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State Estimation and EMS Systems Today

⇒ SCADA - conventional measurements
⇒ PDC - phasor measurements
⇒ Topology Processor - network model from
status info.
⇒ Observability analysis - determines feasible
solution with given measurements, identifies
unobservable branches and observable islands

⇒ Bad data processing - determines errors in
the data, elliminates bad data given enough
redundancy
⇒ SE process - provides estimated states of
the system → V , θ, transformer tap,
generator settings, and power flows in
branches and loads.
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PMUs are included to reflect recent adoption in some control centers
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Conventional WLS State Estimation - I

⇒ The relationship between the system state x, and the measurements z is given by

z = h(x) + e (1)

where e is the vector of measurement errors, and h(x) is the nonlinear function which
is formed by

• power flow equations → for measured P & Q injections and Sij flows, and

• Iij =
q

P 2
ij + Q2

ij/Vi → for line current flow measurements (Iij)

⇒ In a power system with m measurements, assuming independent errors
(E {eiej} = 0), a WLS solution is obtained by minimizing

J(x) =
m

X

i=1

(zi − hi(x))2

Rii

= [x− h(x)]T R−1 [x− h(x)] (2)

where R is a diagonal matrix of covariances σ2
i , i = 1, 2, . . . , m

⇒ Solution to (2) is iterative using Newton Methods [1, 2].
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Conventional WLS State Estimation - II
⇒ Linearizing h(x) about x(0) and using only the first-order term of the Taylor
series results in the Gauss-Newton iterative solution method

xk+1 = xk −
h

G(xk)
i−1 h

−HT (xk)R−1
“

z − h(xk)
”i

(3)

where k is the iteration index,
xk is the solution vector at iteration k ,

H(xk) is the measurement Jacobian matrix, H(x) =
h

∂h(x)
∂x

i

,

evaluated at iteration k, and
G(xk) is the gain matrix, G(x) = HT (x)R−1H(x),

evaluated at iteration k.

⇒The gain matrix is not inverted, instead it is decomposed by triangular
factorization and solved using backward substitutions at each iteration, hence

G(xk)
“

xk+1 − xk
”

= HT (xk)R−1
“

z − h(xk)
”

(4)

is solved iteratively until a certain tolerance,
˛

˛xk+1 − xk
˛

˛ < ǫ, is satisfied. Note
that any measurement error is distributed among all the states.

Additional Slides at the end of the presentation summarize several approaches
used to include PMU data into conventional state estimators.
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Phadke and Thorp’s Linear State Estimator [4] - I
A. G. Phadke, J. S. Thorp, and K. J. Karimi, “State Estimation with Phasor Measurements,” IEEE

Transactions on Power Systems, vol. 1, no. 1, pp. 233-238, Feb. 1986.

⇒ Measure bus voltage and line current phasors using PMUs, and formulate the

estimation problem in terms of complex voltages and currents - rectangular
coordinate formulation.

Network BusPMU Voltage PMU Current

Ṽi
Ĩij ỹij

1

2
ỹi0

Ṽj
Ĩji

1

2
ỹj0

Ĩij = (ỹij + ỹi0)Ṽi −ỹij Ṽj

Ĩji = −ỹij Ṽi +(ỹij + ỹj0)Ṽj

(5)

Define a bus-measurement admittance matrix Ỹ (only including the admittances of
branches with PMU-measurements)

Ỹ =

"

ỹij + ỹi0 −ỹij

−ỹij ỹij + ỹj0

#

Ỹ = ỹAT + ỹS

(6)

A: current measurement-bus incidence
matrix (m × b) — m=rows = #
Ĩm,b = cols = #Ṽm,
ỹ: diagonal primitive matrix of series
admittances of metered elements (m × m),
ỹS : shunt primitive matrix of shunt
admittances metered ends (m × b).

The complex currents can be written as

Ĩ =
“

ỹAT + ỹS

”

Ṽ (7)
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Phadke and Thorp’s Linear State Estimator [4] - II
⇒ A linear relationship between the system state, x, and the measurement vector, z, in the
form of (1) can now be established.
⇒ Using only synchronized phasor measurements, the measurement vector is given by the
complex measurements

z =

2

4

Ṽ
measured

Ĩ
measured

3

5 (8)

The linear function h(x) relating the state vector Ṽ , and the complex currents and voltages
is given by (7), rewriting

h(x) =

"

U

ỹAT + ỹS

#

Ṽ = B̃Ṽ (9)

where U is an identity matrix with the rows corresponding to unmetered buses removed,
and B̃ is a complex matrix.
→The relationship between the states and measurements is

z = h(x) + e
2

4

Ṽ
measured

Ĩ
measured

3

5 = B̃Ṽ +

"

e
Ṽ

e
Ĩ

#

(10)

where e
Ṽ

and e
Ĩ

are errors on the voltage and current phasors, respectively.
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Phadke and Thorp’s Linear State Estimator [4] - III
⇒ The solution to (10) is given by

G̃x = B̃
†
Rz (11)

where the G̃ is a complex gain matrix given by G̃ = B̃
†
RB̃ and R contains the

covariances of the complex measurements, the measurements are assumed to be
uncorrelated.(†: complex conjugate transpose of a matrix.)

