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ABSTRACT 

This thesis presents a method that performs voltage stability assessment and 

suggests fast remedial actions against voltage instability by using decision trees 

and pre-calculated optimal power flow solutions. 

Typically, two types of incidents cause voltage instability. The first type of 

incident is associated with the demand not being met due to limited 

transmission or reactive power reserves. The second type of incident is a 

major event affecting the generation or transmission system in such a way 

that the pre-event demand cannot be satisfied with the available generation or 

transmission capacity. The time left to take remedial action for the second 

type of incident is relatively shorter than the first type. Sufficiently fast 

detection and appropriate remedial actions can prevent the system from 

undergoing a voltage collapse. These considerations motivate the 

development of methods to identify operating conditions that are near or 

within the region for which the system is voltage unstable, and to suggest 

remedial actions to bring back the system to a condition where it has 

sufficient margin to voltage collapse. 

The main contributions of the thesis are the classification of operating 

conditions using decision trees for voltage security assessment and the use of 

pre-calculated optimal power flow solutions for remedial actions. Case studies 

were performed on IEEE 9-bus system for several operating conditions and 

different network configurations. In the case studies, the time taken to 

retrieve the pre-calculated OPF solution was found to be considerably smaller 

than the time taken to compute the OPF solution online. The average load 

shedding was observed to be higher for the pre-calculated OPF solutions 

compared to the OPF solutions calculated online. The shorter time the 

proposed method takes to identify voltage instability, and to provide remedial 

actions, could be a useful tool for the power system operator to steer away 

the system from unstable conditions during the critical time just after being 

subjected to a contingency. 
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SAMMANFATTNING 

Detta examensarbete presenterar en metod för att bedöma spänningsstabilitet 

och föreslå avhjälpande återgärder mot instabilitet genom att utnyttja 

beslutsträd och färdigberäknade lösningar av den optimala lastfördelningen.   

I allmänhet är det två typer av händelser som kan orsaka spänningsinstabilitet. 

Den första typen är associerad med att efterfrågan inte kan mötas på grund av 

begränsningar i överföringskapacitet eller i tillgänglig reaktiv effekt. Den andra 

typen är stora störningar som påverkar kraftgenereringen eller 

överföringskapaciteteten så att efterfrågan, på den nivå som den låg innan 

störningen, inte kan tillgodoses med den tillgängliga kapaciteten i överföring 

eller kraftgenerering. Den tillgängliga tiden för att ta avhjälpa problemet för 

den andra typen av händelser är kortare än den första. För att kunna hindra 

spänningskollaps måste detektion och avhjälpning av instabilitet ske tillräckligt 

fort. Detta är en anledning till att utveckla metoder som kan identifiera 

situationer i kraftsystemet då detta är nära eller i regionen där systemet är 

spänningsinstabilt och vidare föreslå avhjälpande åtgärder som styr systemet 

till ett tillstånd då det har en tillräckligt stor marginal till spänningskollaps.  

De huvudsakliga bidragen i detta examensarbete är klassificeringen av 

driftstillståndet genom beslutsträd för att bedöma spänningsstabilitet samt 

användningen av färdigberäknade lösningar av den optimala lastfördelningen 

för att föreslå avhjälpande åtgärder. Fallstudier utfördes på ett kraftsystem 

med nio noder, IEEE 9-bus system, med en uppsättning av olika 

konfigurationer av ledningssystemet. I fallstudierna visade det sig att den 

föreslagna metoden var avsevärt snabbare jämfört med att beräkna den 

optimala lastfördelningen vid den aktuella tidpunkten. Den förkortade tid det 

tar att identifiera instabilitet och föreslå åtgärder kan vara ett användbart 

verktyg för systemoperatörer då de ska styra systemet från en instabil 

driftsituation under den kritiska tid som uppstår alldeles efter system har blivit 

utsatt för en oväntad störning. 
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C h a p t e r  I  

