Phasor-Only State Estimation Syncrhonized Phasor Measurements Tutorial

Dr. Luigi Vanfretti

Email: vanfretti@alum.rpi.edu Web Page: http://web.me.com/vanfretti/

Electric Power Systems Division

The Royal Institute of Technology
Stockholm, Sweden

IEEE PES General Meeting 2010
Minneapolis, MN
July 29, 2010

Outline

- Introduction
- Phadke's \& Thorp's Linear SE
- Angular Errors in Phasor Data and Modeling in Polar Coordinates
- The Phasor State Estimator
- Measurement Model in Polar Coordinates
- Least Squares Formulation and Successive Solution Algorithms
- Extension for Phase Angle Shift Correction
- Observability and Redundancy
- Application to AEPs HV Network
- Conclusions

State Estimation and EMS Systems Today

\Rightarrow SCADA - conventional measurements
\Rightarrow PDC - phasor measurements
\Rightarrow Topology Processor - network model from status info.
\Rightarrow Observability analysis - determines feasible solution with given measurements, identifies unobservable branches and observable islands
\Rightarrow Bad data processing - determines errors in the data, elliminates bad data given enough redundancy
\Rightarrow SE process - provides estimated states of the system $\rightarrow \boldsymbol{V}, \boldsymbol{\theta}$, transformer tap, generator settings, and power flows in branches and loads.

Measurement, Communications
and Digital Networks
PMUs are included to reflect recent adoption in some control centers
${ }^{6} \mathrm{KTH}$
vetenskap
vetenskap
och Konst

Conventional WLS State Estimation - I

\Rightarrow The relationship between the system state \boldsymbol{x}, and the measurements \boldsymbol{z} is given by

$$
\begin{equation*}
\boldsymbol{z}=\boldsymbol{h}(\boldsymbol{x})+\boldsymbol{e} \tag{1}
\end{equation*}
$$

where \boldsymbol{e} is the vector of measurement errors, and $\boldsymbol{h}(\boldsymbol{x})$ is the nonlinear function which is formed by

- power flow equations \rightarrow for measured $\boldsymbol{P} \& \boldsymbol{Q}$ injections and $\boldsymbol{S}_{i j}$ flows, and
- $I_{i j}=\sqrt{P_{i j}^{2}+Q_{i j}^{2}} / V_{i} \rightarrow$ for line current flow measurements $\left(\boldsymbol{I}_{i j}\right)$
\Rightarrow In a power system with m measurements, assuming independent errors
$\left(E\left\{e_{i} e_{j}\right\}=0\right)$, a WLS solution is obtained by minimizing

$$
\begin{equation*}
J(\boldsymbol{x})=\sum_{i=1}^{m} \frac{\left(z_{i}-h_{i}(\boldsymbol{x})\right)^{2}}{R_{i i}}=[\boldsymbol{x}-\boldsymbol{h}(\boldsymbol{x})]^{T} \boldsymbol{R}^{-1}[\boldsymbol{x}-\boldsymbol{h}(\boldsymbol{x})] \tag{2}
\end{equation*}
$$

where \boldsymbol{R} is a diagonal matrix of covariances $\sigma_{i}^{2}, i=1,2, \ldots, m$
\Rightarrow Solution to (2) is iterative using Newton Methods [1, 2].

Conventional WLS State Estimation - II

\Rightarrow Linearizing $\boldsymbol{h}(\boldsymbol{x})$ about $\boldsymbol{x}^{(0)}$ and using only the first-order term of the Taylor series results in the Gauss-Newton iterative solution method

$$
\begin{equation*}
\boldsymbol{x}^{k+1}=\boldsymbol{x}^{k}-\left[\boldsymbol{G}\left(\boldsymbol{x}^{k}\right)\right]^{-1}\left[-\boldsymbol{H}^{T}\left(\boldsymbol{x}^{k}\right) \boldsymbol{R}^{-1}\left(\boldsymbol{z}-\boldsymbol{h}\left(\boldsymbol{x}^{k}\right)\right)\right] \tag{3}
\end{equation*}
$$

$$
\begin{array}{lll}
\text { where } & k & \text { is the iteration index, } \\
\boldsymbol{x}^{k} & \text { is the solution vector at iteration } k, \\
\boldsymbol{H}\left(\boldsymbol{x}^{k}\right) & \text { is the measurement Jacobian matrix, } \boldsymbol{H}(\boldsymbol{x})=\left[\frac{\partial \boldsymbol{h}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right], \\
\text { evaluated at iteration } k, \text { and }
\end{array}, \begin{aligned}
& \text { is the } g \text { ain matrix, } \boldsymbol{G}(\boldsymbol{x})=\boldsymbol{H}^{T}(\boldsymbol{x}) \boldsymbol{R}^{-1} \boldsymbol{H}(\boldsymbol{x}), \\
& \text { evaluated at iteration } k .
\end{aligned}
$$

\Rightarrow The gain matrix is not inverted, instead it is decomposed by triangular factorization and solved using backward substitutions at each iteration, hence

$$
\begin{equation*}
\boldsymbol{G}\left(\boldsymbol{x}^{k}\right)\left(\boldsymbol{x}^{k+1}-\boldsymbol{x}^{k}\right)=\boldsymbol{H}^{T}\left(\boldsymbol{x}^{k}\right) \boldsymbol{R}^{-1}\left(\boldsymbol{z}-\boldsymbol{h}\left(\boldsymbol{x}^{k}\right)\right) \tag{4}
\end{equation*}
$$

is solved iteratively until a certain tolerance, $\left|\boldsymbol{x}^{k+1}-\boldsymbol{x}^{k}\right|<\epsilon$, is satisfied. Note that any measurement error is distributed among all the states.

- Additional Slides at the end of the presentation summarize several approaches used to include PMU data into conventional state estimators.

Phadke and Thorp's Linear State Estimator [4] - I

A. G. Phadke, J. S. Thorp, and K. J. Karimi, "State Estimation with Phasor Measurements," IEEE Transactions on Power Systems, vol. 1, no. 1, pp. 233-238, Feb. 1986.
\Rightarrow Measure bus voltage and line current phasors using PMUs, and formulate the estimation problem in terms of complex voltages and currents - rectangular coordinate formulation.

Define a bus-measurement admittance matrix $\tilde{\boldsymbol{Y}}$ (only including the admittances of branches with PMU-measurements)

$$
\begin{gathered}
\tilde{\boldsymbol{Y}}=\left[\begin{array}{cc}
\tilde{y}_{i j}+\tilde{y}_{i 0} & -\tilde{y}_{i j} \\
-\tilde{y}_{i j} & \tilde{y}_{i j}+\tilde{y}_{j 0}
\end{array}\right] \\
\tilde{\boldsymbol{Y}}=\tilde{\boldsymbol{y}} \boldsymbol{A}^{T}+\tilde{\boldsymbol{y}}_{S}
\end{gathered}
$$

$$
\begin{aligned}
& \boldsymbol{A}: \text { current measurement-bus incidence } \\
& \text { matrix }(m \times b)-m=\text { rows }=\# \\
& \tilde{I}_{m}, b=\text { cols }=\# \tilde{V}_{m}, \\
& \tilde{\boldsymbol{y}}: \text { diagonal primitive matrix of series } \\
& \text { admittances of metered elements }(m \times m), \\
& \tilde{\boldsymbol{y}}_{S}: \text { shunt primitive matrix of shunt } \\
& \text { admittances metered ends }(m \times b) \text {. }
\end{aligned}
$$

The complex currents can be written as

$$
\begin{equation*}
\tilde{\boldsymbol{I}}=\left(\tilde{\boldsymbol{y}} \boldsymbol{A}^{T}+\tilde{\boldsymbol{y}}_{S}\right) \tilde{\boldsymbol{V}} \tag{7}
\end{equation*}
$$

Phadke and Thorp's Linear State Estimator [4] - II

\Rightarrow A linear relationship between the system state, \boldsymbol{x}, and the measurement vector, \boldsymbol{z}, in the form of (1) can now be established.
\Rightarrow Using only synchronized phasor measurements, the measurement vector is given by the complex measurements

$$
\boldsymbol{z}=\left[\begin{array}{l}
\tilde{\boldsymbol{V}}^{\text {measured }} \tag{8}\\
\tilde{\boldsymbol{I}}^{\text {measured }}
\end{array}\right]
$$

The linear function $\boldsymbol{h}(\boldsymbol{x})$ relating the state vector $\tilde{\boldsymbol{V}}$, and the complex currents and voltages is given by (7), rewriting

$$
\boldsymbol{h}(\boldsymbol{x})=\left[\begin{array}{c}
\boldsymbol{U} \tag{9}\\
\tilde{\boldsymbol{y}} \boldsymbol{A}^{T}+\tilde{\boldsymbol{y}}_{S}
\end{array}\right] \tilde{\boldsymbol{V}}=\tilde{\boldsymbol{B}} \tilde{\boldsymbol{V}}
$$

where \boldsymbol{U} is an identity matrix with the rows corresponding to unmetered buses removed, and $\tilde{\boldsymbol{B}}$ is a complex matrix.
\rightarrow The relationship between the states and measurements is

$$
\left.\begin{array}{ccc}
\boldsymbol{z} & =\boldsymbol{h}(\boldsymbol{x}) & +
\end{array} \boldsymbol{e}^{\left[\begin{array}{l}
\text { measured } \\
\tilde{\boldsymbol{I}}^{\text {measured }}
\end{array}\right]}=\begin{array}{r}
\boldsymbol{\boldsymbol { B }} \tilde{\boldsymbol{V}}
\end{array}\right]+\left[\begin{array}{l}
\boldsymbol{e}_{\tilde{V}} \tag{10}\\
\boldsymbol{e}_{\tilde{I}}
\end{array}\right]
$$

where $\boldsymbol{e}_{\tilde{V}}$ and $\boldsymbol{e}_{\tilde{I}}$ are errors on the voltage and current phasors, respectively.

