Design and Analysis of Cryogenic Cooling System for Superconducting Motor

Abhijit Khare Rensselaer Polytechnic Institute Troy, NY July 2021

Center for High-Efficiency Electrical Technologies for Aircraft

Overview

- Motivation
- Overview of the Superconducting Motor
- Cooling System concept and Analytical Design
- Cooling System representation in Modelica/Dymola
- Current and Future work

Our Team and Our Project

- CHEETA (Center for High-Efficiency Electric Technologies for Aircraft)
 - Established in 2019 under NASA ULI program
 - Bringing together world experts in Aeronautics, Electrical Systems and Material Science
 - Multi-Institutional team of Universities and Industry groups with Government research collaboration
 - Focused of developing technologies for hydrogen powered, fully electric commercial aircraft utilizing LH2 storage with Fuel Cell system
 - Use of H2 as a cryogenic cooling medium and as fuel
 - Increased power density motors

Superconducting Motor Overview

- Superconducting (SC) motors are electromechanical Alternating Current (AC) synchronous machines that use superconducting windings where conventional machines use copper coils
- Our design uses an outer-rotor design (armature coils are on the stator, and field coils are on the rotor)
- Magnetic field on the rotor is contained by "shield" coils

- Low AC loss MgB₂ superconducting coils are used with critical temperature of 39K
- There are significant AC losses in the armature windings (3000-4000 W) but extremely low losses in the field and "shield" windings (1-10 W)

Armature Cooling Concept

21 Rensselaer ALSET ab why not change the world?"

- As mentioned stator is on the inside, and rotor is on the outside
- Single phase LH2 enters as a liquid, and exits as a 2-phase mixture H2 after absorbing heat from the stator (approximately 4kW)
- With 16 motors on the aircraft and approximately 1.66MW as the power of one motor, we get an available cooling budget of around 4.3kW per motor, and an LH2 boil-off rate per motor of 9.66 g/s, assuming 20-30% of available enthalpy of vaporization in fuel, available for motor cooling

Cooling Design Concept

- Concentric pipe for inlet and outlet coolant
- The inlet LH2 goes to the end of the assembly, and then "returns" towards the start by way of helical coils
- The armature heat is absorbed by the coolant via the Aluminum heat sink, changing phase to 2-phase H2 in the process
- Heat from field and shield coils is conducted through an Aluminum structure and the bearings/rotary conduction cooling scheme to the H2.
- Entire structure is in a vacuum vessel

CHEETA

Inlet/Outlet through co-axial pipe

Flow Through Helical Tubes

- Centrifugal forces cause secondary flows circulating outward into the core region of the pipe to form a pair of symmetrical vortices.
- The main and secondary flows together create a flow pattern in which the maximum velocity is shifts outward from the center of the tube
- Secondary flow produces a transverse transport of the coolant over the cross section of the tube
- This improves heat transfer capability but increases pressure drop compared to a straight pipe

Heat Transfer in Helical Tubes

 Critical Reynolds number for flow through helical tubes, assuming Re_{crit} is 2300, if given by

$$Re_{crit} = 2300 \left[1 + 8.6 \left(\frac{d}{D} \right)^{0.45} \right]$$

- Considering the effect of pressure drop through friction factor ζ $\zeta = 0.3164Re^{-0.25} + 0.03 \left(\frac{d}{D}\right)^{0.5}$
- Nusselt number is calculated as:

$$Nu = \frac{\left(\frac{\zeta}{8}\right) Re Pr}{1 + 12.7 \left(\frac{\zeta}{8}\right)^{0.5} (pr^{\frac{2}{3}} - 1)}$$

• Calculating Re to be greater than critical, therefore giving us turbulent flow, the mean convective heat transfer coefficient is calculated as:

$$\alpha = \frac{Nu \,\lambda}{d}$$

Pressure Drop in Helical Tubes

- The pressure drop is calculated by breaking down the tube into a series of "bends"
- Assuming turbulent flow through the Re calculation, the local pressure loss coefficient is given by $dP = \zeta \left(\frac{\rho}{2}\right) Vel^2$