1. INTRODUCTION 

1.1 Background 

Voltage stability refers to the ability of a power system to maintain steady 

voltages at all buses in the system after being subjected to a disturbance from 

a given initial operating condition[1]. Voltage drops or voltage losses occur 

when electric power is transferred through a transmission network between 

the generation and load points. In normal operating conditions, these voltage 

drops are within the acceptable limits of the grid [2]. But due to disturbances, 

increases in power consumption, or other system changes can cause the bus 

voltages to vary significantly from their acceptable operating range (which are 

set by power system operators or grid code) in such a way that operator 

intervention or automatic control fails to halt this deviation. During these 

circumstances, voltages may experience large, progressive falls, which are so 

pronounced that the system integrity is endangered and power cannot be 

delivered to the loads. This is referred to as voltage instability and its result is 

termed as voltage collapse. These voltage-related threats to system security are 

expected to become more severe over the next decades as the demand for 

electric power is increasing [3]. The change in energy portfolio and ecological 

concerns restrict the construction of new transmission lines and makes it 

impossible to construct new non-renewable generation plants. 

Voltage instability phenomena time frame ranges from seconds to hours and 

studies were done with appropriate models [2].  Table 1.1 lists some historical 

voltage instability incidents [3].  

 

Table 1.1 Examples of historical voltage instability 
incidents 

Date Location Time Frame 
13/04/1986 Winnipeg, Canada Nelson River HVDC link Short term, 1 sec 
30/08/1986 SE Brazil, Paraguay-Itaipu HVDC link Short term, 1 sec 



 

 2 

17/05/1985 South Florida, USA Short term, 4 sec 
27/12/1983 Sweden Long term, 55 sec 
30/12/1982 South Florida, USA Long term, 1-3 min 
04/08/1982 Belgium Long term, 4-5 min 
22/09/1977 Jacksonville, Florida Long term, few min 

 

All these events caused interruptions in the power supply to consumers and 

resulted in losses of billions of dollars [3]. Online voltage stability monitoring 

is an effort towards an early detection and mitigation of such voltage 

instability events. 

Voltage instability usually occurs in power systems that are heavily loaded or 

faulted or has shortage of reactive power. Typically, two types of incidents 

causes voltage instability problem. The first type of incident is associated with 

the demand not being met with the available transmission or reactive power 

reserves. This situation may result from unexpected large load increase 

and/or an earlier weakening of the system, such as low voltages and increased 

losses. The second type of incident is a major event affecting the generation 

or transmission system in such a way that the demand, which is the pre-fault 

consumption, cannot be satisfied with the available generation or 

transmission capacity. 

Voltage Stability Indices (VSI) were developed to deal with the first type of 

incidents. These indices help to foresee unacceptable effects of load 

increments. Moreover, this anticipation capability along with inherent delay in 

some cases of load increments (because of the type of loads) gives the 

operator some time to take remedial actions like switching capacitor banks, 

changing the generator voltage set points, etc. However, the picture is quite 

different for voltage instabilities that can follow major incidents such as 

outage of a large capacity generator that is producing its maximum rated 

power or the disconnection of heavily loaded transmission lines. The time left 

to take remedial action for the second incident is relatively shorter than the 

first type of incident. This short time is very important and early detection of 

a critical state can prevent the system from collapsing.  
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These above considerations motivate the development of approaches that can 

help in early identification of voltage instability and suggest remedial actions 

to bring back the system to stable state. Machine learning techniques like 

Decision Trees (DTs) can offer useful tools to handle the early identification 

of voltage instability and suggest remedial actions. 

1.2 Problem Definition 

Machine learning techniques like DTs, clustering algorithms, neural networks 

and statistical methods are widely applied for on-line voltage stability 

assessment. These methods can create/use a model, which is based on 

knowledge of the operator decisions or historical data. In this thesis, decision 

trees is being used for voltage stability assessment and to suggest preventive 

actions that can be given as an input to system operators or automatic load 

shedding schemes. The decision tree is a white-box model that can be applied 

when the functioning/working of a system is unknown or very complex, but 

there is plenty of data available. These models do not explicitly model the 

physical system, but establish a mathematical relationship between a large 

numbers of input-output pairs measured from the system. The mathematical 

relationship is a model of the system, which can be computed numerically 

from the measurements or simulated outputs. The accuracy of the model may 

vary depending on the how accurate the simulated outputs replicates the 

behavior of original system. 