Phadke and Thorp's Linear State Estimator [4] - III

\Rightarrow The solution to (10) is given by

$$
\begin{equation*}
\tilde{\boldsymbol{G}} \boldsymbol{x}=\tilde{\boldsymbol{B}}^{\dagger} \boldsymbol{R} \boldsymbol{z} \tag{11}
\end{equation*}
$$

where the $\tilde{\boldsymbol{G}}$ is a complex gain matrix given by $\tilde{\boldsymbol{G}}=\tilde{\boldsymbol{B}}^{\dagger} \boldsymbol{R} \tilde{\boldsymbol{B}}$ and \boldsymbol{R} contains the covariances of the complex measurements, the measurements are assumed to be uncorrelated.(\dagger : complex conjugate transpose of a matrix.)
\Rightarrow The SE algorithm consists of computing the right hand side of (11) for each measurement scan and performing triangular factorization, then (11) is solved for \boldsymbol{x} using back substitution
\rightarrow The solution is direct (finite number of operations), i.e. non-iterative, as opposed to the iterative solutions that Gauss-Newton procedures in Conventional SE
\Rightarrow Some comments about $\tilde{\boldsymbol{G}}$
\rightarrow If there are no network topology or measurement configuration changes between network scans then $\tilde{\boldsymbol{G}}$ is constant, the LU factors of $\tilde{\boldsymbol{G}}$ are computed once and used sequentially.
\rightarrow If the voltage phasor is measured at all buses, $\tilde{\boldsymbol{G}}$ is the covariance matrix of the measurements - real, and diagonal
\rightarrow When current phasors are measured at both ends of an element: $\tilde{\boldsymbol{G}}$ is symmetric and real.
\rightarrow When current phasors are measured at one end of an element: $\tilde{\boldsymbol{G}}$ is symmetric. The imaginary part of off-diagonal elements is small for normal X / R ratios.

Phadke and Thorp's Linear State Estimator [4] - IV

\Rightarrow Note that the state estimation solution (11) is obtained in rectangular coordinates. The results should be mapped into polar coordinates to be meaningful. The state estimates $\tilde{\boldsymbol{V}}$ are given by ${ }^{1}$

$$
\tilde{\boldsymbol{V}}=\tilde{\boldsymbol{G}}^{-1} \tilde{B}^{\dagger} \boldsymbol{R}\left[\begin{array}{c}
\tilde{\boldsymbol{V}}^{\text {measured }} \tag{12}\\
\tilde{I}^{\text {measured }}
\end{array}\right]
$$

which in polar coordinates are given by

$$
\begin{equation*}
\boldsymbol{V}=|\tilde{\boldsymbol{V}}|, \text { and } \boldsymbol{\theta}=\angle \tilde{\boldsymbol{V}} \tag{13}
\end{equation*}
$$

\Rightarrow Covariances for the measurements - The standard deviations for bus voltage and line current measurements are given by [3, 4]

$$
\begin{equation*}
\sigma_{\tilde{\mathrm{V}}_{i}}=0.0017 f_{\mathrm{SV}}+0.005\left|\tilde{V}_{i}\right| ; \quad \sigma_{\tilde{\mathrm{I}}_{i}}=0.0017 f_{\mathrm{SI}}+0.01\left|\tilde{I}_{i}\right| \tag{14}
\end{equation*}
$$

where f_{SV} and f_{SI} are the full scale value of the voltage and current measurement devices, respectively. Full scale values for $f_{\text {SV }}$ are between 1-1.2 p.u. voltage. For $f_{\text {SI }}$ they depend on the flow level in the network, a value of $5.0 \mathrm{p} . \mathrm{u}$. for a 500 MVA flow in a 345 kV line is reported in [4]
${ }^{1} \tilde{\boldsymbol{G}}^{-1}$ is not computed, as discussed before.
©L. Vanfretti (KTH)
Phasor-Only State Estimation
07/29/2010

Summarizing the Procedure for Linear State Estimation

1. Obtain measurements and device status.
2. Based on the device status build the bus measurement admittance matrix $\tilde{\boldsymbol{Y}}$
2.1. Obtain the current measurement bus incidence matrix \boldsymbol{A}^{T}
2.2. Obtain the primitive matrix of series admittances of metered elements $\tilde{\boldsymbol{y}}$
2.3. Obtain the shunt primitive matrix of metered shunt admittances $\tilde{\boldsymbol{y}}_{\boldsymbol{s}}$
2.4. Compute $\tilde{\boldsymbol{Y}}=\tilde{\boldsymbol{y}} \boldsymbol{A}^{T}+\tilde{\boldsymbol{y}}_{s}$
3. Obtain matrix $\tilde{\boldsymbol{B}}$
3.1. Based on the metered voltage phasors obtain the \boldsymbol{U}
3.2. Compute $\tilde{\boldsymbol{B}}$ using \boldsymbol{U} and $\tilde{\boldsymbol{Y}}$
4. Based on the metered phasors
4.1. Obtain the covariance matrix \boldsymbol{R} using (14)
4.2. Obtain the measurement vector \boldsymbol{z}
5. Solve $\tilde{\boldsymbol{G}} \boldsymbol{x}=\tilde{\boldsymbol{B}}^{\dagger} \boldsymbol{R} \boldsymbol{z}$
5.1. Compute $\tilde{\boldsymbol{G}}=\tilde{\boldsymbol{B}}^{\dagger} \boldsymbol{R} \tilde{\boldsymbol{B}}$
5.2. Solve $\tilde{\boldsymbol{G}} \boldsymbol{x}=\tilde{\boldsymbol{B}}^{\dagger} \boldsymbol{R} \boldsymbol{z}$ by performing triangularization and back-substitution. Store the upper triangular matrix.
\Rightarrow For a new snapshot of measurements - if there is no measurement configuration or network topology changes, only steps 4 . and 5 . need to be performed. Otherwise, return to step 1.

Example: All \tilde{V} and \tilde{I} are measured - I

Current Measurement Bus Incidence Matrix \boldsymbol{A}^{T}

$\boldsymbol{A}^{T}=$| B. 1 |
| :---: | | B. 2 |
| :---: | B. 3 B. 4

Primitive matrix of series admittances of metered elements $\tilde{\boldsymbol{y}}$

$$
\begin{gathered}
\tilde{\boldsymbol{y}}=\operatorname{diag}\left(\left[\begin{array}{lll}
\tilde{y}_{12} & \tilde{y}_{21} & \tilde{y}_{23} \\
\tilde{y}_{43} & \tilde{y}_{32} & \tilde{y}_{34} \\
\tilde{y}_{42}
\end{array}\right]\right)
\end{gathered}
$$

Note that $\tilde{y}_{12}=\tilde{y}_{21}, \tilde{y}_{23}=\tilde{y}_{32}, \tilde{y}_{34}=\tilde{y}_{43}$, and $\tilde{y}_{24}=\tilde{y}_{42}$.