Where ρ is the density of fluid, Vel is the velocity of fluid flow which can be calculated through the mass flow rate, and the friction coefficient ζ is calculated as:

$$\zeta = k_{Re} A 1 B 1 C 1$$

where,
$$k_{Re} = 1 + \frac{4400}{Re}$$
 for 0.50 < r/d < 0.55
 $k_{Re} = 5.45 \ Re^{0.118}$ for 0.55 ≤ r/d < 0.70

$$k_{Re} = \frac{11.5}{Re^{0.19}}$$
 for 0.70 \leq r/d < 3.00 where r = D/2

ΉΕΕΤΑ

A1, B1 and C1 are coefficients considering angle of turning, relative curvature radius and coefficient considering effect of elongation on cross section

d/D	0.2	0.14	0.098	0.069	0.049	0.024	0.012
I/d	231	165	365	205	477	579	636
n	15.5	8.9	11.5	5	7.5	4.5	2.5

Mathematical Model

- Outer Rotor AC Synchronous motor model, including thermal parameters, customized for superconducting MgB₂ coils
- Helical Tube model considering turbulent flow, customized to match dimensions of the tubes used, heat transfer properties and pressure drop model
- H2 media model allowing phase change from LH2 to 2-phase H2, circulated through the helical tubes by a fluid pump, set to operate at a defined mass flow rate

CHEETA

ALSET

CFC

Parameterization of the Model

- Setting the coolant medium as a CoolProp property based LH2 model (LH2 is not a pre-programmed medium available)
- Setting the heat transfer regime as turbulent based on calculation of Reynolds Number Re to be above critical
- Setting the pressure drop fluid flow model to be turbulent for proper selection of k_{Re}
- Parameterizing the dimensions for the tube model as externally changeable, along with the mass flow rate