The idea of this approach is to enlarge and generalize the existing security 

boundary method of “stable” and “unstable” region to classify the operating 

regions based on distance from the nearest Saddle-Node Bifurcation (SNB) 

point, which is further explained in chapter 2. 

1.3 Objectives 

The objective of this thesis is to develop a method that is applicable in 

practice and which that makes use of the data from a power system model for 

voltage security assessment and for calculating curative actions. In more 

detail, the sub-tasks to be solved in this thesis are, 
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• Formulate and simulate an optimization problem which maximizes 

the distance to the nearest saddle node bifurcation point. 

• Create a database with power flow outputs of several operating points 

for different network configurations and use them to train the 

decision trees. 

• Testing the decision trees with respect to random time domain 

simulation outputs (voltage magnitude, active power consumption at 

load buses). 

The main focus of the thesis is to use DTs for voltage security assessment 

and then use pre-calculated optimal power flow (OPF) solutions to take 

curative action for the given power system model data. In order to achieve 

good results from the trained DTs, the system should be modelled accurately 

in the power system analysis software for several different operating points 

and power system configurations. A large number of power system operation 

points and voltage stability margins must be computed in order to have DTs 

with good classification accuracy, which is explained in detail in chapter 2. 

1.4 Overview of the report 

The thesis is divided into five chapters: 

Chapter 1: INTRODUCTION This chapter gives a brief introduction to 

voltage stability, methods used to identify voltage stability problems and short 

description about the context of the thesis work along with objectives and 

contributions. 

Chapter 2: THEORETICAL BACKGROUND This chapter provides 

theoretical background for the voltage stability problem and methods used 

for voltage stability analysis in power systems. This chapter further also 

introduces basic concepts of Decision Trees (DTs) and Optimal Power Flow 

(OPF). 

Chapter 3: PROPOSED VOLTAGE STABILITY INDEX This chapter 

explains the methodology used for voltage stability assessment using indices 

with an illustrative example. 
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Chapter 3: A METHOD FOR VOLTAGE STABILITY 

ASSESSMENT USING DECISION TREES This chapter describes the 

methodology/work flow adopted in the thesis to create and use decision trees 

for voltage stability assessment in power systems. 

Chapter 5: A METHOD FOR LOOKING UP PRE-CALCULATED 

PREVENTIVE ACTIONS AGAINST VOLTAGE PROBLEMS This 

chapter describes the formulation of OPF method based on maximization of 

the distance to voltage collapse and the methodology/work flow used to 

implement this method in the thesis. 

Chapter 6: CASE STUDIES This chapter presents the results and 

observations based on the results obtained by applying the proposed 

approach explained in previous chapters for the given network. 

Chapter 7: CLOSURE This chapter provides the summary of the complete 

work in the thesis along with the conclusions inferred from the obtained 

results and future work details. 

Appendix contains the data of the test bus system used for simulations in the 

thesis. 
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C h a p t e r  2  

2. THEORETICAL BACKGROUND 

2.1 Voltage Stability 

According to IEEE, the standard definition for voltage stability “… is the 

ability of the power system to maintain steady voltages at all the buses in the 

system after being subjected to a disturbance from a given initial operating 

condition. It depends on the ability to maintain/restore equilibrium between 

load demand and load supply from the power system [1].” Voltage instability 

is a non-linear phenomenon. It is impossible to capture the phenomenon as a 

closed-form solution [3]. The instability is manifested once the network 

crosses the maximum deliverable power limit. 

2.1.1 Classification of voltage instability 

Based on the severity, voltage instabilities can be classified into four different 

categories [1]. 

Large disturbance voltage stability refers to the system’s ability to maintain 

steady voltages following large disturbances such as system faults, loss of 

generation, or circuit contingencies. 

Small disturbance voltage stability refers to the system’s ability to maintain 

steady voltages when subjected to small perturbations such as incremental 

changes in system load.  

Short term voltage stability involves dynamics of fast acting load 

components such as induction motors, electronically controlled loads and 

HVDC converters. The study period of interest is in the order of several 

seconds and analysis requires a solution of appropriate system differential 

equations. 

