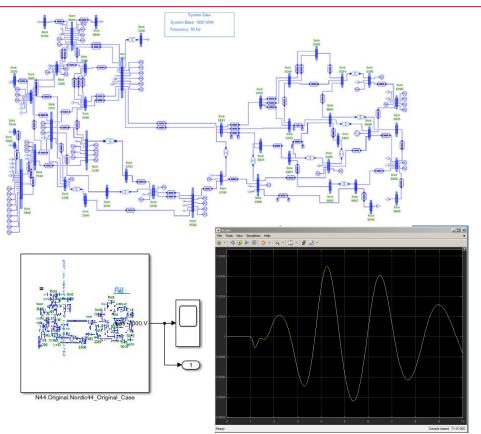
- Library must be independent from tool
- Allows user to select their preferred tool to perform a study

Interoperability Between Modelica Tools (2/2)

• OpenIPSL Library must maximize its compatibility with different Modelica-compliant software tools

ALSE

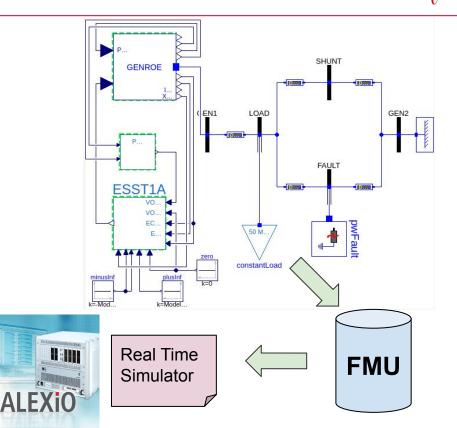
- Library must be independent from tool
- Allows user to select their preferred tool to perform a study



OpenIPSL and FMUs for Portability

Recomposing models for FMI-Export

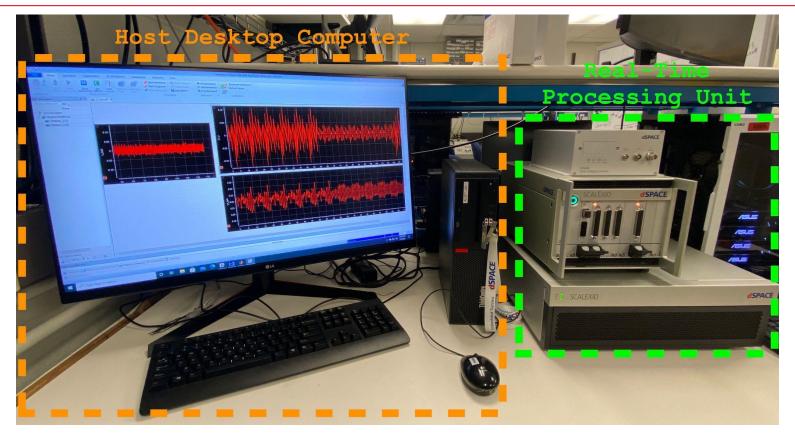
- FMI export for different software tools:
 - Simulink
 - Python Libraries (FMPy PyFMU)
- FMUs for entire system:
 - Size is challenge

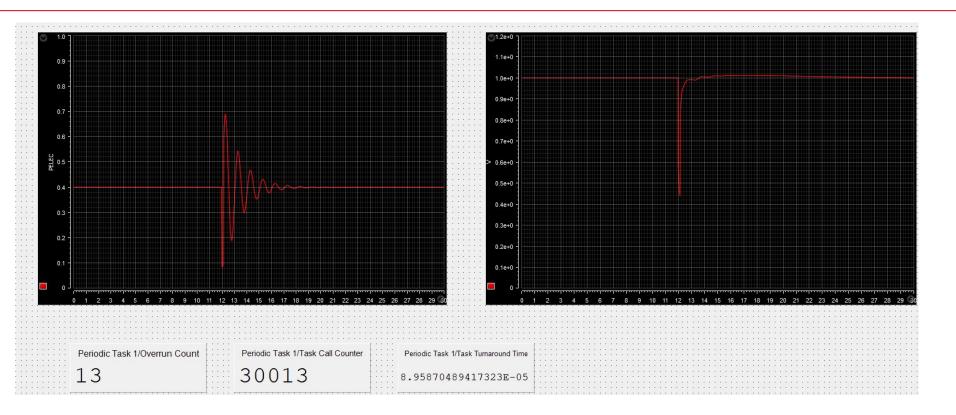

ALSETLab - The "Digital" Grid Laboratory

ALSE

OpenIPSL and FMUs for Real Time Simulation

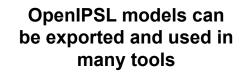
FMI-Export for Real Time Simulation


- Entire systems were used rather than different FMUs for each basic component
- Co-simulation FMU, with solver tolerance and simulation time already pre-defined
- Exported with source code via Dymola
- Loaded into dSPACE SCALEXIO:
 - Natively loads FMUs
 - No extra step is required