benponent Name heikalPipeHeatTransferModel Connent codel Path CHEETA_Thermal.Motors.HeikalPipeHeatTransferModel Comment Wedium Utilities.LH2CoolProp Medium in the component attransfer HeatTransferIam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime III Characteristic of convective heat transfer HeatTransferIam FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime Characteristic of convective heat transfer FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime Subdivisipation: Heat transfer for helical pipe in turbulent fluid flow regime Automotive fluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime Automotive heat transfer FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime Automotive heat transfer FluidDissipation: Heat transfer Heat Transfer for helical pipe in turbulent fluid flow regime IIII • Characteristic of convective heat transfer FluidDissipation: Heat transfer Heat Transfer FluidDissipation: Heat transfer FluidDissipation: Heat transfer Heat Transfer FluidDissipation: Heat transfer Heat Transfer <p< th=""><th>Component icon Name helcalPipeHeatTransferModel Comment Model Path CHEETA_Thermal.Motors.Helcal_PipeHeatTransferModel Comment Application model for a helcal pipe in Modelca_Fluid Fluid properties Medium Utilities.LH2COOIProp VIII + Medium in the component Heat transfer Medium in the component Heat transfer FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferLam FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferCover FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime n_nt </th><th></th><th>modifiers</th><th>Attributes</th><th></th><th></th><th></th><th></th><th></th></p<>	Component icon Name helcalPipeHeatTransferModel Comment Model Path CHEETA_Thermal.Motors.Helcal_PipeHeatTransferModel Comment Application model for a helcal pipe in Modelca_Fluid Fluid properties Medium Utilities.LH2COOIProp VIII + Medium in the component Heat transfer Medium in the component Heat transfer FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferLam FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferCover FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime n_nt		modifiers	Attributes					
Name heikalPipe heikalPipe have fuidDissipation: Heat transfer for helical pipe in delical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HuidFlowRegime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer huidFlowRegime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer huidFlowRegime FluidDissipation. Utilities. Types. FluidFlowRegime. Turbulent • Choice of fluid flow regime huid flow fregime III + Characteristic of convective heat transfer huidFlowRegime III + Characteristic of convective heat transfer fluidDissipation. Utilities. Types. FluidFlowRegime. Turbulent • Choice of fluid flow regime huid flow flow flow flow flow flow flow flow	Name helicalPipeHeatTransferModel Comment	Component						Icon	
Comment	Comment Image: Comment Model Path CHEETA_Thermal.Motors.Helical_Pipes.HelicalPipeHeatTransferModel Image: Comment Application model for a helical pipe in Modelica_Fluid Comment Application model for a helical pipe in Modelica_Fluid Image: Comment Application model for a helical pipe in Modelica_Fluid Fluid properties Image: Comment Application: Heat transfer for helical pipe in laminar fluid flow regime Image: Comment Application: Heat transfer for helical pipe in overall fluid flow regime Image: Comment FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime Image: Comment Image: Comment FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime Image: Comment	Name helic	calPipeHeatTr	nsferModel					
odel Image: Checker Application model for a helical Pipes HelicalPipe HeatTransferModel Comment Application model for a helical pipe in Modelica_Fluid Utilities.LH2CoolProp III + Medium in the component Medium Utilities.LH2CoolProp III + Medium in the component tat transfer HeatTransferIam HeatTransferIam FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer RuidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent I + Choice of fluid flow regime elscaPipe m Total number of turns n_nt n Hydraulic diameter h 1.55"d + m Distance between turns L L m Total length of helical pipe	Vodel Path CHEETA_Thermal.Motors.Helical_Pipes.HelicalPipeHeatTransferModel Image: Comment Application model for a helical pipe in Modelica_Fluid Comment Application model for a helical pipe in Modelica_Fluid Image: Comment Application model for a helical pipe in Modelica_Fluid Headium Image: Comment Application: Head transfer for helical pipe in laminar fluid flow regime Image: Comment Application: Head transfer for helical pipe in overall fluid flow regime Image: Comment Application: Head transfer for helical pipe in overall fluid flow regime Image: Comment Application: Head transfer for helical pipe in overall fluid flow regime Image: Comment Application: Head transfer for helical pipe in turbulent fluid flow regime Image: Comment Application: Head transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime Image: Comment Application: Comment Application: Heat transfer for helical pipe in turbulent fluid flow regime Image: Comment Application: Comment Application: Heat transfer for helical pipe in turbulent fluid flow regime Image: Comment Application: Comment Application: Utilities.Types.FluidFlowRegime.Turbulent Characteristic of convective heat transfer HeatTransferTurb FluidDissipation:Utilities.Types.FluidFlowRegime.Turbulent Characteristic of turns Image: Comment Application: Heat transfer Int Image: Comment Application:Utilities.Types.FluidFlowRegime.Turbulent Image: Comment Application: Heat transfer Image: Comment Application: Heat transfer	Comment							