⇒ The SE algorithm consists of computing the right hand side of (11) for each
measurement scan and performing triangular factorization, then (11) is solved for
x using back substitution
→ The solution is direct (finite number of operations), i.e. non-iterative, as
opposed to the iterative solutions that Gauss-Newton procedures in
Conventional SE

⇒Some comments about G̃

→ If there are no network topology or measurement configuration changes
between network scans then G̃ is constant, the LU factors of G̃ are computed
once and used sequentially.
→ If the voltage phasor is measured at all buses, G̃ is the covariance matrix of
the measurements - real, and diagonal
→ When current phasors are measured at both ends of an element: G̃ is
symmetric and real.
→ When current phasors are measured at one end of an element: G̃ is
symmetric. The imaginary part of off-diagonal elements is small for normal
X/R ratios.
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Phadke and Thorp’s Linear State Estimator [4] - IV
⇒Note that the state estimation solution (11) is obtained in rectangular coordinates. The
results should be mapped into polar coordinates to be meaningful.
The state estimates Ṽ are given by1

Ṽ = G̃
−1

B̃
†
R

2

4

Ṽ
measured

Ĩ
measured

3

5 (12)

which in polar coordinates are given by

V = |Ṽ |, and θ = ∠Ṽ (13)

⇒ Covariances for the measurements - The standard deviations for bus voltage and line
current measurements are given by [3, 4]

σṼi
= 0.0017fSV + 0.005|Ṽi|; σĨi

= 0.0017fSI + 0.01|Ĩi| (14)

where fSV and fSI are the full scale value of the voltage and current measurement devices,

respectively. Full scale values for fSV are between 1-1.2 p.u. voltage. For fSI they depend

on the flow level in the network, a value of 5.0 p.u. for a 500 MVA flow in a 345 kV line is

reported in [4]

1
G̃

−1
is not computed, as discussed before.
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Summarizing the Procedure for Linear State Estimation
1. Obtain measurements and device status.

2. Based on the device status build the bus measurement admittance matrix Ỹ

2.1. Obtain the current measurement bus incidence matrix AT

2.2. Obtain the primitive matrix of series admittances of metered elements ỹ

2.3. Obtain the shunt primitive matrix of metered shunt admittances ỹs

2.4. Compute Ỹ = ỹAT + ỹs

3. Obtain matrix B̃

3.1. Based on the metered voltage phasors obtain the U

3.2. Compute B̃ using U and Ỹ

4. Based on the metered phasors
4.1. Obtain the covariance matrix R using (14)
4.2. Obtain the measurement vector z

5. Solve G̃x = B̃
†
Rz

5.1. Compute G̃ = B̃
†
RB̃

5.2. Solve G̃x = B̃
†
Rz by performing triangularization and back-substitution.

Store the upper triangular matrix.

⇒ For a new snapshot of measurements – if there is no measurement
configuration or network topology changes, only steps 4. and 5. need to be
performed. Otherwise, return to step 1.
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Example: All Ṽ and Ĩ are measured - I

#2

G1

L1

#1

#3
#4

L2

Ĩ12m Ĩ21m

Ĩ24m

Ĩ23m

Ĩ42m

Ĩ43m

Ṽ1m

Ṽ2m Ṽ4m

Phasor Measurement Unit

Current Phasor Measured by the PMU

Ṽ3m

Ĩ34mĨ32m

#2

G1

L1

#1

#3

#4

L2

ỹ12

ỹ120
ỹ120

ỹ23

ỹ24

ỹ240
ỹ240

ỹ230

ỹ230

ỹ34

ỹ340

ỹ340

Current Measurement Bus Incidence
Matrix AT

AT =

B.1 B.2 B.3 B.4

Ĩ12

Ĩ21

Ĩ23

Ĩ32

Ĩ34

Ĩ43

Ĩ24

Ĩ42

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 −1 0 0

−1 1 0 0

0 1 −1 0

0 −1 1 0

0 0 1 −1

0 0 −1 1

0 1 0 −1

0 −1 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Primitive matrix of series admittances of
metered elements ỹ

ỹ = diag([ỹ12 ỹ21 ỹ23 ỹ32 ỹ34

ỹ43 ỹ24 ỹ42])
Note that ỹ12 = ỹ21, ỹ23 = ỹ32, ỹ34 = ỹ43,
and ỹ24 = ỹ42.
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Example: All Ṽ and Ĩ are measured - II

Shunt primitive matrix of shunt admittances metered ends ỹs

#2

G1

L1

#1

#3

#4

L2

ỹ12

ỹ120
ỹ120

ỹ23

ỹ24

ỹ240
ỹ240

ỹ230

ỹ230

ỹ34

ỹ340

ỹ340

Note that ỹ120
=ỹ210

, ỹ230
=ỹ320

, ỹ340
=ỹ430

,
and ỹ240

=ỹ420
.

ys =

B.1 B.2 B.3 B.4

Ĩ12

Ĩ21

Ĩ23

Ĩ32

Ĩ34

Ĩ43

Ĩ24

Ĩ42

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

ỹ120
0 0 0

0 ỹ210
0 0

0 ỹ230
0 0

0 0 ỹ320
0

0 0 ỹ340
0

0 0 0 ỹ430

0 ỹ240
0 0

0 0 0 ỹ420

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Bus measurement admittance matrix Ỹ

Ỹ = ỹA
T

+ ỹs =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

ỹ12 + ỹ120
−ỹ12 0 0

−ỹ12 ỹ12 + ỹ210
0 0

0 ỹ23 + ỹ230
−ỹ23 0

0 −ỹ23 ỹ23 + ỹ230
0

0 0 ỹ34 + ỹ340
−ỹ34

0 0 −ỹ34 ỹ34 + ỹ340

0 ỹ24 + ỹ240
0 −ỹ24

0 −ỹ24 0 ỹ24 + ỹ240

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Example: All Ṽ and Ĩ are measured - III

Constructing B̃

⇒Line parameters (all in p.u.): L1−2: r=0, x=0.01, b=0.001; L2−3, L3−4: r=0.01, x=0.1,
b=0.15; L2−4: r=0.02, x=0.2, b=0.3
⇒Primitive matrix of series admittances:

ỹ = diag([−j100, −j100, 0.9901 − j9.901, 0.9901 − j9.901, 0.9901 − j9.901,

0.9901 − j9.901, 0.49505 − j4.9505, 0.49505 − j4.9505])

⇒Shunt primitive matrix:

ỹs(1, 1) = j0.0005, ỹs(2, 2) = j0.0005, ỹs(3, 2) = j0.075, ỹs(4, 3) = j0.075,

ỹs(5, 3) = j0.075, ỹs(6, 4) = j0.075, ỹs(7, 2) = j0.15, ỹs(8, 4) = j0.15,

⇒Bus measurement admittance matrix:

Ỹ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−j99.99 j100 0 0

j100 −j99.99 0 0

0 0.99 − j9.826 −0.99 + j9.9 0

0 −0.99 + j9.9 0.99 − j9.826 0

0 0 0.99 − j9.826 −0.99 + j9.9

0 0 −0.99 + j9.9 0.99 − j9.826

0 0.495 − j4.8 0 −0.495 + j4.95

0 −0.495 + j4.95 0 0.495 − j4.8

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

⇒ Ṽm phasors measured at all buses, thus: U = diag([1 1 1 1])
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Example: All Ṽ and Ĩ are measured - IV

The gain matrix G̃ = B̃
†
RB̃

⇒ For simplicity, σ
Ṽi

= 0.00187

(fSV=1.1); and σ
Ĩi

= 0.0085 (fSI=5).

⇒ R = diag([σV1
σV2

σV3
σI12 . . . σI24 ])

⇒ All elements are measured from
both ends, the gain matrix is real and
symmetric

G̃ =

2

6

6

6

6

6

4

1.445 −1.445 0 0

−1.445 1.4627 −0.0142 −0.0034694

0 −0.0142 0.028404 −0.0142

0 −0.0034694 −0.0142 0.017675

3

7

7

7

7

7

5

Linear SE Solution → solve G̃x = B̃
†
Rz

Simulation Settings
⇒ Measurements are simulated using the
loadflow solution of the system
⇒ The resulting measurement vector z is
Ṽ1m = 1.05 ∠ 20 =0.98668+j0.35912

Ṽ2m = 1.0272 ∠17.5146 =0.97956+j0.30913

Ṽ3m = 0.88654 ∠-1.4645 =0.88625-j0.022658

Ṽ4m = 0.87867 ∠-1.4631 =0.87839-j0.022436

Ĩ12m = 5.0493 ∠-8.0923 =4.999-j0.71078

Ĩ21m = 5.0498 ∠171.8972 =-4.9994+j0.71176

Ĩ23m = 3.3946 ∠-8.8449 =3.3542-j0.52195

Ĩ32m = 3.44 ∠168.9065 =-3.3757+j0.66189

Ĩ34m = 0.013693 ∠-57.8668 =0.0072833-j0.011596

Ĩ43m = 0.144 ∠91.5525 =-0.0039013+j0.14394

Ĩ24m = 1.656 ∠-6.5814 =1.6451-j0.18981

Ĩ42m = 1.7519 ∠164.4893 =-1.6881+j0.4685
Note that z is complex, values in polar form
are shown for reference.

Solution
⇒ Compute LU factors and solve by back substitution, in
Matlab use the backslash “\” operator
⇒ Voltage Magnitudes

Bus |Ṽ true| = |Ṽ meas| |Ṽ se|
1 1.05 1.05
2 1.0272 1.0272
3 0.88654 0.88654
4 0.87867 0.87867

⇒ Voltage Angles

Bus |θtrue| = |θmeas| |θse|
1 20 20
2 17.5146 17.5146
3 -1.4645 -1.4645
4 -1.4631 -1.4631

⇒ No surprise that the measured and estimated
values are the same as the true values from the
loadflow were used as measurements.
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Example: All Ṽ and Ĩ are measured - V
Adding Gaussian White Noise to the Measurements
Simulation Settings
⇒ Measurements are simulated using the same loadflow solution of the system
⇒ Realistically any measurement will have metering errors and noise.
⇒ For simplicity white gaussian noise is added to the load flow solution with an snr of 75
dB
⇒ The resulting measurement vector z is similar to the one of the previous example, but
now it contains noise in the voltage and current phasors.

Solution
Voltage Magnitudes

Bus |Ṽ true| |Ṽ meas| |Ṽ se| Residual
1 1.05 1.0506 1.046 0.0046402
2 1.0272 1.0277 1.0231 0.0045789
3 0.88654 0.88631 0.88229 0.004017
4 0.87867 0.87919 0.8748 0.0043947

Voltage Angles
Bus |θtrue| |θmeas| |θse| Residual
1 20 20.0017 20.017 0.015237
2 17.5146 17.5144 17.5194 0.0050314
3 -1.4645 -1.4628 -1.549 0.086146
4 -1.4631 -1.4636 -1.5505 0.086869

⇒ Residuals are acceptable for the snr used.

⇒ Additional Slides at the end of the presentation provide more examples.
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Angular Errors Observed in PMU Data
⇒ Voltage and current phasor angles exhibit persistent biases, random shifts, and other
type of erros (shown latter)

Angle Biases in AEP

Angle Biases in NE
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Characteristics of Angular Errors found in PMU Data

Phase Angle Errors are Attributed to
• A particular signal processing algorithm used by the PMU

• Errors with time synchronization (GPS signal overload), and internal clock
synchronization with GPS

• Length of instrumentation cables

• PMU software and firmware

• Off-nominal operation

Why should we worry about them?
• Uncorrected phasor data needs to be rejected as bad data if used in

conventional SE!

• It may cause difficulties in convergence otherwise.

Observed characteristic

⇒ When large angle shift occurs, the same bias appears in all voltage

& current angles

• The fact that the same angle shift will be present in all angles

allows the PSE to correct for the shifts
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Angle Error Modeling in Polar Coordinates

ℜ

ℑ

Ṽ1m

Ṽ ∗

1m

θ1m + ∆θ

V1m

V1m

x
1

x
∗

1

y1

y
∗

1

ẽ

∆x

∆y

θ1m

Angle error in a measured phasor:

• Ṽ1m = V1mεjθ1m
→ is the measured voltage

phasor

• Ṽ ∗
1m = V1mεθ1m+θe is the phasor measurement

Ṽ1 with an angle error of θe,

• ẽ = Ṽ1 − Ṽ ∗
1 is the error phasor.

