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Overview

● Motivation

● Overview of the Superconducting Motor

● Cooling System concept and Analytical Design

● Cooling System representation in Modelica/Dymola

● Current and Future work
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Our Team and Our Project

● CHEETA (Center for High-Efficiency 

Electric Technologies for Aircraft)
○ Established in 2019 under NASA ULI program

○ Bringing together world experts in Aeronautics, 

Electrical Systems and Material Science

○ Multi-Institutional team of Universities and 

Industry groups with Government research 

collaboration

○ Focused of developing technologies for 

hydrogen powered, fully electric commercial 

aircraft utilizing LH2 storage with Fuel Cell 

system

○ Use of H2 as a cryogenic cooling medium and 

as fuel

○ Increased power density motors
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Superconducting Motor Overview

● Superconducting (SC) motors are 

electromechanical Alternating Current (AC) 

synchronous machines that use 

superconducting windings where conventional 

machines use copper coils

● Our design uses an outer-rotor design 
(armature coils are on the stator, and field coils 
are on the rotor)

● Magnetic field on the rotor is contained by 
“shield” coils

● Low AC loss MgB2 superconducting coils are 
used with critical temperature of 39K

● There are significant AC losses in the armature 
windings (3000-4000 W) but extremely low 
losses in the field and “shield” windings (1-10 
W)
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Armature Cooling Concept
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● As mentioned stator is on the inside, 

and rotor is on the outside

● Single phase LH2 enters as a liquid, 

and exits as a 2-phase mixture H2 

after absorbing heat from the stator 

(approximately 4kW)

● With 16 motors on the aircraft and 

approximately 1.66MW as the power 

of one motor, we get an available 

cooling budget of around 4.3kW per 

motor, and an LH2 boil-off rate per 

motor of 9.66 g/s, assuming 20-30% 

of available enthalpy of vaporization 

in fuel, available for motor cooling



Cooling Design Concept

● Concentric pipe for inlet and outlet 
coolant

● The inlet LH2 goes to the end of the 
assembly, and then “returns” towards 
the start by way of helical coils

● The armature heat is absorbed by 
the coolant via the Aluminum heat 
sink, changing phase to 2-phase H2 
in the process

● Heat from field and shield coils is 
conducted through an Aluminum 
structure and the bearings/rotary 
conduction cooling scheme to the 
H2.

● Entire structure is in a vacuum 
vessel
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Flow Through Helical Tubes

● Centrifugal forces cause secondary 
flows circulating outward into the core 
region of the pipe to form a pair of 
symmetrical vortices.

● The main and secondary flows together 
create a flow pattern in which the 
maximum velocity is shifts outward from 
the center of the tube

● Secondary flow produces a transverse 
transport of the coolant over the cross 
section of the tube

● This improves heat transfer capability 
but increases pressure drop compared 
to a straight pipe
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Heat Transfer in Helical Tubes

● Critical Reynolds number for flow through helical tubes, assuming 
Recrit is 2300, if given by

𝑅𝑒𝑐𝑟𝑖𝑡 = 2300 1 + 8.6
𝑑

𝐷

0.45

● Considering the effect of pressure drop through friction factor 𝜁

𝜁 = 0.3164𝑅𝑒−0.25 + 0.03
𝑑

𝐷

0.5

● Nusselt number is calculated as:

𝑁𝑢 =

𝜁
8 𝑅𝑒 𝑃𝑟

1 + 12.7
𝜁
8

0.5

𝑃𝑟
2
3 − 1

● Calculating Re to be greater than critical, therefore giving us turbulent 
flow, the mean convective heat transfer coefficient is calculated as:

𝛼 =
𝑁𝑢 𝜆

𝑑
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Pressure Drop in Helical Tubes

• The pressure drop is calculated by breaking down the tube into 
a series of “bends”

• Assuming turbulent flow through the Re calculation, the local 
pressure loss coefficient is given by 

𝑑𝑃 = 𝜁
𝜌

2
𝑉𝑒𝑙2

Where ρ is the density of fluid, Vel is the velocity of fluid flow which can be 
calculated through the mass flow rate, and the friction coefficient ζ is 
calculated as:

𝜁 = 𝑘𝑅𝑒𝐴1 𝐵1 𝐶1

where,  𝑘𝑅𝑒 = 1 +
4400

𝑅𝑒
for 0.50 < r/d < 0.55

𝑘𝑅𝑒 = 5.45 𝑅𝑒0.118 for 0.55 ≤ r/d < 0.70  

𝑘𝑅𝑒 =
11.5

𝑅𝑒0.19
for 0.70 ≤ r/d < 3.00 where r = D/2

A1, B1 and C1 are coefficients considering angle of turning, relative curvature 

radius and coefficient considering effect of elongation on cross section
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Mathematical Model

• Outer Rotor AC Synchronous motor model, 
including thermal parameters, customized for 
superconducting MgB2 coils

• Helical Tube model considering turbulent flow, 
customized to match dimensions of the tubes 
used, heat transfer properties and pressure 
drop model

• H2 media model allowing phase change from 
LH2 to 2-phase H2, circulated through the 
helical tubes by a fluid pump, set to operate at 
a defined mass flow rate
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Parameterization of the Model
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• Setting the coolant medium as a 

CoolProp property based LH2 model 

(LH2 is not a pre-programmed medium 

available)

• Setting the heat transfer regime as 

turbulent based on calculation of 

Reynolds Number Re to be above 

critical

• Setting the pressure drop fluid flow 

model to be turbulent for proper 

selection of kRe

• Parameterizing the dimensions for the 

tube model as externally changeable, 

along with the mass flow rate



Current Work and Future Steps

• Current work includes simulating the model to 
analyze the heat transfer performance so as to
siphon off 4.3kW of heat rejected by the SC 
motor

• Current work also includes analyzing pressure 
drop values to be able to predict if a particular 
mass flow rate would be enough to achieve the 
required heat transfer

• An inverter model is also being developed to 
simulate with the motor, and test cases are 
being prepared for Battery-HTS Cables-Motor-
Inverter case and Fuel Cell-HTS Cables-Motor-
Inverter case
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• Future work involves testing for a case 
involving hybrid operation between two prime 
movers (Fuel Cell and Battery, both supplying 
power to the motor without voltage overload)

• Once the thermal model integration is 
completed, the next steps involve integrating it 
with the electrical model, and running system 
level test cases
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