Example: All \tilde{V} and \tilde{I} are measured - II

Shunt primitive matrix of shunt admittances metered ends $\tilde{\boldsymbol{y}}_{s}$

Bus measurement admittance matrix $\tilde{\boldsymbol{Y}}$

$$
\tilde{\boldsymbol{Y}}=\tilde{\boldsymbol{y}} \boldsymbol{A}^{T}+\tilde{\boldsymbol{y}}_{\boldsymbol{s}}=\left[\begin{array}{cccc}
\tilde{y}_{12}+\tilde{y}_{12} & -\tilde{y}_{12} & 0 & 0 \\
-\tilde{y}_{12} & \tilde{y}_{12}+\tilde{y}_{21_{0}} & 0 & 0 \\
0 & \tilde{y}_{23}+\tilde{y}_{23_{0}} & -\tilde{y}_{23} & 0 \\
0 & -\tilde{y}_{23} & \tilde{y}_{23}+\tilde{y}_{23} & 0 \\
0 & 0 & \tilde{y}_{34}+\tilde{y}_{34_{0}} & -\tilde{y}_{34} \\
0 & 0 & -\tilde{y}_{34} & \tilde{y}_{34}+\tilde{y}_{34_{0}} \\
0 & \tilde{y}_{24}+\tilde{y}_{24_{0}} & 0 & -\tilde{y}_{24} \\
0 & -\tilde{y}_{24} & 0 & \tilde{y}_{24}+\tilde{y}_{24_{0}}
\end{array}\right]
$$

Example: All \tilde{V} and \tilde{I} are measured - III

Constructing \tilde{B}

\Rightarrow Line parameters (all in p.u.): $L_{1-2}: r=0, x=0.01, b=0.001 ; L_{2-3}, L_{3-4}: r=0.01, x=0.1$,
$b=0.15 ; L_{2-4}: r=0.02, x=0.2, b=0.3$
\Rightarrow Primitive matrix of series admittances:

$$
\begin{gathered}
\tilde{\boldsymbol{y}}=\operatorname{diag}([-j 100, \quad-j 100, \quad 0.9901-j 9.901, \quad 0.9901-j 9.901, \quad 0.9901-j 9.901, \\
0.9901-j 9.901, \quad 0.49505-j 4.9505, \quad 0.49505-j 4.9505])
\end{gathered}
$$

\Rightarrow Shunt primitive matrix:

$$
\begin{aligned}
& \tilde{\boldsymbol{y}}_{s}(1,1)=j 0.0005, \quad \tilde{\boldsymbol{y}}_{s}(2,2)=j 0.0005, \quad \tilde{\boldsymbol{y}}_{s}(3,2)=j 0.075, \quad \tilde{\boldsymbol{y}}_{s}(4,3)=j 0.075, \\
& \tilde{\boldsymbol{y}}_{s}(5,3)=j 0.075, \quad \tilde{\boldsymbol{y}}_{s}(6,4)=j 0.075, \quad \tilde{\boldsymbol{y}}_{s}(7,2)=j 0.15, \quad \tilde{\boldsymbol{y}}_{s}(8,4)=j 0.15,
\end{aligned}
$$

\Rightarrow Bus measurement admittance matrix:

$$
\tilde{\boldsymbol{Y}}=\left[\begin{array}{cccc}
-j 99.99 & j 100 & 0 & 0 \\
j 100 & -j 99.99 & 0 & 0 \\
0 & 0.99-j 9.826 & -0.99+j 9.9 & 0 \\
0 & -0.99+j 9.9 & 0.99-j 9.826 & 0 \\
0 & 0 & 0.99-j 9.826 & -0.99+j 9.9 \\
0 & 0 & -0.99+j 9.9 & 0.99-j 9.826 \\
0 & 0.495-j 4.8 & 0 & -0.495+j 4.95 \\
0 & -0.495+j 4.95 & 0 & 0.495-j 4.8
\end{array}\right]
$$

$\Rightarrow \tilde{V}_{m}$ phasors measured at all buses, thus: $\boldsymbol{U}=\operatorname{diag}\left(\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\right)$

Example: All \tilde{V} and \tilde{I} are measured - IV

The gain matrix $\tilde{\boldsymbol{G}}=\tilde{\boldsymbol{B}}^{\dagger} \boldsymbol{R} \tilde{\boldsymbol{B}}$
\Rightarrow For simplicity, $\sigma_{\tilde{V}_{i}}=0.00187$
$\begin{aligned} & \left(f_{\mathrm{SV}}=1.1\right) ; \text { and } \sigma_{\tilde{I}_{i}}=0.0085\left(f_{\mathrm{SI}}=5\right) . \\ & \Rightarrow \boldsymbol{R}=\operatorname{diag}\left(\left[\sigma_{V_{1}} \sigma_{V_{2}} \sigma_{V_{3}} \sigma_{I_{12}} \ldots \sigma_{I_{24}}\right]\right) \\ & \Rightarrow \text { All elements are measured from } \\ & \text { both ends, the gain matrix is real and }\end{aligned} \quad \tilde{\boldsymbol{G}}=\left[\begin{array}{cccc}1.445 & -1.445 & 0 & 0 \\ -1.445 & 1.4627 & -0.0142 & -0.0034694 \\ 0 & -0.0142 & 0.028404 & -0.0142 \\ 0 & -0.0034694 & -0.0142 & 0.017675\end{array}\right]$ both ends, the gain matrix is real and symmetric
Linear SE Solution \rightarrow solve $\tilde{\boldsymbol{G}} \boldsymbol{x}=\tilde{\boldsymbol{B}}^{\dagger} \boldsymbol{R} \boldsymbol{z}$

Simulation Settings

\Rightarrow Measurements are simulated using the loadflow solution of the system
\Rightarrow The resulting measurement vector \boldsymbol{z} is

$$
\begin{array}{lrl}
\tilde{V}_{1 m}= & 1.05 \angle 20 & =0.98668+j 0.35912 \\
\tilde{V}_{2 m}= & 1.0272 \angle 17.5146 & =0.97956+j 0.30913 \\
\tilde{V}_{3 m}= & 0.88654 \angle-1.4645 & =0.88625-j 0.022658 \\
\tilde{V}_{4 m}= & 0.87867 \angle-1.4631 & =0.87839-j 0.022436 \\
\tilde{I}_{12 m}= & 5.0493 \angle-8.0923 & =4.999-j 0.71078 \\
\tilde{I}_{21 m}= & 5.0498 \angle 171.8972 & =-4.9994+j 0.71176 \\
\tilde{I}_{23 m}= & 3.3946 \angle-8.8449 & =3.3542-j 0.52195 \\
\tilde{I}_{32 m}= & 3.44 \angle 168.9065 & =-3.3757+j 0.66189 \\
\tilde{I}_{34 m}= & 0.013693 \angle-57.8668 & =0.0072833-j 0.011596 \\
\tilde{I}_{43 m}= & 0.144 \angle 91.5525 & =-0.0039013+j 0.14394 \\
\tilde{I}_{24 m}= & 1.656 \angle-6.5814 & =1.6451-j 0.18981 \\
\tilde{I}_{42 m}= & 1.7519 \angle 164.4893 & =-1.6881+j 0.4685
\end{array}
$$

$$
\text { Note that } \boldsymbol{z} \text { is complex, values in polar form }
$$ are shown for reference.

Solution
\Rightarrow Compute LU factors and solve by back substitution, in Matlab use the backslash " \backslash " operator \Rightarrow Voltage Magnitudes

Bus	$\left\|V^{\text {true }}\right\|=\left\|V^{\text {meas }}\right\|$	$\left\|V^{\text {se }}\right\|$
1	1.05	1.05
2	1.0272	1.0272
3	0.88654	0.88654
4	0.87867	0.87867

\Rightarrow Voltage Angles

Bus	$\left\|\theta^{\text {true }}\right\|=\left\|\theta^{\text {meas }}\right\|$	$\left\|\theta^{\text {se }}\right\|$
1	20	20
2	17.5146	17.5146
3	-1.4645	-1.4645
4	-1.4631	-1.4631

\Rightarrow No surprise that the measured and estimated values are the same as the true values from the loadflow were used as measurements.

Example: All \tilde{V} and \tilde{I} are measured - V

Adding Gaussian White Noise to the Measurements

Simulation Settings

\Rightarrow Measurements are simulated using the same loadflow solution of the system
\Rightarrow Realistically any measurement will have metering errors and noise.
\Rightarrow For simplicity white gaussian noise is added to the load flow solution with an snr of 75 dB
\Rightarrow The resulting measurement vector \boldsymbol{z} is similar to the one of the previous example, but now it contains noise in the voltage and current phasors.
Solution
Voltage Magnitudes

Bus	$\left\|\hat{V}^{\text {true }}\right\|$	$\left\|\hat{V}^{\text {meas }}\right\|$	$\left\|\hat{V}^{\mathrm{se}}\right\|$	Residual
1	1.05	1.0506	1.046	0.0046402
2	1.0272	1.0277	1.0231	0.0045789
3	0.88654	0.88631	0.88229	0.004017
4	0.87867	0.87919	0.8748	0.0043947

Voltage Angles

Bus	$\left\|\theta^{\text {true }}\right\|$	$\left\|\theta^{\text {meas }}\right\|$	$\left\|\theta^{\text {se }}\right\|$	Residual
1	20	20.0017	20.017	0.015237
2	17.5146	17.5144	17.5194	0.0050314
3	-1.4645	-1.4628	-1.549	0.086146
4	-1.4631	-1.4636	-1.5505	0.086869

\Rightarrow Residuals are acceptable for the snr used.
$\Rightarrow \quad$ Additional Slides
at the en

Angular Errors Observed in PMU Data

\Rightarrow Voltage and current phasor angles exhibit persistent biases, random shifts, and other type of erros (shown latter)

Angle Biases in AEP

©L. Vanfretti (KTH)
Phasor-Only State Estimation
07/29/2010

Characteristics of Angular Errors found in PMU Data

Phase Angle Errors are Attributed to

- A particular signal processing algorithm used by the PMU
- Errors with time synchronization (GPS signal overload), and internal clock synchronization with GPS
- Length of instrumentation cables
- PMU software and firmware
- Off-nominal operation

Why should we worry about them?

