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Learning Objectives

• Novel building envelope technology: Climate adaptive opaque building envelope

• Challenges & limitations in current building energy modeling & simulation (BEMS) techniques.

• State-of-the-art BEMS techniques for climate adaptive opaque building envelopes.    

• The Modelica language-based modeling & simulation approach with case study.
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Impacts of Opaque Building Components on Energy Use

[1] U.S. Energy Information Administration, “Annual Energy Outlook, 2018,” Washington, D.C, 2018.
[2]  J. Langevin, C.B. Harris, and J.L Renya, “Assessing the Potential to Reduce U.S. Building CO2 Emission 80% by 2050,” Joule, 2019; vol.3 (10); 2403-2424.

Total U.S. primary energy use [1] 

10% of total U.S. primary energy use & 
25% of energy use in building sectors [2] 

Building sectors ( 40%)

Building energy impact of opaque building components
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The role of a Building Envelope

Heat Source
Energy from Grid

Envelope
Thermal Barrier

Heat Source
Energy from ambient environment

Envelope
Thermal Mediator

Conventional Building Climate Adaptive Building
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Climate Adaptive Building Envelopes

Al Bahar Towers, Aedas, 2012 [1]
Dynamic Shading device

Sony Osaki Building, Nikken Sekkei, 2011 [2]
Active Evaporative Cooling Systems

EcoCeramic, CASE [3]
Masonry Active Building Envelope

[1] https://igsmag.com/market-trends/super-tall-buildings/the-al-bahar-towers-shading-the-real-envelope/
[2] T. Yamanashi, T. Hatori, Y. Ishihara, N. Kawashima, and K. Niwa, “Bio Skin Urban Cooling Façade,” Architectural Design 2011; 08.
[3] https://www.case.rpi.edu/research/advanced-ecoceramic-envelope-systems
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Challenges & Limitations in Modeling & Simulation 
of a Climate Adaptive Building Envelope

Image from C. Mackey, “Pan Climatic Humans,” MS Thesis, Dept. Arch, MIT, Cambridge, MA, USA, 2015, p.12. 
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Conventional building energy modeling & simulation
based on
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BEMS software Built-in features* Advanced modeling features Code access & 
modification

EnergyPlus DS, TW, GR, GW, MI, TC, PCM Limited (EMS) X

ESP-r DS, TW, GR, GW, PCM Limited X

IDA ICE DS, TW, MI, PCM Limited X

IES-VE DS, TW, GR Limited X

TRNSYS DS, TW, GR, GW, PCM Limited X

*DS: Double Skin Façade, TW: Trombe Wall, GR: Green Roof, GW: Green Wall, MI: Movable Insulation, TC: Thermo-collect, PCM: Phase
Change Material 

Challenges & Limitations in Modeling & Simulation 
of a Climate Adaptive Building Envelope

Modeling Features of a Climate Adaptive Building Envelope in Modern BEMS tools

[1] F. Favoino, M. Doya, R.C.G.M. Loonen, F. Goia, C. Bendon, and F. Babich, Eds., Building performance simulation and characterization of adaptive facades-adaptive façade network, Delft, 
Netherlands: TU Delft Open, 2018. 
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State-of-the-art 
Climate Adaptive Opaque Building Envelope Technologies

Control 
Type

Key Working 
Principle Adaptation Technology Evaluation Methods Modularity Market 

Available
Retrofit 
ability

Passive
(Intrinsic)

Conduction
Phase change material AM [1] & BEMS [2] Y Y Y

Thermal diode wall AM [3] Y N Y

Convection
Shape memory alloy AM [4] Y N Y

Solar thermal collector AM & PM [5] N Y N

Active
(Extrinsic)

Conduction
Active vacuum AM [6] Y N Y

Mechanical contact AM [7] Y N Y

Convection Fluidic-system
Embedded technology AM [8] Y Y Y

*AM: Analytical Model (Equation-based model), BEMS: Building Energy Modeling & Simulation Software, PM: Physical Test Model

[1] K. Biswas, Y. Shukla, A. Desjarlais, R. Rawal, “Thermal characterization of full-scale PCM products and numerical simulation, including hysteresis, to evaluate energy impacts in an envelope application,”
Applied Thermal Engineering, 2018; 138; 501-512. [2] P.C. Tabares-Velasco, C. Christensen, and M. Bianchi, “Verification and validation of EnergyPlus phase change material model for opaque wall assemblies,”
Building and Environment, 2012; 54; 186-196. [3] Z. Zhang, Z. Sun, and C. Duan, “A new type of passive solar energy utilization technology – The wall implanted with heat pipes,” Energy and Buildings, 2014 84;
111-116. [4] M. Formentini and S. Lenci, “An innovative building envelope (kinetic facade) with Shape Memory Alloys used as actuators and sensor,” Automation in Construction, 2018; 85; 220-231. [5] M.
Ibrahim, E. Wurtz, J. Anger, and O. Ibrahim, “Experimental and numerical study on a novel low temperature solar thermal collector to decrease the heating demands: A south-north pipe-embedded closed-
water-loop system,” Solar Energy, 2017; 147; 22-36 [6] A. Berge, C.E. Hagentoft, P. Wahlgren, and B. Adl-Zarrabi, “Effect from a variable u-value in adaptive building components with controlled internal air
pressure,” Energy Procedia, 2015; 78; 376-381. [7] M. Kimber, W.W. Clark, and L.Schaefer, “Conceptual analysis and design of a partitioned multifunctional smart insulation,” Applied Energy, 2014; 114; 310-
319. [8] Y. Yu, F. Niu, H.A. Guo, and D. Woradechjumroen, “A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water,” Energy, 2016; 99; 250-265.
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New Alternative: The Modelica Language