⇒ Angle error can be modeled in polar coordinates

with a linear angular unknown φ = θe wich is not

reliant on the phasor magnitude V1m.

⇒ Rectangular coord. would need to account for ∆x and ∆y in Ṽ ∗
1m.

⇒ ∆x and ∆y are dependent of V1m and a nonlinear function of θ1m and θe.

⇒ Rectangular coord. model allows a non-iterative solution, but, does’t allow

to model the phase and magnitude errors independently

⇒ Polar coord. is more appropriate → V and θ are mostly uncorrelated
variables as obtained by PMUs.
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Phasor State Estimation [5, 6, 7]
L. Vanfretti, J.H. Chow, S. Sarawgi, and B. Fardanesh, “A Phasor-Data Based State Estimator Incorpo-
rating Phase Bias Correction,” to appear, IEEE Transactions on Power Systems. Accepted 03/2009.

⇒ A new approach for SE based only

on PMUs

⇒ Requires a modest number of PMUs
installed in HV substations

⇒ It can supplement a conventional
SE based on ICCP and PMU data

(30 samples/sec
synchronized)

PMU Data ICCP Data
(1 samples/5 sec
variable arrival)

Phasor State Estimator

For High-Voltage Backbone

Transmission System

Enhanced Conventional

State Estimator

Why is this approach attractive?

⇒ Allows for a PMU-based SE implementation without disrupting the

available state estimator

⇒ Standalone Estimator - provides visibility of the HV network even

when the SE is out, adding reliability

⇒ Problem Formulation - provides for a special kind of bad data

detection
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Measurement Model in Polar Coordinates

Model Buses and Lines
⇒ Starts from the buses with PMUs and
enables estimation of portions with
connectivity to PMU buses.

⇒ Having determined the observable islands,
the state vector is formed by

• All measured voltages and currents

(both, ‖ · ‖ and ∠·)

• All phasor-estimable voltages and currents

(both, ‖ · ‖ and ∠·)

⇒ In a system with N buses: N1 buses with
PMUs have measured voltage phasors and N2

non-PMU buses, N = N1 + N2

⇒ There are L lines: L1 lines with PMUs
have measured current phasors and L2 are
unmonitored, L = L1 + L2

⇒ Example:
N = 7, N1 = 3 (1, 2, 3), N2 = 4 (4,5,6,7)
L = 10, L1 = 4 (1-4, 2-5, 3-6, 3-7), L2 = 6
(1-7, 2-4, 2-6, 4-5, 5-6, 5-7)

Observable Island

PMU Node PMU Current Estimated Node Network Node

1 2

3

4

5

6

7

State Vector:

x =
ˆ

V I θ δ
˜T

V =
ˆ

V1 · · · VN1
VN1+1 · · · VN

˜T

θ =
ˆ

θ1 · · · θN1
θN1+1 · · · θN

˜T

I =
ˆ

· · · Iik · · ·
˜T

δ =
ˆ

· · · δik · · ·
˜T
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Measurement and Network Model
Measurement Model

⇒ At each PMU Bus the available
measurements are Vim, θim, Iikm, and
δikm, we pair each voltage measurement
to it’s respective state

Vi = Vim + eVi
, θi = θim + eθi

(15)

⇒ Current Measurement Equations

Iik = Iikm+eIik
, δik = δikm+eδik

(16)

Network NodePMU Node PMU Current

Ṽim

(Vim, θim)

Ĩikm

(Iikm, δikm)

⇒ eVi
and eθi

are voltage mag. and
angle measurement errors, and eIik

and
eδik

are current mag. and angle
measurement errors

Network Model

PMU Node PMU Current Estimated Node Network Node

Ṽi

Ĩik Z̃ik

1

2
Ỹik

1

2
Ỹik

Ṽk

Ĩki

⇒ Based on circuit equations using the

equivalent circuit

Ṽk = Ṽi − Z̃ik

“

Ĩik −
1
2
ỸikṼi

”

(17)

⇒ Each equation is complex → divided
into ℜ & ℑ parts

fik =
“

1 + 1
2
ỸikZ̃ik

”

Ṽi − Z̃ik Ĩik − Ṽk

(18)
fikre = Re(fik) = 0, fikim = Im(fik) = 0

(19)
⇒ And assembled into an 2L

dimensional nonlinear vector f

f =
ˆ

· · · fikre fikim · · ·
˜T

(20)



PSE Solution - WLS Formulation
⇒ Satisfy the network equations while minimizing the measurement errors in
the measurement equations

min
x

q(x), subject to : f = 0 (21)

q(x) =
1

2

`

‖WV eV ‖2 + ‖WIeI‖
2 + ‖Wθeθ‖

2 + ‖Wδeδ‖
2

´

(22)

⇒ f is a nonlinear function of V , I, θ, and δ → augment equality constraint f = 0
to the objective function q(x)

q′(x) = q(x) +
1

2
‖Wff‖2 =

1

2
‖Wh(x)‖2 (23)

and Wf is a diagonal matrix with unity weights,

h =
ˆ

fT eT
˜T

, e =
ˆ

eT
V

eT
I

eT
θ

eT
δ

˜T
(24)

W = block − diag
`

Wf WV WI Wθ Wδ

´

(25)

⇒Constrained WLS problem (21) transformed into an unconstrained WLS problem

min
x

q′(x) (26)

c©L. Vanfretti (KTH) Phasor-Only State Estimation 07/29/2010 22 / 52



PSE Solution - Successive Solution Algorithm

PSE Solution
⇒ When L1 = N2 (no. of constrained eqns. = to no. of unknowns) → ∃ a unique solution
(Measurement errors are taken to be zero)
⇒ When L1 > N2 (no. of constrained eqns. > to no. of unknowns) → ∃ a WLS best fit

Weighting Matrices
⇒ Diagonal matrices, calculated depending on the type of measurement eqn. - most
weights are unity except for weights on current magnitudes (lower for heavily loaded lines)

WI = diag

„

· · · ,min

„

1,
1

Iikm

«

, · · ·

«

(27)

Iterative Solution
⇒ WLS is solved successively using the
Newton-type methods
⇒ In the Gauss-Newton method the
increment ∆x is computed as

∆x = −(H(xc))
−1(WJ(xc))

T h(xc) (28)

The new solution is updated to xc + ∆x and
the Gauss-Newton iteration (28) is repeated
until convergence.