- Uncorrected phasor data needs to be rejected as bad data if used in conventional SE!
- It may cause difficulties in convergence otherwise.

Observed characteristic

\Rightarrow When large angle shift occurs, the same bias appears in all voltage
\& current angles

- The fact that the same angle shift will be present in all angles, allows the PSE to correct for the shifts

Angle Error Modeling in Polar Coordinates

Angle error in a measured phasor:

- $\tilde{V}_{1 m}=V_{1 m} \varepsilon^{j \theta_{1 m}} \rightarrow$ is the measured voltage phasor
- $\tilde{V}_{1 m}^{*}=V_{1 m} \varepsilon^{\theta_{1 m}+\theta_{e}}$ is the phasor measurement \tilde{V}_{1} with an angle error of θ_{e},
- $\tilde{e}=\tilde{V}_{1}-\tilde{V}_{1}^{*}$ is the error phasor.
\Rightarrow Angle error can be modeled in polar coordinates with a linear angular unknown $\phi=\theta_{e}$ wich is not reliant on the phasor magnitude $V_{1 m}$.
\Rightarrow Rectangular coord. would need to account for Δx and Δy in $\tilde{V}_{1 m}^{*}$.
$\Rightarrow \Delta x$ and Δy are dependent of $V_{1 m}$ and a nonlinear function of $\theta_{1 m}$ and θ_{e}.
\Rightarrow Rectangular coord. model allows a non-iterative solution, but, does't allow
to model the phase and magnitude errors independently
\Rightarrow Polar coord. is more appropriate $\rightarrow V$ and θ are mostly uncorrelated variables as obtained by PMUs.

Phasor State Estimation [5, 6, 7]

L. Vanfretti, J.H. Chow, S. Sarawgi, and B. Fardanesh, "A Phasor-Data Based State Estimator Incorporating Phase Bias Correction," to appear, IEEE Transactions on Power Systems. Accepted 03/2009.
\Rightarrow A new approach for SE based only on PMUs
\Rightarrow Requires a modest number of PMUs installed in HV substations
\Rightarrow It can supplement a conventional SE based on ICCP and PMU data

Why is this approach attractive?

\Rightarrow Allows for a PMU-based SE implementation without disrupting the available state estimator
\Rightarrow Standalone Estimator - provides visibility of the HV network even when the SE is out, adding reliability
\Rightarrow Problem Formulation - provides for a special kind of bad data detection

Measurement Model in Polar Coordinates

Model Buses and Lines

\Rightarrow Starts from the buses with PMUs and enables estimation of portions with connectivity to PMU buses.
\Rightarrow Having determined the observable islands, the state vector is formed by

- All measured voltages and currents (both, $\|\cdot\|$ and $\angle \cdot$)
- All phasor-estimable voltages and currents (both, $\|\cdot\|$ and $\angle \cdot$)
\Rightarrow In a system with N buses: N_{1} buses with PMUs have measured voltage phasors and N_{2} non-PMU buses, $N=N_{1}+N_{2}$
\Rightarrow There are L lines: L_{1} lines with PMUs have measured current phasors and L_{2} are unmonitored, $L=L_{1}+L_{2}$
\Rightarrow Example:
$N=7, N_{1}=3(1,2,3), N_{2}=4(4,5,6,7)$
$L=10, L_{1}=4(1-4,2-5,3-6,3-7), L_{2}=6$ (1-7, 2-4, 2-6, 4-5, 5-6, 5-7)

State Vector:

$$
\left.\begin{array}{l}
x=\left[\begin{array}{llll}
V & I & \theta & \delta
\end{array}\right]^{T} \\
V=\left[\begin{array}{lllll}
V_{1} & \cdots & V_{N_{1}} & V_{N_{1}+1} & \cdots
\end{array} V_{N}\right.
\end{array}\right]^{T} .
$$

Measurement and Network Model

Measurement Model

\Rightarrow At each PMU Bus the available measurements are $V_{i m}, \theta_{i m}, I_{i k m}$, and $\delta_{i k m}$, we pair each voltage measurement to it's respective state

$$
V_{i}=V_{i m}+e_{V_{i}}, \quad \theta_{i}=\theta_{i m}+e_{\theta_{i}}
$$

\Rightarrow Current Measurement Equations

$$
\begin{equation*}
I_{i k}=I_{i_{k} m}+e_{I_{i k}}, \delta_{i k}=\delta_{i k m}+e_{\delta_{i k}} \tag{16}
\end{equation*}
$$

$\Rightarrow e_{V_{i}}$ and $e_{\theta_{i}}$ are voltage mag. and angle measurement errors, and $e_{I_{i k}}$ and $e_{\delta_{i k}}$ are current mag. and angle measurement errors

Network Model

$>$ PMU Node $-\Theta \rightarrow$ PMU Current \triangle Estimated Node Network Node
\Rightarrow Based on circuit equations using the equivalent circuit

$$
\begin{equation*}
\tilde{V}_{k}=\tilde{V}_{i}-\tilde{Z}_{i k}\left(\tilde{I}_{i k}-\frac{1}{2} \tilde{Y}_{i k} \tilde{V}_{i}\right) \tag{17}
\end{equation*}
$$

\Rightarrow Each equation is complex \rightarrow divided into $\Re \& \Im$ parts

$$
\begin{align*}
f_{i k} & =\left(1+\frac{1}{2} \tilde{Y}_{i k} \tilde{Z}_{i k}\right) \tilde{V}_{i}-\tilde{Z}_{i k} \tilde{I}_{i k}-\tilde{V}_{k} \tag{18}\\
f_{i k \mathrm{re}} & =\operatorname{Re}\left(f_{i k}\right)=0, \quad f_{i k \mathrm{im}}=\operatorname{Im}\left(f_{i k}\right)=0 \tag{19}
\end{align*}
$$

\Rightarrow And assembled into an $2 L$
dimensional nonlinear vector f

$$
f=\left[\begin{array}{llll}
\cdots & f_{i k \mathrm{re}} & f_{i k \mathrm{im}} & \cdots \tag{20}
\end{array}\right]^{T}
$$

PSE Solution - WLS Formulation

\Rightarrow Satisfy the network equations while minimizing the measurement errors in the measurement equations

$$
\begin{gather*}
\min _{x} q(x), \text { subject to : } f=0 \tag{21}\\
q(x)=\frac{1}{2}\left(\left\|W_{V} e_{V}\right\|^{2}+\left\|W_{I} e_{I}\right\|^{2}+\left\|W_{\theta} e_{\theta}\right\|^{2}+\left\|W_{\delta} e_{\delta}\right\|^{2}\right) \tag{22}
\end{gather*}
$$

$\Rightarrow f$ is a nonlinear function of V, I, θ, and $\delta \rightarrow$ augment equality constraint $f=0$ to the objective function $q(x)$

$$
\begin{equation*}
q^{\prime}(x)=q(x)+\frac{1}{2}\left\|W_{f} f\right\|^{2}=\frac{1}{2}\|W h(x)\|^{2} \tag{23}
\end{equation*}
$$

and W_{f} is a diagonal matrix with unity weights,

$$
\begin{align*}
& h=\left[\begin{array}{ll}
f^{T} & e^{T}
\end{array}\right]^{T}, \quad e=\left[\begin{array}{llll}
e_{V}^{T} & e_{I}^{T} & e_{\theta}^{T} & e_{\delta}^{T}
\end{array}\right]^{T} \tag{24}\\
& W=\text { block }-\operatorname{diag}\left(\begin{array}{lllll}
W_{f} & W_{V} & W_{I} & W_{\theta} & W_{\delta}
\end{array}\right) \tag{25}
\end{align*}
$$

\Rightarrow Constrained WLS problem (21) transformed into an unconstrained WLS problem

$$
\begin{equation*}
\min _{x} q^{\prime}(x) \tag{26}
\end{equation*}
$$

(C)L. Vanfretti (KTH)

PSE Solution - Successive Solution Algorithm

PSE Solution

\Rightarrow When $L_{1}=N_{2}$ (no. of constrained eqns. = to no. of unknowns) $\rightarrow \exists$ a unique solution (Measurement errors are taken to be zero)
\Rightarrow When $L_{1}>N_{2}$ (no. of constrained eqns. $>$ to no. of unknowns) $\rightarrow \exists$ a WLS best fit Weighting Matrices
\Rightarrow Diagonal matrices, calculated depending on the type of measurement eqn. - most weights are unity except for weights on current magnitudes (lower for heavily loaded lines)

$$
\begin{equation*}
W_{I}=\operatorname{diag}\left(\cdots, \min \left(1, \frac{1}{I_{i k m}}\right), \cdots\right) \tag{27}
\end{equation*}
$$

Iterative Solution

\Rightarrow WLS is solved successively using the Newton-type methods \Rightarrow In the Gauss-Newton method the increment Δx is computed as

$$
\begin{equation*}
\Delta x=-\left(H\left(x_{c}\right)\right)^{-1}\left(W J\left(x_{c}\right)\right)^{T} h\left(x_{c}\right) \tag{28}
\end{equation*}
$$

The new solution is updated to $x_{c}+\Delta x$ and the Gauss-Newton iteration (28) is repeated until convergence.