Odel Path CHEETA_Thermal.Motors.Helical_Pipes.HelicalPipeHeatTransferModel Comment Application model for a helical pipe in Modelica_Fluid Utilities.LH2CoolProp VIII + Medium in the component Medium Utilities.LH2CoolProp VIII + Medium in the component tarsfer HeatTransferIam HeatTransferIam FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer RuidFlowRegime FluidDissipation: Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime selscaPipe	Doble Path CHEETA_Thermal.Motors.Helical_Pipes.HelicalPipeHeatTransferModel Comment Application model for a helical pipe in Modelica_Fluid Hedium Utilities.LH2CoolProp V III + Medium in the component Heat transfer HeatTransferLam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime V III + Characteristic of convective heat transfer HeatTransferLam FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime V III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime V III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime V III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime HeatChippe n n_nt n h 1.5*d m L m Total number of turns								
Comment Application model for a helical pipe in Modelica, Fluid uid properties Medium Utilities.LH2CoolProp VIII + Medium in the component tast transfer HeatTransferIam FluidDissipation: Heat transfer for helical pipe in aminar fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer RuidFlowRegime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer RuidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime selcaPipe	Comment Application model for a helical pipe in Modelica_Fluid Fluid properties Medium Utilities.LH2CoolProp II Medium in the component Heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Characteristic of convective heat transfer fluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Characteristic of turns fluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent fluid flow regime fluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent fluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent fluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent fluidDissipation.turbulent fluidDissipation.turbulent fluidDissipation.turbulent fluidDissipation.turbulent fluidDissipation.turbulent fluidDissipation.turbulent fluidDissipation.turbulent fl	Path CHE	ETA Thermal	Motors Halical Dines HalicalDinaHeatTransferModel					
uid properties Medium Utilities.LH2CoolProp VIII + Medium in the component transfer HeatTransferIam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer RuidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime selcaPipe n + Total number of turns n_nt n + Hydraulic diameter h 1.55"d + m L intal number of helical pipe	Huid properties Medium Utilities.LH2CoolProp VIII + Medium in the component Heat transfer Heat TransferLam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer fluidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime telcalPipe n n_rt n h 1.5*d h 1.5*d L m	Comment Appl	lication model	for a helical pipe in Modelica_Fluid					
Medium Utilities.LH2CoolProp VIII + Medium in the component Wedium Utilities.LH2CoolProp VIII + Medium in the component tast transfer HeatTransfer for helical pipe in laminar fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer RuidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime elscaPipe	Medium Utilities.LH2CoolProp III Medium in the component Heat transfer Heat Transfer for helical pipe in laminar fluid flow regime III Characteristic of convective heat transfer HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime III Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III Characteristic of convective heat transfer HeatTransferTurb FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Characteristic of convective heat transfer HeatTransferTurb FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Choice of fluid flow regime HeatTransferTurb FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Total number of turns I_hyd n N Hydraulic diameter h 1.5*d m Distance between turns L n Total length of helical pipe Total length of helical pipe	luid properties -							_
sat transfer HeatTransferLam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime III + Characteristic of convective heat transfer HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer RuidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Characteristic of convective heat transfer RuidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Choice of fluid flow regime elscaPipe n n Total number of turns h 1.5 ^{*d} m Distance between turns L L L m Total length of helical pipe	Heat transfer Heat TransferLam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime VIII + Characteristic of convective heat transfer Heat TransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime VIII + Characteristic of convective heat transfer Heat TransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime VIII + Characteristic of convective heat transfer RuidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent V + Choice of fluid flow regime HelcalPipe n + Total number of turns n_nt n + Ydraulic diameter h 1.5*d + m Distance between turns L m Total length of helical pipe	Medium		Utilities.LHZ	CoolProp	×∎∙	Medium in the	e component	
Heat Transfer Heat TransferLam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime Heat Transfer Over FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime Heat Transfer Turb FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime Heat Transfer Turb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime FluidDissipation: Heat transfer for helical pipe. Turbulent FluidDissipation: Utilities. Types. FluidFlowRegime. Turbulent Choice of fluid flow regime elkalPipe n_nt n_nt d_hyd h 1.55*d m Distance between turns L	Heat Transfer Heat Transfer Heat Transfer IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								