:An Equation-based Object-oriented
System Modeling Language

Window model

House model

External environment
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Building System Modeling Cases Using Modelica

Design of District Energy Systems

Design of Building Energy Systems

[1] International Energy Agency, ANNEX 60 Final Report: New Generation Computational Tools for Building & Community Energy Systems, September 2017.



2021 ASHRAE Virtual Design and Construction Conference 11

Co-simulation Technique Using the FMI Standard

Advanced System Modeling
Dynamic Controls

Well-established Building
Modeling Engine

Modelica-based Tools Co-Simulation Mature BEMS Tools
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State-of-the-art Co-Simulation Technique for BEMS

[1] T.S. Nouidui, M. Wetter, and W. Zuo, “Functional Mock-up Unit Import in EnergyPlus for Co-simulation,” in Proceedings of BS2013 13th Conference of International Building
Performance Simulation Association, Chamber, France.
[2] International Energy Agency, ANNEX 60 Final Report: New Generation Computational Tools for Building & Community Energy Systems, September 2017.

Dynamic System Control [1] High Accuracy & Calibration [2]

Modelica < > EnergyPlus Modelica & EnergyPlus < > ANSYS-CFX (CFD)
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Case Study: Structurally Integrated Building Energy Module

FROG: Structurally Integrated Building Energy Module
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1. Store thermal energy and manage thermal resistance simultaneously.

2. Can apply to various opaque building elements.

3. Can work in conjunction with multiple renewable energy systems.

Case Study: Structurally Integrated Building Energy Module
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Dynamic Thermal Behaviors of the FROG System
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Dynamic Thermal Behaviors of the FROG System
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Design, Testing, and Validation of the FROG System

Analytical Model

Development of 
equations for the 

system model

Modelica Module

Modelica
implementation of 

a single unit

Co-Simulation
Co-simulation 
using FMI for 

whole-building 
energy modeling

Validation
Computational 

model validation 
through physical 

experiments

1. 2. 3. 4.

Model validation

System design & implementation

Design Stage

Simulation Stage

Validation Stage
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1. Analytical Model Development
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2-1. A Digital Twin Model of the FROG Module by 
using the Modelica Language
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2-1. A Digital Twin Model of the FROG Module by 
using the Modelica Language
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Simulation Results: Cooling Modes
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Simulation Results: Heating Modes
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Ambient Environment
Conditions

Proposed System Model

Room Model

2-2. A Digital Twin Model of the FROG System by 
using the Modelica Language
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FROG Network Module Building Energy Model
Outputs Inputs

Temperature of Fluid in interior capillary PlantComponent:TemperatureSource

Pump:VariableSpeed

Zone Outdoor Air Drybulb Temperature

Water Tank Temperature 

Heat Storage Tank Temperature

Site Direct and Diffuse Solar Radiation

Site Wind Speed

Site Wind Direction

OutputsInputs

Packaged Network Model Whole Building Energy Model

Exterior Ambient Temperature

Inlet Fluid Temperature ( Exterior or Interior capillary)

Solar Radiation

Wind Speed

Wind Direction

Fluid Mass Flow Rate

Temperature of Exterior Surface Surface:OutdoorAirDrybulbTemperature

Co-simulation

Zone Interior Operative Air Drybulb TemperatureInterior Operative Temperature

Solar Heat Gain Transmitted SurfaceProperty:SolarincidentInside

Future research 1. Co-Simulation Model
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Future research 2. Validation: Physical Experiments
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Top Tanks with Temperature Controllers
Solar Thermal Energy Collector:

Bottom Tanks with Temperature Controllers
Geothermal Energy Systems:

(Ground Source Cooling + Heating)

Future research 2. Validation: Physical Experiments
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Conclusions

• Novel climate adaptive opaque building technologies can dramatically reduce building
heating and cooling demands with additional benefits such as comfort and well-being.

• The development of a climate adaptive building envelope is challenging due to the
lack of modeling and simulation features for climate adaptive system in modern stand-
alone BEMS tools.

• A Modelica-based simulation approach can offer complementary means to address
the critical needs of modern BEMS tools for advanced modeling.

• A co-simulation technique can provide advanced modeling features with high accuracy
while using well-established modern BEMS tools.

27
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