Jacobian Structure

$J=\left[\right.$| $\partial f / \partial x$ | | | |
| :---: | :---: | :---: | :---: |
| U_{V} | 0 | 0 | 0 |
| 0 | 0 | U_{I} | 0 |
| 0 | U_{θ} | 0 | 0 |
| 0 | 0 | 0 | U_{δ} |$]$

where U is an identity matrix $\rightarrow \partial e / \partial x$
${ }^{2} \mathrm{KTH}$ verix
Vertusai

Observability

\Rightarrow PSE requires that the Jacobian has full rank and is equal to the number of unknowns

$$
\begin{equation*}
\operatorname{rank}(J)=U_{T}=2(N+L) \tag{29}
\end{equation*}
$$

\Rightarrow This rank condition is satisfied when the network is observable.
\Rightarrow If every bus in the PSE is connected to all other buses $\rightarrow \exists$ a single PSE island
\Rightarrow Otherwise, a topological algorithm isolates the islands \rightarrow makes all possible $\tilde{\boldsymbol{V}}$ and $\tilde{\boldsymbol{I}}$ observable
\Rightarrow A PSE model is constructed for each island $\rightarrow N$ voltages and L currents will be observable

- Unknowns: $U_{T}=2(N+L)$
- Model Eqns.: $E_{T}=2\left(L+N_{1}+L_{1}\right)$
\Rightarrow Hence, for an obs. PSE network we need

$$
\begin{equation*}
N_{1}+L_{1} \geq N \tag{30}
\end{equation*}
$$

\Rightarrow With relay-based PMUs, (30) reduces to $2 L_{1} \geq N$, that is

$$
\begin{equation*}
L_{1} \geq \operatorname{int}[N / 2] \tag{31}
\end{equation*}
$$

- Current Measurements: $L_{1}=4$
- Non-PMU Buses: $N_{2}=4$
- $L_{1}=N_{2}$, holds as an equality.

Extension for Angle Correction

Measurement Model

\Rightarrow The measurement equations can be updated to

$$
\begin{align*}
\theta_{i} & =\theta_{i m}-\phi_{i}+e_{\theta_{i}} \tag{32}\\
\delta_{i k} & =\delta_{i k m}-\phi_{i}+e_{\delta_{i k}} \tag{33}
\end{align*}
$$

Bus 1 is the island reference \rightarrow angle bias will not be applied to it. \Rightarrow The angle bias terms form a vector

$$
\phi=\left[\begin{array}{llll}
\phi_{2} & \phi_{3} & \cdots & \phi_{N_{1}} \tag{34}
\end{array}\right]^{T}
$$

\Rightarrow Thus the WLS problem (26) can be modified to the PSE- Φ problem of

$$
\begin{equation*}
\min _{x_{\phi}} q^{\prime}\left(x_{\phi}\right) \tag{35}
\end{equation*}
$$

where

$$
x_{\phi}=\left[\begin{array}{ll}
x^{T} & \phi^{T} \tag{36}
\end{array}\right]^{T}
$$

and $e\left(x_{\phi}\right)$ has been modified to incorporate (32) and (33).

Extended Jacobian

\Rightarrow The Jacobian matrix is expanded to

$$
J_{\phi}=\left[\begin{array}{l|l}
J & \frac{0}{\partial e(\phi) / \partial \phi} \tag{37}
\end{array}\right]
$$

Note that $\partial e(\phi) / \partial \phi$ is sparse and consists of ones and zeros.

Redundancy

\Rightarrow To perform angle bias correction redundancy is required $\rightarrow L_{1}>N_{2}$

- \tilde{V}_{3} can be computed using the phasor measurements from Bus 1 or Bus 2 .
- If one of the phasor measurements has an angle bias, the two computed values of \tilde{V}_{3} will be different.
- Correcting the angle bias allows for all 5 voltages to be accurately computed.

- \tilde{V}_{1} can be used to compute \tilde{V}_{2}, providing redundancy.
- Voltage phasor measurements at adjacent buses ($\tilde{V}_{1} \& \tilde{V}_{2}$) can be used to check for the phasor current.
- To achieve redundancy for angle bias correction, the no. of measured current phasors of

$$
\begin{equation*}
L_{1} \geq N-1 \tag{38}
\end{equation*}
$$

are required along with the corresponding voltage phasors.

- This inequality is derived from a Jacobian rank condition.

Redundancy Rank Condition

\Rightarrow To correct angle shifts it is necessary to have redundant measurementst, thus the rank condition on the extended Jacobian is updated to

$$
\begin{equation*}
\operatorname{rank}\left(J_{\phi}\right)=U_{T \phi} \tag{39}
\end{equation*}
$$

where $U_{T \phi}$ is the total number of unknown variables which when including the angle biases, is $U_{T \phi}=2(N+L)+\left(N_{1}-1\right)$.
\Rightarrow Condition (39) can be used to determine the lower bound on the no. of measurements needed for redundancy

- No. of unknowns in $U_{T \phi}$ corresponding to angle unknowns is:

$$
(N+L)+\left(N_{1}-1\right)
$$

- No. of rows in J_{ϕ} corresponding to angle unknowns is: $\left(L+N_{1}+L_{1}\right)$
- Hence, to satisfy condition (39) it is required that the number of rows $(N+L)+\left(N_{1}-1\right)$ is greater than or equal to the number of unknowns $\left(N+L_{1}+N_{1}\right)$

$$
\begin{equation*}
L+N_{1}+L_{1} \geq(N+L)+\left(N_{1}-1\right) \tag{40}
\end{equation*}
$$

Which reduces to

$$
\begin{equation*}
L_{1} \geq N-1 \tag{41}
\end{equation*}
$$

Note that $N_{1} \geq 2$ as redundancy requires at least two voltage phasor measurements, and L_{1} is an integer.

Example - Observability and Redundancy Analysis

Observability Analysis

Network	E_{T}	U_{T}	$\operatorname{rank}(J)$	ObSERVABLE
1	34	34	34	Yes
2	26	24	24	Yes
3	20	18	18	Yes

Redundancy Analysis

Network	Bias Terms	E_{T}	$U_{T \phi}$	$\operatorname{rank}\left(J_{\phi}\right)$	Redundant
1	ϕ_{2}, ϕ_{3}	34	36	34	No
2	ϕ_{2}	26	25	25	Yes
3	ϕ_{2}	20	19	19	Yes

Summarizing the Procedure for Phasor State Estimation

1. Obtain measurements and device status.
2. Determine the observable islands, and the islands with enough redundancy for angle-bias correction

For each island -
3. Based on the metered phasors, build the measurement model e, network model f, and state vector x.
3.1. From these obtain the non-linear function $h(x)$ or $h\left(x_{\phi}\right)$
3.2. Include phase-bias variables in x_{ϕ} if enough redundancy is available.
4. Obtain the Jacobian J or $J(\phi)$
5. Obtain the weighting matrix W
6. Obtain the SE solution using Gauss-Newton method.

Example: \tilde{V} and \tilde{I} measurements at Bus 1 and 2 - I

Measurements - an angle shift of 7.5° is present in
 the phasors at Bus 2

		V_{1}	V_{2}	θ_{1}	θ_{2}
	True	1.05	1.05	20	20
	Meas.	1	1	10	17.5
	I_{1}		$\left\|I_{2}\right\|$	δ_{1}	δ_{2}
True	5.7794		5.7794	37.9708	37.9708
Meas.	5.7794		5.7794	37.9708	45.4708

\Rightarrow Circuit eqns.: $\tilde{V}_{3}=\tilde{V}_{1}-\tilde{Z}_{1} \tilde{I}_{1}, \quad \tilde{V}_{3}=\tilde{V}_{2}+\tilde{Z}_{2} \tilde{I}_{2}$
\Rightarrow Network Model:

$$
\begin{array}{ll}
f_{1}: & 0=V_{1} \cos \theta_{1}-Z_{1} I_{1} \cos \left(\delta_{1}+\alpha_{1}\right)-V_{3} \cos \theta_{3} \\
f_{2}: & 0=V_{1} \sin \theta_{1}-Z_{1} I_{1} \sin \left(\delta_{1}+\alpha_{1}\right)-V_{3} \sin \theta_{3} \\
f_{3}: & 0=V_{2} \cos \theta_{2}+Z_{2} I_{2} \cos \left(\delta_{2}+\alpha_{2}\right)-V_{3} \cos \theta_{3} \\
f_{4}: & 0=V_{2} \sin \theta_{2}+Z_{2} I_{2} \sin \left(\delta_{2}+\alpha_{2}\right)-V_{3} \sin \theta_{3}
\end{array}
$$