Jacobian Structure

J =

2

6

6

6

6

6

6

4

∂f/∂x

UV 0 0 0

0 0 UI 0

0 Uθ 0 0

0 0 0 Uδ

3

7

7

7

7

7

7

5

where U is an identity matrix → ∂e/∂x
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Observability
⇒ PSE requires that the Jacobian has full rank and is equal to the number of unknowns

rank(J) = UT = 2(N + L) (29)

⇒This rank condition is satisfied when the network is observable.
⇒ If every bus in the PSE is connected to all
other buses → ∃ a single PSE island

⇒ Otherwise, a topological algorithm isolates
the islands → makes all possible Ṽ and Ĩ

observable

⇒ A PSE model is constructed for each
island → N voltages and L currents will be
observable
• Unknowns: UT = 2(N + L)

• Model Eqns.: ET = 2(L + N1 + L1)

⇒ Hence, for an obs. PSE network we need

N1 + L1 ≥ N (30)

⇒ With relay-based PMUs, (30) reduces to
2L1 ≥ N , that is

L1 ≥ int[N/2] (31)

Observable Island

PMU Node PMU Current Estimated Node Network Node

1 2

3

4

5

6

7

• Current Measurements: L1 = 4

• Non-PMU Buses: N2 = 4

• L1 = N2, holds as an equality.
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Extension for Angle Correction

Measurement Model
⇒The measurement equations can be
updated to

θi = θim − φi + eθi
(32)

δik = δikm − φi + eδik
(33)

Bus 1 is the island reference → angle
bias will not be applied to it.
⇒ The angle bias terms form a vector

φ =
ˆ

φ2 φ3 · · · φN1

˜T
(34)

⇒ Thus the WLS problem (26) can be
modified to the PSE-Φ problem of

min
xφ

q′(xφ) (35)

where
xφ =

ˆ

xT φT
˜T

(36)

and e(xφ) has been modified to
incorporate (32) and (33).

Extended Jacobian
⇒The Jacobian matrix is expanded to

Jφ =

"

J
0

∂e(φ)/∂φ

#

(37)

Note that ∂e(φ)/∂φ is sparse and
consists of ones and zeros.
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Redundancy
⇒ To perform angle bias correction redundancy is required → L1 > N2

PMU Node PMU Current Estimated Node Network Node

1 2

3

4 5

• Ṽ3 can be computed using the phasor
measurements from Bus 1 or Bus 2.

• If one of the phasor measurements has an
angle bias, the two computed values of Ṽ3 will
be different.

• Correcting the angle bias allows for all 5
voltages to be accurately computed.

1 2

3 4

PMU Node

PMU Current

Estimated Node

Network Node

• Ṽ1 can be used to compute Ṽ2,
providing redundancy.

• Voltage phasor measurements at
adjacent buses (Ṽ1 & Ṽ2) can be
used to check for the phasor
current.

To achieve redundancy for angle bias correction, the no. of measured current phasors
of

L1 ≥ N − 1 (38)

are required along with the corresponding voltage phasors.

This inequality is derived from a Jacobian rank condition.
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Redundancy Rank Condition
⇒ To correct angle shifts it is necessary to have redundant measurementst, thus
the rank condition on the extended Jacobian is updated to

rank(Jφ) = UTφ (39)

where UTφ is the total number of unknown variables which when including the
angle biases, is UTφ = 2(N + L) + (N1 − 1).

⇒ Condition (39) can be used to determine the lower bound on the no. of
measurements needed for redundancy

• No. of unknowns in UTφ corresponding to angle unknowns is:
(N + L) + (N1 − 1)

• No. of rows in Jφ corresponding to angle unknowns is: (L + N1 + L1)

• Hence, to satisfy condition (39) it is required that the number of rows
(N + L) + (N1 − 1) is greater than or equal to the number of unknowns
(N + L1 + N1)

L + N1 + L1 ≥ (N + L) + (N1 − 1) (40)

Which reduces to
L1 ≥ N − 1 (41)

Note that N1 ≥ 2 as redundancy requires at least two voltage phasor
measurements, and L1 is an integer.
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Example - Observability and Redundancy Analysis
Network 1

Observable Island

PMU Node PMU Current Estimated Node Network Node

1 2

3

4

5

6

7

Network 2

PMU Node PMU Current Estimated Node Network Node

1 2

3

4 5

Network 3

1 2

3 4

PMU Node

PMU Current

Estimated Node

Network Node

Observability Analysis

Network ET UT rank(J) Observable

1 34 34 34 Yes

2 26 24 24 Yes

3 20 18 18 Yes

Redundancy Analysis

Network Bias Terms ET UTφ rank(Jφ) Redundant

1 φ2, φ3 34 36 34 No

2 φ2 26 25 25 Yes

3 φ2 20 19 19 Yes



Summarizing the Procedure for Phasor State Estimation
1. Obtain measurements and device status.

2. Determine the observable islands, and the islands with enough
redundancy for angle-bias correction

For each island —

3. Based on the metered phasors, build the measurement model e,
network model f , and state vector x.

3.1. From these obtain the non-linear function h(x) or h(xφ)
3.2. Include phase-bias variables in xφ if enough redundancy is

available.