HeatTransferLam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime III + Characteristic of convective heat transfer HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer HuidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent · Choice of fluid flow regime elicalPipe	HeatTransfertam FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime III + Oharacteristic of convective heat transfer HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime III + Oharacteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime III + Oharacteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Oharacteristic of convective heat transfer fluidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Oharacteristic of convective heat transfer elcalPipe	eat transfer							
HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer AudFlowRegime FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer AudFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Choice of fluid flow regime elicalPipe n_nt Total number of turns d_hyd d m Hydraulic diameter h 1.55*d m Distance between turns L L m Total length of helical pipe	HeatTransferOver FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime III + Characteristic of convective heat transfer HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer fluidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent V Choice of fluid flow regime elcaPipe n + Total number of turns d_hyd d + m Hydraulic diameter h 1.5*d + m Distance between turns L m Total length of helical pipe	HeatTransferLan	m	FluidDissipation: Heat transfer for helical pipe in laminar fluid flow regime 🗸 🔢 🕨 Characteristic of convective heat					
HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer fluidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Choice of fluid flow regime elcaPipe n_nt n + Total number of turns d_hyd d + m Hydraulic diameter h 1.55*d m L L m Total length of helical pipe	HeatTransferTurb FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime III + Characteristic of convective heat transfer fluidFlowRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Choice of fluid flow regime elcaPipe n_nt n + Total number of turns d_hyd d + m Hydraulic diameter h 1.5*d + m Distance between turns L m Total length of helical pipe	HeatTransferOv	/er	FluidDissipation: Heat transfer for helical pipe in overall fluid flow regime \sim [∎ • ⊂	haracteristic	of convective heat	t transfer	
FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent ·· , Choice of fluid flow regime eticalPipe n_nt n · Total number of turns d_hyd d · m Hydraulic diameter h 1.5 [*] d m Distance between turns L L m Total length of helical pipe	fuidPionRegime FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent Choice of fluid flow regime telcalPipe n_nt n , Total number of turns d_hyd d , m Hydraulic diameter h 1.5*d , m Distance between turns L m Total length of helical pipe	HeatTransferTu	rb	FluidDissipation: Heat transfer for helical pipe in turbulent fluid flow regime $$	≣ • c	haracteristic	of convective heat	t transfer	
akcalPipe n_nt Total number of turns d_hyd d Hydrault clameter h 1.5 st d + m Distance between turns L d m Total length of helical pipe	Inght Inght Total number of turns d_hyd d m Hydraulic diameter h 1.5*d m Distance between turns L m Total inght of helical pipe	fluidFlowRegime	e	FluidDissipation.Utilities.Types.FluidFlowRegime.Turbulent	~ • c	hoice of fluid	I flow regime		
n_nt n_it Total number of turns d_hyd image: margin turns image: margin turns h 1.5*d image: margin turns image: margin turns L image: margin turns image: margin turns	n_nt n_it Total number of turns d_hyd d_h m H 1.5*d m L m Total length of helical pipe	leliselDies							
n_nt Total number of turns d_hyd d m Hydraulic diameter h 1.5*d m Distance between turns L L m Total length of helical pipe	n.nt Total number of turns d_hyd m H Hydraulic diameter L m	rencarripe							
d_hyd 0 * m Hydraulic diameter h 1.5*d * m Distance between turns L L m Total length of helical pipe	d_hyd	n_nt				<u>n</u>]•	Total number	of turns	
L L m Total length of helical pipe	L Database of the second secon	d_hyd			1 5*		Hydraulic dian	meter	
	L m roariengur ormeica ppe	n			1.5		Total length of	een turns	
		-					rotarienguro	r neicai pipe	
		nput							
put		m_flow				m_fl	ow kg/s	Mass flow rate	
n#	logit	n_nt d_hyd h L			1.5*	d • m d • m L • m	Total number Hydraulic dian Distance betw Total length o	of turns neter een turns f helical pipe	
		m_flow	L			m_fl	ow kg/s	Mass flow rate	

Current Work and Future Steps

- Current work includes simulating the model to analyze the heat transfer performance so as to siphon off 4.3kW of heat rejected by the SC motor
- Current work also includes analyzing pressure drop values to be able to predict if a particular mass flow rate would be enough to achieve the required heat transfer
- An inverter model is also being developed to simulate with the motor, and test cases are being prepared for Battery-HTS Cables-Motor-Inverter case and Fuel Cell-HTS Cables-Motor-Inverter case

- Future work involves testing for a case involving hybrid operation between two prime movers (Fuel Cell and Battery, both supplying power to the motor without voltage overload)
- Once the thermal model integration is completed, the next steps involve integrating it with the electrical model, and running system level test cases

Acknowledgements

- Based on work being conducted with Wolfgang Stautner (GE Global Research)
- Figures courtesy Joshua Feldman, Kiruba Haran (University of Illinois, Urbana-Champaign

This work was supported by NASA under award number 80NSSC19M0125 as part of the Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA)