\Rightarrow Measurement Model:

$$
\left.\left.\begin{array}{l}
e_{1}: e_{V_{1}}=V_{1}-V_{1 m} \\
e_{2}: e_{V_{2}}=V_{2}-V_{2 m} \\
e_{3}: e_{I_{1}}=I_{1}-I_{1 m} \\
e_{4}: e_{I_{2}}=I_{2}-I_{2 m}
\end{array}\right\} \text { Magnitudes, } \begin{array}{l}
e_{5}: e_{\theta_{1}}=\theta_{1}-\theta_{1 m} \\
e_{7}: e_{\theta_{2}}=e_{\delta_{1}}-\theta_{2 m}+\phi \\
e_{8}: e_{\delta_{2}}=\delta_{2}-\delta_{2 m}+\phi
\end{array}\right\} \text { Angles }
$$

\Rightarrow State Vector:

$$
\boldsymbol{x}=\left[\begin{array}{lllllllllll}
V_{1} & V_{2} & I_{1} & I_{2} & V_{3} & \theta_{1} & \theta_{2} & \delta_{1} & \delta_{2} & \theta_{3} & \phi
\end{array}\right]^{T}
$$

Example: \tilde{V} and \tilde{I} measurements at Bus 1 and 2 - II

\Rightarrow Jacobian Matrix
\rightarrow Non-zero elements corresponding to f_{1}

$$
\begin{array}{lll}
\frac{\partial f_{1}}{\partial V_{1}}=\cos \theta_{1}, & \frac{\partial f_{1}}{\partial I_{1}}=-Z_{1} \cos \left(\delta_{1}+\phi_{1}\right), & \frac{\partial f_{1}}{\partial V 3}=-\cos \theta_{3} \\
\frac{\partial f_{1}}{\partial \theta_{1}}=-V_{1} \sin \theta_{1}, & \frac{\partial f_{1}}{\partial \delta_{1}}=Z_{1} I_{1} \sin \left(\delta_{1}+\alpha_{1}\right), & \frac{\partial f_{1}}{\partial \theta_{3}}=V_{3} \sin \theta_{3}
\end{array}
$$

\rightarrow Non-zero elements corresponding to the measurement model
Magnitudes

> Angles

$$
\begin{array}{llll}
\frac{\partial e_{1}}{\partial V_{1}}=1, & \frac{\partial e_{2}}{\partial V_{2}}=1 & \frac{\partial e_{5}}{\partial \theta_{1}}=1, & \frac{\partial e_{6}}{\partial \theta_{2}}=1, \\
\frac{\partial e_{3}}{\partial I_{1}}=1 & \frac{\partial e_{4}}{\partial I_{2}}=1 & \frac{\partial e_{7}}{\partial \phi}=1, & \frac{\partial e_{8}}{\partial \delta_{1}}=1, \\
& \frac{\partial e_{8}}{\partial \phi}=1
\end{array}
$$

\Rightarrow The jacobian matrix J_{ϕ}, the weighting matrices W, and the nonlinear function $h\left(x_{\phi}\right)$ are computed at each iteration of the Gauss-Newton method - only show the first iteration here \Rightarrow Jacobian Matrix for the first iteration is

$\mathbf{J}_{\phi}=$| 0.93969 | 0 | -0.00016174 | 0 | -0.94624 | -0.35912 | 0 | 0.092736 | 0 | 0.33028 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.34202 | 0 | -0.016046 | 0 | -0.32346 | 0.98668 | 0 | -0.00093475 | 0 | -0.96621 | 0 |
| 0 | 0.95372 | 0 | -0.0019341 | -0.94624 | 0 | -0.30071 | 0 | -0.092065 | 0.33028 | 0 |
| 0 | 0.30071 | 0 | 0.01593 | -0.32346 | 0 | 0.95372 | 0 | -0.011178 | -0.96621 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |

Example: \tilde{V} and \tilde{I} measurements at Bus 1 and 2 - III

\Rightarrow Weighting matrices for the fist iteration $-W_{V}=\operatorname{diag}\left(\ldots \min \left(1,1 / V_{i}\right) \ldots\right)$, etc.

$$
W_{f}=\operatorname{diag}\left(\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\right),
$$

$W_{V}=\operatorname{diag}\left(\left[\begin{array}{ll}1 & 0.95238\end{array}\right]\right), \quad W_{I}=\operatorname{diag}\left(\left[\begin{array}{ll}0.17303 & 0.17303\end{array}\right]\right), \quad W_{\theta}=\operatorname{diag}\left(\left[\begin{array}{ll}1 & 1\end{array}\right]\right), \quad W_{\delta}=\operatorname{diag}\left(\left[\begin{array}{ll}1 & 1\end{array}\right]\right)$
\Rightarrow The nonlinear function (24) for the first iteration is

$$
\begin{aligned}
h\left(x_{0}\right)= & {\left[\begin{array}{llllllll}
6.2075 \times 10^{-5} & -1.7903 \times 10^{-5} & -0.0042767 & -0.0011146 & 0.0023354 & -0.002112 & \ldots
\end{array}\right.} \\
& -0.00044773
\end{aligned}-0.000307540 .00010186
$$

\Rightarrow With $J_{\phi}, h\left(x_{0}\right)$, and W the increment Δx in (28) for the first iteration is

$$
\left.\begin{array}{c}
\Delta x=\left[\begin{array}{llllllll}
0.0023354 & -0.002112 & -0.00044773 & -0.00030754 & 0.0022807 & 0.00010186 & \ldots
\end{array}\right. \\
-0.13072
\end{array} 0.00018075-0.13034<-0.065116 \quad 0.13053\right]^{T} .
$$

\Rightarrow After two iterations convergence is reached for a tolerance of $\epsilon=1 \times 10^{-12}$, and the solution obtained is

	True	Meas.	Est.
V_{1}	1.05	1.05	1.05
V_{2}	1	1	1
I_{1}	5.7794	5.7794	5.7794
I_{2}	5.7794	5.7794	5.7794
V_{3}	1.0211	-	1.0211

Angles			
True Meas. θ_{1} 20 20 θ_{2} 10 17.5 δ_{1} 37.9708 37.9708 δ_{2} 37.9708 45.4708 θ_{3} 15.122 - ϕ - - $\phi .97 .9708$			

Application to AEPs HV Network

American Electric Power

State Estimation and Phase Angle Error Correction

Island 1

Voltage Magnitude and Current Magnitude Estimates

Island 1

Island 2

Voltage Phasor Measurement Residuals in Island 1

Voltage Angle Residuals

Using the PSE to Monitor the Erie Loop

- High level visibility of the sorrunding areas of NYS - based solely in PMU Data and HV network
- Potentially enable better monitoring and control of the Erie Loop Flow
- An independent state estimator from the currently available SEs
- Will not suffer from difficulties caused by external network model inacurracies
- Could aid in providing information for better external network modeling for conventional SEs

Conclusions

What did this presentation cover?

- Discussed the different approaches in incorporating PMU data onto Conventional SE
- Discussed two different approaches for SE with PMUs only: The Linear Phadke and Thorp SE, and the Phasor State Estimator
- Discussed about an specific type of error measurement - phase angle shifts or bias, which have been observed from archived records of PMUs installed in the field.
- The Linear SE has the advantage of relying on the solution of a linear system of eqns., however it is not clear how to deal with phase angle shifts within these framework.
- The PSE concept has been developed and illustrated
\diamond The formulation extends for automatic detection and correction of angle biases that may exist in the PMU data
- The notion of PMU data redundancy to remove angle biases was presented - this is a new concept of redundancy different from those used in conventional SE
\diamond Provided observability and redundancy conditions in terms of the rank of a Jacobian matrix.
- Determined the minimum number of line current phasors required for redundancy.

Some other things to look at

- PMU Placement for SE - a topic worthy of a tutorial presentation for itself.
- Some interesting questions to answer
\diamond Staged placement - in what order should utilities place PMUs to maximize observability and minimize cost?
\diamond Securing Observability - where should utilities install PMUs so they do not lose observability given measurement loss or contingencies? (Some work has been done, but not everything has been said)
\diamond Redundancy for Angle-bias Correction

Thank you! Questions?