4. Obtain the Jacobian J or J(φ)

5. Obtain the weighting matrix W

6. Obtain the SE solution using Gauss-Newton method.
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Example: Ṽ and Ĩ measurements at Bus 1 and 2 - I

1

Ṽ1

Ṽ3Ĩ1 Ṽ2

Ĩ2

3 2
Z̃13 Z̃23

PMU Node PMU Current Estimated Node Network Bus

Measurements – an angle shift of 7.5◦ is present in
the phasors at Bus 2

|V1| |V2| θ1 θ2

True 1.05 1.05 20 20
Meas. 1 1 10 17.5

|I1| |I2| δ1 δ2
True 5.7794 5.7794 37.9708 37.9708
Meas. 5.7794 5.7794 37.9708 45.4708

⇒ Circuit eqns.: Ṽ3 = Ṽ1 − Z̃1Ĩ1, Ṽ3 = Ṽ2 + Z̃2Ĩ2
⇒ Network Model:

f1 : 0 = V1 cos θ1 − Z1I1 cos(δ1 + α1) − V3 cos θ3

f2 : 0 = V1 sin θ1 − Z1I1 sin(δ1 + α1) − V3 sin θ3

f3 : 0 = V2 cos θ2 + Z2I2 cos(δ2 + α2) − V3 cos θ3

f4 : 0 = V2 sin θ2 + Z2I2 sin(δ2 + α2) − V3 sin θ3

⇒ Measurement Model:
e1 : eV1

= V1 − V1m

e2 : eV2
= V2 − V2m

e3 : eI1 = I1 − I1m

e4 : eI2 = I2 − I2m

9

>

>

>

>

=

>

>

>

>

;

Magnitudes,

e5 : eθ1
= θ1 − θ1m

e6 : eθ2
= θ2 − θ2m + φ

e7 : eδ1 = δ1 − δ1m

e8 : eδ2 = δ2 − δ2m + φ

9

>

>

>

>

=

>

>

>

>

;

Angles

⇒ State Vector:
x = [V1 V2 I1 I2 V3 θ1 θ2 δ1 δ2 θ3 φ]T
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Example: Ṽ and Ĩ measurements at Bus 1 and 2 - II
⇒ Jacobian Matrix
→ Non-zero elements corresponding to f1

∂f1

∂V1
= cos θ1, ∂f1

∂I1
= −Z1 cos(δ1 + φ1), ∂f1

∂V 3
= − cos θ3,

∂f1

∂θ1
= −V1 sin θ1, ∂f1

∂δ1
= Z1I1 sin(δ1 + α1),

∂f1

∂θ3
= V3 sin θ3

→ Non-zero elements corresponding to the measurement model
Magnitudes

∂e1

∂V1
= 1, ∂e2

∂V2
= 1

∂e3

∂I1
= 1 ∂e4

∂I2
= 1

Angles
∂e5

∂θ1
= 1, ∂e6

∂θ2
= 1, ∂e6

∂φ
= 1

∂e7

∂δ1
= 1, ∂e8

∂δ2
= 1, ∂e8

∂φ
= 1

⇒ The jacobian matrix Jφ, the weighting matrices W , and the nonlinear function h(xφ) are
computed at each iteration of the Gauss-Newton method – only show the first iteration here
⇒ Jacobian Matrix for the first iteration is

Jφ =

0.93969 0 -0.00016174 0 -0.94624 -0.35912 0 0.092736 0 0.33028 0

0.34202 0 -0.016046 0 -0.32346 0.98668 0 -0.00093475 0 -0.96621 0

0 0.95372 0 -0.0019341 -0.94624 0 -0.30071 0 -0.092065 0.33028 0

0 0.30071 0 0.01593 -0.32346 0 0.95372 0 -0.011178 -0.96621 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1
( )

c©L. Vanfretti (KTH) Phasor-Only State Estimation 07/29/2010 31 / 52



Example: Ṽ and Ĩ measurements at Bus 1 and 2 - III
⇒ Weighting matrices for the fist iteration – WV = diag(. . . min(1, 1/Vi) . . .), etc.

Wf = diag([1 1 1 1]),

WV = diag([1 0.95238]), WI = diag([0.17303 0.17303]), Wθ = diag([1 1]), Wδ = diag([1 1])

⇒ The nonlinear function (24) for the first iteration is

h(x0) = [6.2075 × 10−5 − 1.7903 × 10−5 − 0.0042767 − 0.0011146 0.0023354 − 0.002112 . . .

−0.00044773 − 0.00030754 0.00010186 − 0.00018932 0.00018075 0.00018932]T

⇒ With Jφ, h(x0), and W the increment ∆x in (28) for the first iteration is

∆x = [0.0023354 − 0.002112 − 0.00044773 − 0.00030754 0.0022807 0.00010186 . . .

−0.13072 0.00018075 − 0.13034 − 0.065116 0.13053]T

⇒ After two iterations convergence is reached for a tolerance of ǫ = 1 × 10−12, and the
solution obtained is

Magnitudes
True Meas. Est.

V1 1.05 1.05 1.05
V2 1 1 1
I1 5.7794 5.7794 5.7794
I2 5.7794 5.7794 5.7794
V3 1.0211 — 1.0211

Angles
True Meas. Est.

θ1 20 20 20
θ2 10 17.5 10
δ1 37.9708 37.9708 37.9708
δ2 37.9708 45.4708 37.9708
θ3 15.122 — 15.122
φ — — 7.5
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Application to AEPs HV Network

American Electric Power
Southern Region Phasor State Estimator

PSE Island 1

PSE Island 2

1

2

3

4

5

6

7

1

2

3

4

Phasor Estimated 

Bus Voltage
Phasor Estimated Bus 

with Redundancy

Online PMU

Current phasor from 

online PMU
1

1 Island 1 Bus No.

Island 2 Bus No.