Real Time Simulation Setup

Real Time Simulation Result

ALSET


Transformation Tool Design and Implementation

Main Idea

- Survey and analyze existing tools.
 - Existing Tools: Ditto, BIM2Modelica, CIM2Modelica
- Create the appropriate mappings from
 - PSSE to Modelica
 - CIM to Modelica
- Build Model Translation Tools
- Test and debug the tool with different systems
 - Single Machine Infinite Bus Systems
 - Components can be tested almost individually
 - Machines
 - Exciters

Rensselaer

- Governors
- Stabilizers
- Wind Machines
- Compensators

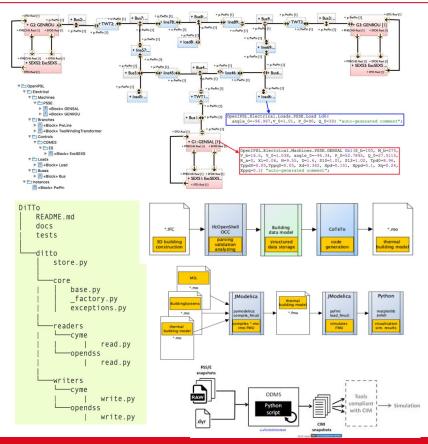
OpenIPSL models are shown to be consistent with PSSE

Need to design the basics of the translation tool with Modelica models as targets

DiTTo (NREL)

- General idea: *many-to-one-to-many parser framework*.
 - Readers (inputs) and writers (outputs)
- Made for translating distribution systems and models from one data format to another.

BIM2Modelica


• Open source framework for generating and simulating thermal models by using data from BIM models.

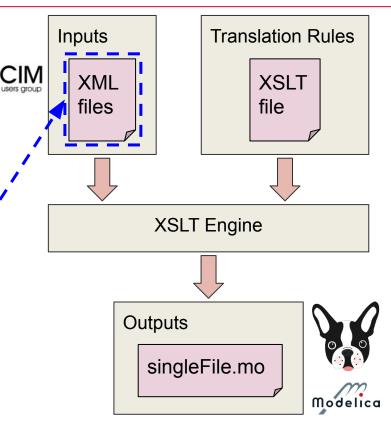
CIM2Modelica

- Model-to-model transformation tool made for power systems
- XML schemas are used together with model-driven engineering concepts and paradigms

PSS@ODMS

• Proprietary tool with PSSE to CIM translation

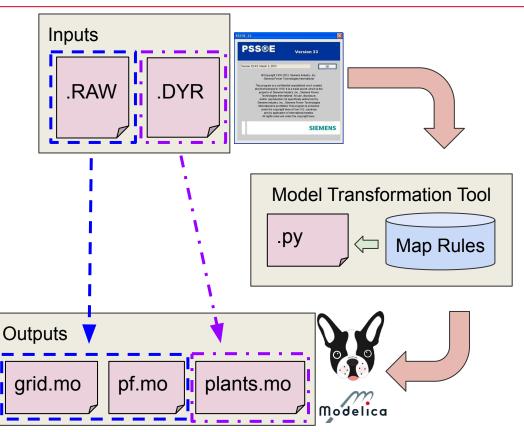
AL



CIM to Modelica

Overview

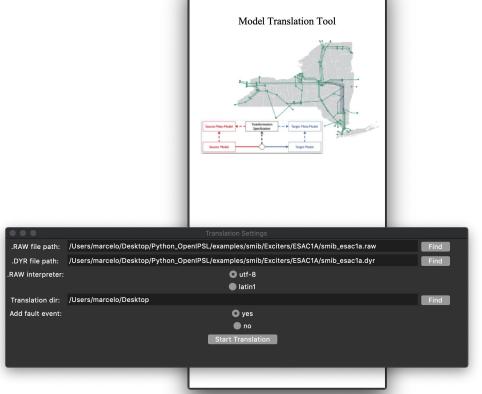
- Uses XSLT to translate CIM to Modelica
 - Proprietary tool Windows Engine
- Common Information Model:
 - Readable (eXtensible Markup Language XML).
 - Normalized common data used in multiple types, linked using keys
 - Multiple CIM files including:
 - State Variables (SV)
 - Dynamic (DY)
 - Equipment (EQ)
 - Topology (TP)
 - Steady-state Hypothesis (SSH)



PSSE to Modelica

Overview

- Tool's general structure
 - Parsers, Readers and Writers
 - Based on templates
 - Written in Python
 - PSSE to Modelica
 - Raw files are translated into modelica network:
 - Lines, buses, shunts, loads
 - Dyr files are translated into dynamic models:
 - Machines, exciters, turbine-governors


Assessment of Tool's Performance

Main Idea

- Test translations performed by tool
- Test tool's scalability with different systems:
 - Brazilian 7-bus System, IEEE14, IEEE23, Nordic 44, Icelandic System, REN System, NYPA 500

Methods

- Test system for many different testing:
 - Assessing results
 - Check if translated systems simulate and if their results are the same of translated versions
 - Timing translation for metrics (PSSE to Modelica)
 - Test tool in different machines, translating different systems.