References I

A. Abur and A. G. Expósito, Power System State Estimation: Theory and Implementation. CRC Press, 2004.
C. Kelley, Solving Nonlinear Equations with Newton's Method. Philadelphia, PA: SIAM, 2003.
J. Allemong, L. Radu, and A. Sasson, "A fast and reliable state estimation algorithm for aep's new control center," IEEE Transactions on Power Apparatus and Systems, vol. PAS-101, no. 4, pp. 933-944, April 1982.
A. G. Phadke, J. S. Thorp, and K. J. Karimi, "State Estimation with Phasor Measurements," IEEE Transactions on Power Systems, vol. 1, no. 1, pp. 233-238, Feb. 1986.
L. Vanfretti, J. H. Chow, S. Sarawgi, D. Ellis, and B. Fardanesh, "A Framework for Estimation of Power Systems Based on Synchronized Phasor Measurement Data," IEEE PES General Meeting, July 2009.
L. Vanfretti, "Phasor measurement-based state estimation of electric power systems and linearized analysis of power system network oscillations," Ph.D Thesis, Rensselaer Polytechnic Institute, Troy, NY, December 2009.
L. Vanfretti, J. Chow, S. Sarawgi, and B. Fardanesh, "A Phasor Data-Based State Estimator Incorporating Phase Bias Correction," IEEE Transactions on Power Systems, to appear. Accepted, March 2010.
J. Thorp, A. Phadke, and K. Karimi, "Real Time Voltage-Phasor Measurement For Static State Estimation," IEEE Transactions on Power Systems, vol. PAS-104, no. 11, pp. 3098-3106, Nov. 1985.

References II

I. Slutsker, S. Mokhtari, L. Jaques, J. Provost, M. Perez, J. Sierra, F. Gonzalez, and J. Figueroa, "Implementation of phasor measurements in state estimator at Sevillana de Electricidad," in IEEE Power Industry Computer Application Conference Proceedings, May 1995, pp. 392-398.
M. Parashar, et al, "Imlementation of Phasor Measurements in SDG\&E State Estimator," California Energy Commission, PIER Program Energy Commission - 500-02-04 MR053, Tech. Rep., 2008.
B. Fardanesh, "Use of Phasor Measurement in a Commercial (or Industrial) State Estimator," EPRI, Palo Alto, California, Final Report 1011002, July 2004.
R. Avila-Rosales, M. J. Rice, J. Giri, L. Beard, and F. Galvan, "Recent Experience with a Hybrid SCADA/PMU On-line State Estimator," IEEE Power and Energy Society General Meeting, Calgary, July 2009.
D. Atanackovic, J. Clapauch, G. Dwernychuk, J. Gurney, and H. Lee, "First steps to wide area control," IEEE Power and Energy Magazine, vol. 6, no. 1, pp. 61-68, January-February 2008.
L. Kondragunta, "Enahancement of State Estimation Results using Phasor Measurements," in North American SynchroPhasor Initiative (NASPI) Work Group Meeting, March 6-7, 2008, New Orleans, LA, available online: http://www.naspi.org/meetings/workgroup/workgroup.stm.
A. Ghassemian and B. Fardanesh, "Phasor Assisted State Estimation for NYS Transmission System - Implementation \& Testing," IEEE Power System Conference and Exposition, Seattle, WA, March 2009.
R. Avila-Rosales, M. J. Rice, R. Lopez, L. Beard, T. Mathur, F. Galvan, V. Gupta, J. Lambert, J. Graffy, and M. Papic, "Impact of PMU Technology in State Estimation," Cigre 2008 Session Proceedings, 2008.

Additional Reference Material And Examples

Phasor Assisted State Estimation

Phasor Assisted State Estimation - I

Inclusion of Phasor Voltage Angle Measurements [8]
J. Thorp, A. Phadke, and K. Karimi, "Real Time Voltage-Phasor Measurement For Static State Estimation," IEEE Transactions on Power Systems, vol. PAS-104, no. 11, pp.3098-3106, Nov. 1985.
\Rightarrow Incorporate the $\boldsymbol{\theta}_{m}$ calculated by PMUs into the measurement vector \boldsymbol{z} (1)
\Rightarrow Assumption: by measurement synchronization all angles are measured w.r.t a common reference, implying direct angle measurements.
\Rightarrow The new measurement vector \boldsymbol{z} organized in terms of active and reactive partitions is

$$
z=\left[\begin{array}{l}
z_{A} \tag{42}\\
z_{R}
\end{array}\right]
$$

where

$$
\begin{align*}
& \boldsymbol{z}_{\boldsymbol{A}}=\left[\begin{array}{c}
\boldsymbol{P}_{i j} \\
\boldsymbol{P}_{i} \\
\boldsymbol{\theta}_{i}
\end{array}\right] \quad \begin{array}{l}
\text { active power line flow meas. } \\
\text { active power injection meas. } \\
\text { PMU bus angle meas. }
\end{array} \\
& \boldsymbol{z}_{\boldsymbol{R}}=\left[\begin{array}{c}
\boldsymbol{Q}_{i j} \\
\boldsymbol{Q}_{i} \\
\boldsymbol{V}_{i}
\end{array}\right] \quad \begin{array}{l}
\text { reactive power line flow meas } \\
\text { reactive power injection meas } \\
\text { voltage magnitude meas. }
\end{array} \tag{43}
\end{align*}
$$

where $i=1, \ldots, N, N$ being the total number of buses in the network.
\Rightarrow Appropiate modifications to $\boldsymbol{h}(\boldsymbol{x})$, Jacobian, and \boldsymbol{R} are also, required.
©L. Vanfretti (KTH)
Phasor-Only State Estimation
07/29/2010

Phasor Assisted State Estimation - II

$\Rightarrow \boldsymbol{h}(\boldsymbol{x})$ is augmented to include the relationship

$$
f_{\theta_{i}}: \theta_{i}^{\text {measured }}=\theta_{i}+e_{\theta_{i}}
$$

$\Rightarrow \boldsymbol{H}(\boldsymbol{x})$ should be modified to include new rows for phasor angle meas., the non-zero entries are

$$
\frac{\partial f_{\theta_{i}}}{\partial \theta_{i}}=1
$$

\Rightarrow Reference bus: choose a reference bus among the buses with PMUs, or measure the reference bus normally used by the conventional SE. Phase angle measurements are included into the SE as phase angle differences, i.e.

$$
\theta_{i}=\theta_{i}^{\text {measured }}-\theta^{\text {ref }}
$$

\Rightarrow The first implementation is reported in:
I. Slutsker, S. Mokhtari, L. Jaques, J. Provost, M. Perez, J. Sierra, F. Gonzalez, and J. Figueroa, "Implementation of phasor measurements in state estimator at Sevillana de Electricidad," in IEEE Power Industry Computer Application Conference Proceedings, May 1995, pp. 392-398.
\Rightarrow In a recent implementation by SDGE a PMU-bus reference was avoided by introducing the angle differences between PMUs as state variables instead of the measured bus angles

$$
f_{\theta_{i}}: \Delta \theta^{\text {measured }}=\theta_{i}-\theta_{j}+e_{\Delta \theta}
$$

with appropriate modifications to \boldsymbol{R} and $\boldsymbol{H}(\boldsymbol{x})$.

Phasor Assisted State Estimation - III

Inclusion of Voltage and Current Synchrophasors

\Rightarrow Complete voltage phasors (phase angle and magnitude) and current phasors included in \boldsymbol{z} \Rightarrow Jacobian, $\boldsymbol{H}(\boldsymbol{x})$, is augmented to include the sensitivities to the bus voltage angles θ_{i} (as above), and the complex currents $\tilde{I}_{i j}=I_{i j} \angle \delta_{i j}$. The complex current sensitivities are

$$
\begin{equation*}
\frac{\partial I_{i j}}{\partial V_{i}}, \frac{\partial I_{i j}}{\partial V_{j}}, \frac{\partial I_{i j}}{\partial \theta_{i}}, \frac{\partial I_{i j}}{\partial \theta_{j}}, \frac{\partial \delta_{i j}}{\partial V_{i}}, \frac{\partial \delta_{i j}}{\partial V_{j}}, \frac{\partial \delta_{i j}}{\partial \theta_{i}}, \frac{\partial \delta_{i j}}{\partial \theta_{j}} \tag{44}
\end{equation*}
$$

where $I_{i j}$ and $\delta_{i j}$ is a PMU-measured current between buses i and j.
\Rightarrow Implemented at NYPA.
Power Conversion Approach
\Rightarrow Calculate the complex power $\boldsymbol{S}_{i j}$ (MW, and MVAr line flows) from the PMUs at each branch.
\Rightarrow Con.: neither of the PMU-measured states (\boldsymbol{V} and $\boldsymbol{\Theta}$) are used in the measurement vector.
Derived power flows are equivalent adding paired analog measurements.
\Rightarrow Pro.: No modifications to SE formulation or software.
\Rightarrow The addition of a PMU with multiple line current meas. is equivalent to adding a number of paired analog measurements \rightarrow it only increases the redundancy in the SE.
\Rightarrow Implemented at the British Columbia Transmission Corporation

Phasor Assisted State Estimation - IV

Implementation in Power Industry SEs

\Rightarrow Phasor angle - CSE [9], SDG\& E [10]
\Rightarrow Voltage and Current Phasors - NYPA [11], TVA [12]
\Rightarrow Power Conversion - BCTC [13]
PMU Measurements