(2) 
Voltage 
Phasors
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State Estimation and Phase Angle Error Correction
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Voltage Magnitude and Current Magnitude Estimates
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Voltage Phasor Measurement Residuals in Island 1

Voltage Magnitude Residuals
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Using the PSE to Monitor the Erie Loop

MISO

IESO

PJM

NYISO

ISO-NE

High level visibility of the sorrunding areas of NYS - based solely in PMU Data and
HV network

Potentially enable better monitoring and control of the Erie Loop Flow

An independent state estimator from the currently available SEs

• Will not suffer from difficulties caused by external network model inacurracies

• Could aid in providing information for better external network modeling for
conventional SEs
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Conclusions
What did this presentation cover?
• Discussed the different approaches in incorporating PMU data onto Conventional SE

• Discussed two different approaches for SE with PMUs only: The Linear Phadke and Thorp SE,
and the Phasor State Estimator

• Discussed about an specific type of error measurement - phase angle shifts or bias, which have
been observed from archived records of PMUs installed in the field.

• The Linear SE has the advantage of relying on the solution of a linear system of eqns., however
it is not clear how to deal with phase angle shifts within these framework.

• The PSE concept has been developed and illustrated
⋄ The formulation extends for automatic detection and correction of angle biases that may exist
in the PMU data

• The notion of PMU data redundancy to remove angle biases was presented - this is a new
concept of redundancy different from those used in conventional SE
⋄ Provided observability and redundancy conditions in terms of the rank of a Jacobian matrix.

• Determined the minimum number of line current phasors required for redundancy.

Some other things to look at
• PMU Placement for SE – a topic worthy of a tutorial presentation for itself.

• Some interesting questions to answer
⋄ Staged placement - in what order should utilities place PMUs to maximize observability and
minimize cost?
⋄ Securing Observability - where should utilities install PMUs so they do not lose observability
given measurement loss or contingencies? (Some work has been done, but not everything has
been said)
⋄ Redundancy for Angle-bias Correction
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Thank you!

Questions?
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Phasor Assisted State Estimation
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Phasor Assisted State Estimation - I

Inclusion of Phasor Voltage Angle Measurements [8]
J. Thorp, A. Phadke, and K. Karimi, “Real Time Voltage-Phasor Measurement For Static State
Estimation,” IEEE Transactions on Power Systems, vol. PAS-104, no. 11, pp.3098-3106, Nov. 1985.

⇒ Incorporate the θm calculated by PMUs into the measurement vector z (1)

⇒ Assumption: by measurement synchronization all angles are measured w.r.t a common
reference, implying direct angle measurements.

⇒ The new measurement vector z organized in terms of active and reactive partitions is

z =

"

zA

zR

#

(42)

where

zA =

2

6

4

P ij

P i

θi

3

7

5

active power line flow meas.

active power injection meas.

PMU bus angle meas.

zR =

2

6

4

Qij

Qi

V i

3

7

5

reactive power line flow meas.

reactive power injection meas.

voltage magnitude meas.

(43)

where i = 1, . . . , N , N being the total number of buses in the network.

⇒ Appropiate modifications to h(x), Jacobian, and R are also required.
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Phasor Assisted State Estimation - II
⇒ h(x) is augmented to include the
relationship

fθi
: θmeasured

i = θi + eθi

⇒ H(x) should be modified to
include new rows for phasor angle

meas., the non-zero entries are

∂fθi

∂θi

= 1

⇒ Reference bus: choose a reference bus among the buses with PMUs, or measure the
reference bus normally used by the conventional SE. Phase angle measurements are
included into the SE as phase angle differences, i.e.

θi = θmeasured
i − θref

⇒ The first implementation is reported in:
I. Slutsker, S. Mokhtari, L. Jaques, J. Provost, M. Perez, J. Sierra, F. Gonzalez, and J. Figueroa,

“Implementation of phasor measurements in state estimator at Sevillana de Electricidad,” in IEEE Power

Industry Computer Application Conference Proceedings, May 1995, pp. 392-398.

⇒ In a recent implementation by SDGE a PMU-bus reference was avoided by introducing
the angle differences between PMUs as state variables instead of the measured bus angles

fθi
: ∆θmeasured = θi − θj + e∆θ

with appropriate modifications to R and H(x).
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Phasor Assisted State Estimation - III
Inclusion of Voltage and Current Synchrophasors

⇒ Complete voltage phasors (phase angle and magnitude) and current phasors included in z

⇒ Jacobian, H(x), is augmented to include the sensitivities to the bus voltage angles θi (as
above), and the complex currents Ĩij = Iij∠δij . The complex current sensitivities are

∂Iij

∂Vi

,
∂Iij

∂Vj

,
∂Iij

∂θi

,
∂Iij

∂θj

,
∂δij

∂Vi

,
∂δij

∂Vj

,
∂δij

∂θi

,
∂δij

∂θj

(44)

where Iij and δij is a PMU-measured current between buses i and j.
⇒ Implemented at NYPA.

Power Conversion Approach

⇒ Calculate the complex power Sij (MW, and MVAr line flows) from the PMUs at each
branch.
⇒ Con.: neither of the PMU-measured states (V and Θ) are used in the measurement
vector.
Derived power flows are equivalent adding paired analog measurements.
⇒ Pro.: No modifications to SE formulation or software.
⇒ The addition of a PMU with multiple line current meas. is equivalent to adding a
number of paired analog measurements → it only increases the redundancy in the SE.
⇒ Implemented at the British Columbia Transmission Corporation
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Phasor Assisted State Estimation - IV
Implementation in Power Industry SEs

⇒ Phasor angle - CSE [9], SDG& E [10]
⇒ Voltage and Current Phasors - NYPA [11], TVA [12]
⇒ Power Conversion - BCTC [13]

PMU Measurements

Utility θ Ṽ (V, θ) Ĩ (I, δ) Sij Total PMU Meas.