Model Translation Tool

Simulation of Translated Models Using MT Tools

ALSE

ALSET

Tests with different machines:

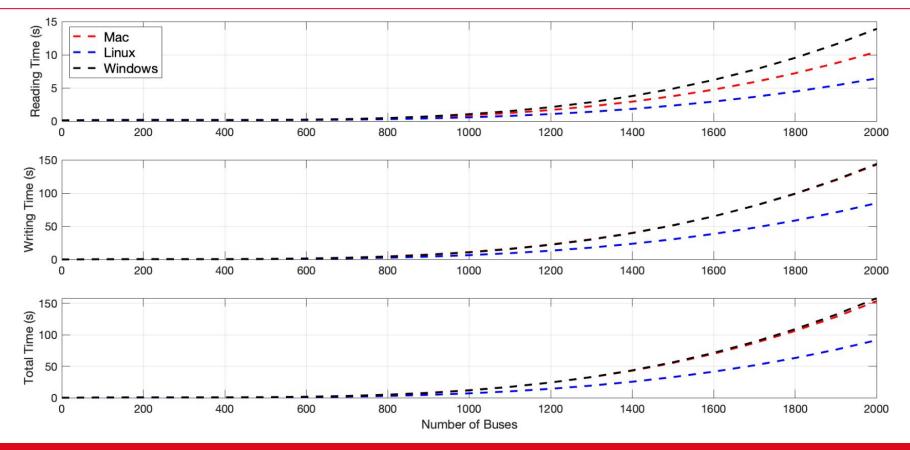
- **Goal is not to compare** the translation between different operating systems/machines
- Goal is to assess tool's scalability in different operating systems/machines

	Linux-based	Мас	Windows
Operating Software	Ubuntu 18.04.5 LTS	MacOS Mojave	Windows 10 20H2
Processor	i7 2.9 GHz x8	i7 2.8 GHz	AMD Ryzen 7 PRO 2700 3.20 GHz x8
Memory	16GB 1.6GHz DDR3	16GB 1.6GHz DDR3	64GB 1.6GHz DDR3

Different test systems

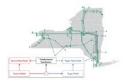
	Number of Buses	Number of Machines	Total Number of DAE
Brazilian 7-Bus	7	5	1032
IEEE 14	14	5	1346
IEEE 23	23	6	1619
Nordic 44	44	80	15976
Icelandic System	311	61	20342
REN System	577	138	34878
NY System	684	234	63094

ALSE


PSSE to Modelica - Performance Results

ALSF

PSSE to Modelica - Performance Projection



ALSE

Public Website

Model Transformation Tool - BabelGrid

Model Transformation for High Performing Grid Applications.

View the Project on GitHub marcelofcastro/Python_OpenIPSL This is the website for the 'Model Transformation for High Performing Smart Grid Applications' project. The project has been on going since Fall 2018. Joint project between New York Power Authority and Rensselaer Polytechnic Institute.

Project Overview

With the upcoming changes in the energy landscape of New York State, new modeling capabilities and simulation tools will be required in order for renewable and distributed energy technologies to be properly studied and incorporated into the electricity grid. In today's environment, grid modeling and operation in New York State are limited to few specific and proprietary software tools traditionally used for modeling and simulation over many decades. The ability of introducing new tools has been impractical, due to the way models have been developed and maintained. By using interoperable standards, and technologies, this project will create a new basis for developing and transforming grid models that could facilitate the utilization of multiple tools to advantage of the best features each tool has to offer in order to support the engineering and decision making process driven by the NYS Energy Plan and NY Reforming the Energy Vision (REV).

Main Resources

In this website you can find the following:

Pages	Links	
Overview	About the Project	
Model Validation	CSV Compare Results	
Tool Description	About the Tool	
Tool Guide	Using the Tool	
About us	Contact Info	

Website:

https://marcelofcastro.github.io/Python Open IPSL/index

• General information about the project is available there.

Dymola Reports

General results for Dymola tests can be found in the table below.

Model Type	General Reports	
1. Machines	(a)Fault Report (b)Load Variation Report	
2. Exciters	(a)Fault Report (b)Load Variation Report (c)Reference Step Report	All validation reports are
3. Turbine Governors	(a)Fault Report (b)Load Variation Report	available here
4. Power System Stabilizers	(a)Fault Report (b)Load Variation Report	nere
5. Wind Machines	(a)Fault Report	

ALSET

- The presentation showed that:
 - A valid mapping between CIM/PSSE and Modelica is possible, allowing models from one tool (language) to be exported to another tool without loss of information and consistency of simulation results.
 - The library of Modelica models developed in this project is compatible with many different Modelica-compliant tools and models can be exported via FMI standard
 - Modelica model is a good target model (open access specification supported by multiple tools natively)
 - Target Model can be exported to various tools using FMI (+100!) for different applications
 - Both translation strategies are shown to be:
 - Effective
 - Results are consistent between translations and across different platforms
 - Scalable for larger models and more complex grids:
 - 2000 buses is expected to take a couple minutes
 - Room for improvement!

Acknowledgements

New York Power Authority Contributors

George Stefopoulos

Rahul Kadavil

Behnam Khaki

External Contributors

Svein Harald Olsen Statnett SF, Norway

THANK YOU

ALSETLab - The "Digital" Grid Laboratory

why not change the world?®

Q/A