Utility	θ	$V(V, \theta)$	$\tilde{I}(I, \delta)$	$S_{i j}$	Total PMU Meas.
CSE $[9]$	23	-	-	-	23
SDG\&E $[14,10]$	5^{\dagger}	-	-	-	5
NYPA $[11,15]$	-	10	24	-	34
TVA $[16,12]$	-	\star	\star	-	18
BCTC $[13]$	-	-	-	\triangle	\star

Penetration of PMU-Measurements in Conventional SEs

Utility	SCADA Meas.	PMU Meas.	Total Meas	\% SCADA	\% PMU
CSE [9]	309	23	332	93.07	6.93
SDG\&E $[14,10]$	1800	5	1805	99.72	0.28
NYPA $[11,15]$	850	17,000	\star	18	884
TVA $[16,12]$	\star	\star	-	96.15	3.85
BCTC $[13]$			-	-09.89	0.11

Notation and Acronyms: \star - Not available in literature, \dagger - Implemented as angle differences, $\triangle-S_{i j}$ measurements derived from \tilde{V} and $\tilde{I}, * 70 \%$ of the network is observable, CSE - Sevillana de Electricidad, SDG\&E - San Diego Gas \& Electric, NYPA - New York Power Authority, TVA - Tennessee Valley Authority, BCTC - British Columbia Transmission Corporation.
(C)L. Vanfretti (KTH)

Phasor-Only State Estimation
$07 / 29 / 2010$

Additional Examples on Phadke and Thorp's Linear SE

Example 2: All \tilde{V} and \tilde{I} phasors measured except $\tilde{I}_{42 m}-\mathrm{I}$

\Rightarrow What happens to $\tilde{\boldsymbol{G}}$ when $\tilde{I}_{42 m}$ is not measured?
\Rightarrow Changes to the network-measurement matrices (from Example 1) are:

- \boldsymbol{A}^{T} : row 8 corresponding to \tilde{I}_{42} is removed, the matrix is now (7×4)
- $\tilde{\boldsymbol{y}}$ loses row 8 and column 8 (diagonal entry \tilde{y}_{42}) becoming (7×7) and, $\tilde{\boldsymbol{y}}_{s}$, and $\tilde{\boldsymbol{Y}}$ lose row 8 becoming (7×4)
\Rightarrow White Gaussian Noise w/ snr of 75 dB is added to the loadflow solution.

$$
\tilde{\boldsymbol{G}}=\left[\begin{array}{llll}
1.445 & -1.445 & 0 & 0 \\
-1.445 & 1.4609 & -0.0142 & -0.0017347+j 5.3651 \times 10^{-6} \\
0 & -0.0142 & 0.028404 & -0.0142 \\
0 & -0.0017347-j 5.3651 \times 10^{-6} & -0.0142 & 0.015992
\end{array}\right]
$$

\Rightarrow Only one end of Line 2-4 is being measured, thus $\tilde{\boldsymbol{G}}$ is symmetrical but complex. Solution

Voltage Magnitudes

Bus	$\left\|\tilde{V}^{\text {meas }}\right\|$	$\left\|\tilde{V}^{\text {se }}\right\|$	Residual
1	1.0502	1.0501	0.00013328
2	1.0274	1.0273	0.00012238
3	0.88639	0.88652	0.00013176
4	0.87869	0.87873	$4.1387 \mathrm{e}-05$

Voltage Angles

Bus	$\left\|\theta^{\text {meas }}\right\|$	$\left\|\theta^{\text {se }}\right\|$	Residual
1	19.9971	19.9817	0.015389
2	17.5119	17.4961	0.015811
3	-1.4645	-1.4826	0.018034
4	-1.4595	-1.4778	0.01833

Example 3: Measurements only at Buses 1 and 4 - I

\Rightarrow Network-measurement matrices:

$$
\begin{aligned}
& \boldsymbol{A}^{T}=\begin{array}{c}
\tilde{I}_{12} \\
\tilde{I}_{43} \\
\tilde{I}_{42}
\end{array}\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & -1 & 0 & 1
\end{array}\right] \\
& \tilde{\boldsymbol{y}}_{s}=\left[\begin{array}{llll}
\tilde{y}_{12_{0}} & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{y}_{43_{0}} \\
0 & 0 & 0 & \tilde{y}_{42_{0}}
\end{array}\right] \\
& \tilde{\boldsymbol{y}}=\operatorname{diag}\left(\left[\begin{array}{lll}
\tilde{y}_{12} & \tilde{y}_{43} & \tilde{y}_{42}
\end{array}\right]\right) \\
& \boldsymbol{U}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \boldsymbol{R}=\operatorname{diag}\left(\left[\begin{array}{lllll}
\sigma_{\tilde{V}_{1}}^{2} & \sigma_{\tilde{V}_{4}}^{2} & \sigma_{\tilde{I}_{12}}^{2} & \sigma_{\tilde{I}_{43}}^{2} & \left.\left.\sigma_{\tilde{I}_{42}}^{2}\right]\right)
\end{array} \quad \tilde{\boldsymbol{Y}}=\left[\begin{array}{llll}
\tilde{y}_{12}+\tilde{y}_{12} & -\tilde{y}_{12} & 0 & 0 \\
0 & 0 & -\tilde{y}_{43} & \tilde{y}_{43}+\tilde{y}_{430} \\
0 & \tilde{y}_{42} & 0 & \tilde{y}_{42}+\tilde{y}_{42_{0}}
\end{array}\right]\right.\right.
\end{aligned}
$$

\Rightarrow White Gaussian Noise w/snr of 75 dB is added to the loadflow solution.

Example 3: Measurements only at Buses 1 and 4 - II

\Rightarrow Limited measurements are available only on one end of the transmission lines - the gain matrix is symmetric and complex

$$
\tilde{\boldsymbol{G}}=\left[\begin{array}{cccc}
0.7225 & -0.7225 & 0 & 0 \\
-0.7225 & 0.72429 & 0 & -0.0017-j 5.36 \times 10^{-6} \\
0 & 0 & 0.0071 & -0.0071-j 5.36 \times 10^{-6} \\
0 & -0.0017+j 5.36 \times 10^{-6} & -0.0071+j 5.36 \times 10^{-6} & 0.0087328
\end{array}\right]
$$

Solution

Voltage Magnitudes

Bus	$\left\|\tilde{V}^{\text {meas }}\right\|$	$\left\|\tilde{V}^{\text {se }}\right\|$	Residual
1	1.0506	1.0539	0.0033124
2	1.0277	1.0305	0.0028902
3	0.88631	0.89018	0.0038725
4	0.87919	0.88286	0.0036687

Voltage Angles

Bus	$\left\|\theta^{\text {meas }}\right\|$	$\left\|\theta^{\text {se }}\right\|$	Residual
1	20.0017	19.9319	0.06979
2	17.5144	17.4511	0.063315
3	-1.4628	-1.4622	0.00057954
4	-1.4636	-1.4632	0.00041215

Example 4 - Only \tilde{V} Phasors Measured at all Buses

\Rightarrow What happens to \tilde{G} when only \tilde{V} are measured?
\Rightarrow Changes to the network-measurement matrices (from Example 1) - there are no \tilde{I} measurements, so $\boldsymbol{A}^{T}, \tilde{\boldsymbol{y}}, \tilde{\boldsymbol{y}}_{\boldsymbol{S}}$, and $\tilde{\boldsymbol{Y}}$; so the $\tilde{\boldsymbol{B}}$ is only formed by

$$
\boldsymbol{U}=\operatorname{diag}\left(\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\right)
$$

\Rightarrow The gain matrix is equal to the covariance matrix \boldsymbol{R}, thus real, symmetric, and diagonal. In this case, because we have set $\sigma_{\tilde{V}_{i}}=0.00187$, the gain matrix is

$$
\tilde{\boldsymbol{G}}=\left[\begin{array}{cccc}
3.4969 \times 10^{-6} & 0 & 0 & 0 \\
0 & 3.4969 \times 10^{-6} & 0 & 0 \\
0 & 0 & 3.4969 \times 10^{-6} & 0 \\
0 & 0 & 0 & 3.4969 \times 10^{-6}
\end{array}\right]
$$

Solution

Voltage Magnitudes

Bus	$\left\|V^{\text {true }}\right\|$	$\left\|V^{\text {meas }}\right\|$	$\left\|\tilde{V}^{\text {se }}\right\|$
1	1.05	1.0506	1.0506
2	1.0272	1.0277	1.0277
3	0.88654	0.88631	0.88631
4	0.87867	0.87919	0.87919

Voltage Angles

Bus	$\left\|\theta^{\text {true }}\right\|$	$\left\|\theta^{\text {meas }}\right\|$	$\left\|\theta^{\text {se }}\right\|$
1	20	20.0017	20.0017
2	17.5146	17.5144	17.5144
3	-1.4645	-1.4628	-1.4628
4	-1.4631	-1.4636	-1.4636