CSE [9] 23 — — — 23

SDG&E [14, 10] 5† — — — 5
NYPA [11, 15] — 10 24 — 34
TVA [16, 12] — ⋆ ⋆ — 18
BCTC [13] — — — △ ⋆

Penetration of PMU-Measurements in Conventional SEs

Utility SCADA Meas. PMU Meas. Total Meas % SCADA % PMU

CSE [9] 309 23 332 93.07 6.93
SDG&E [14, 10] 1800 5 1805 99.72 0.28
NYPA [11, 15] 850 34 884 96.15 3.85
TVA [16, 12] 17,000 18 17,018 99.89 0.11
BCTC [13] ⋆ ⋆ — — —

Notation and Acronyms: ⋆ - Not available in literature, † - Implemented as angle
differences, △ - Sij measurements derived from Ṽ and Ĩ,∗ 70% of the network is observable,
CSE - Sevillana de Electricidad, SDG&E - San Diego Gas & Electric, NYPA - New York
Power Authority, TVA - Tennessee Valley Authority, BCTC - British Columbia Transmission
Corporation.
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Additional Examples on

Phadke and Thorp’s Linear SE
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Example 2: All Ṽ and Ĩ phasors measured except Ĩ42m - I

⇒ What happens to G̃ when Ĩ42m is not measured?
⇒ Changes to the network-measurement matrices (from Example 1) are:

• AT : row 8 corresponding to Ĩ42 is removed, the matrix is now (7× 4)

• ỹ loses row 8 and column 8 (diagonal entry ỹ42) becoming (7×7) and, ỹs , and Ỹ lose
row 8 becoming (7× 4)

⇒ White Gaussian Noise w/ snr of 75 dB is added to the loadflow solution.

G̃ =

2

6

6

6

6

4

1.445 −1.445 0 0

−1.445 1.4609 −0.0142 −0.0017347 + j5.3651 × 10−6

0 −0.0142 0.028404 −0.0142

0 −0.0017347 − j5.3651 × 10−6 −0.0142 0.015992

3

7

7

7

7

5

⇒ Only one end of Line 2-4 is being measured, thus G̃ is symmetrical but complex.

Solution
Voltage Magnitudes

Bus |Ṽ meas| |Ṽ se| Residual
1 1.0502 1.0501 0.00013328
2 1.0274 1.0273 0.00012238
3 0.88639 0.88652 0.00013176
4 0.87869 0.87873 4.1387e-05

Voltage Angles
Bus |θmeas| |θse| Residual
1 19.9971 19.9817 0.015389
2 17.5119 17.4961 0.015811
3 -1.4645 -1.4826 0.018034
4 -1.4595 -1.4778 0.01833
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Example 3: Measurements only at Buses 1 and 4 - I

⇒ Network-measurement matrices:

AT =

Ĩ12

Ĩ43

Ĩ42

2

6

4

1 −1 0 0

0 0 −1 1

0 −1 0 1

3

7

5

ỹs =

2

6

4

ỹ120
0 0 0

0 0 0 ỹ430

0 0 0 ỹ420

3

7

5

ỹ = diag([ỹ12 ỹ43 ỹ42])

U =

"

1 0 0 0

0 0 0 1

#

R = diag([σ2
Ṽ1

σ2
Ṽ4

σ2
Ĩ12

σ2
Ĩ43

σ2
Ĩ42

])

#2

G1

L1

#1

#3
#4

L2

Ĩ12m

Ĩ42m

Ĩ43m

Ṽ1m

Ṽ4m

Phasor Measurement Unit

Current Phasor Measured by the PMU

Ỹ =

2

6

4

ỹ12 + ỹ120
−ỹ12 0 0

0 0 −ỹ43 ỹ43 + ỹ430

0 ỹ42 0 ỹ42 + ỹ420

3

7

5

⇒ White Gaussian Noise w/ snr of 75 dB is added to the loadflow solution.
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Example 3: Measurements only at Buses 1 and 4 - II
⇒ Limited measurements are available only on one end of the transmission lines – the gain
matrix is symmetric and complex

G̃ =

2

6

6

6

6

6

4

0.7225 −0.7225 0 0

−0.7225 0.72429 0 −0.0017 − j5.36 × 10−6

0 0 0.0071 −0.0071 − j5.36 × 10−6

0 −0.0017 + j5.36 × 10−6 −0.0071 + j5.36 × 10−6 0.0087328

3

7

7

7

7

7

5

Solution

Voltage Magnitudes

Bus |Ṽ meas| |Ṽ se| Residual
1 1.0506 1.0539 0.0033124
2 1.0277 1.0305 0.0028902
3 0.88631 0.89018 0.0038725
4 0.87919 0.88286 0.0036687

Voltage Angles
Bus |θmeas| |θse| Residual
1 20.0017 19.9319 0.06979
2 17.5144 17.4511 0.063315
3 -1.4628 -1.4622 0.00057954
4 -1.4636 -1.4632 0.00041215
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Example 4 - Only Ṽ Phasors Measured at all Buses
⇒ What happens to G̃ when only Ṽ are measured?
⇒ Changes to the network-measurement matrices (from Example 1) – there are no Ĩ
measurements, so AT , ỹ, ỹS , and Ỹ ; so the B̃ is only formed by

U = diag([1 1 1 1])

⇒ The gain matrix is equal to the covariance matrix R, thus real, symmetric, and diagonal.
In this case, because we have set σ

Ṽi
= 0.00187, the gain matrix is

G̃ =

2

6

6

6

6

6

4

3.4969 × 10−6 0 0 0

0 3.4969 × 10−6 0 0

0 0 3.4969 × 10−6 0

0 0 0 3.4969 × 10−6

3

7

7

7

7

7

5

Solution
Voltage Magnitudes

Bus |Ṽ true| |Ṽ meas| |Ṽ se|
1 1.05 1.0506 1.0506
2 1.0272 1.0277 1.0277
3 0.88654 0.88631 0.88631
4 0.87867 0.87919 0.87919

Voltage Angles

Bus |θtrue| |θmeas| |θse|
1 20 20.0017 20.0017
2 17.5146 17.5144 17.5144
3 -1.4645 -1.4628 -1.4628
4 -1.4631 -1.4636 -1.4636
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