Long term voltage stability involves slow acting equipment such as tap-

changing transformer, thermostatically controlled loads and generator current 

limiters. The study period of interest may extent to several or many minutes 
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and long-term simulations are required for analysis of system dynamic 

performance. 

2.1.2 Methods to assess voltage stability 

In this section, voltage stability assessment by some common analysis 

methods is briefly explained. 

2.1.2.1 PV curves 

PV curves or “nose curves” can be used to illustrate the basic phenomena 

associated with voltage instability [4]. These curves are obtained by plotting 

the active power transfer P across a grid interface versus the voltage 

magnitude V at a bus of interest. With increase in load, the voltage at the load 

bus decreases and reaches a critical value that corresponds to maximum 

power transfer. In general this maximum power transfer is related to voltage 

instability if the load is constant power type. Beyond this point there is no 

equilibrium. Knowing this point can determine the stability margin of the grid 

for a certain operating point in a certain direction. However, if the load type is 

other than constant power then the system can operate below the critical 

voltage, but draws higher current for the same amount of power transfer. 

Consider the a simple two bus system as shown in figure 2.1 with an infinite 

bus V1 connected to a load that consumes the complex power 𝑆𝑆𝐿𝐿 = 𝑃𝑃𝐿𝐿 + 𝑗𝑗𝑄𝑄𝐿𝐿 , 

through a loss-less transmission line with reactance X. 

                                      𝑉𝑉1∠00                                     𝑉𝑉𝐿𝐿∠ − 𝜃𝜃𝐿𝐿0 
 

 

                                                                                                                                                                    

Figure 2.1 A simple two bus system 

Active Power (AP) consumption at the load bus is given by, 

𝑃𝑃𝐿𝐿 = 𝑉𝑉1𝑉𝑉𝐿𝐿
𝑋𝑋

sin (𝜃𝜃𝐿𝐿)                                               (2.1) 

Reactive Power (RP) consumption at the load bus is given by, 

𝑆𝑆𝐿𝐿 = 𝑃𝑃𝐿𝐿 + 𝑗𝑗𝑄𝑄𝐿𝐿 

X  
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𝑄𝑄𝐿𝐿 = −�𝑉𝑉𝐿𝐿
2

𝑋𝑋
− 𝑉𝑉1𝑉𝑉𝐿𝐿cos (𝜃𝜃𝐿𝐿)

𝑋𝑋
�                                       (2.2) 

The voltage angle 𝜃𝜃𝐿𝐿can be eliminated by using the relation 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 +

𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃 = 1, which can result in the following equation. 

(𝑉𝑉𝐿𝐿2)2 + (2𝑄𝑄𝐿𝐿𝑋𝑋 − 𝑉𝑉12)𝑉𝑉𝐿𝐿2 + 𝑋𝑋2(𝑃𝑃𝐿𝐿2 + 𝑄𝑄𝐿𝐿2) = 0           (2.3) 

Since (2.3) is a quadratic equation, solving for 𝑉𝑉𝐿𝐿2gives the following 

expression 

𝑉𝑉𝐿𝐿 = �−�2𝑄𝑄𝐿𝐿𝑋𝑋−𝑉𝑉12�±��2𝑄𝑄𝐿𝐿𝑋𝑋−𝑉𝑉12�
2
−4𝑋𝑋2�𝑃𝑃𝐿𝐿

2+𝑄𝑄𝐿𝐿
2�

2
               (2.4) 

But 𝑄𝑄𝐿𝐿 = 𝑃𝑃𝐿𝐿𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡, where cos (𝑡𝑡) is the load power factor, and assumed to 

be constant.  Substituting 𝑄𝑄𝐿𝐿 = 𝑃𝑃𝐿𝐿𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 in (2.4) gives the following. 

𝑉𝑉𝐿𝐿 = �−�2𝑃𝑃𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋−𝑉𝑉12�±��2𝑃𝑃𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋−𝑉𝑉12�
2
−4𝑋𝑋2𝑃𝑃𝐿𝐿

2(𝑠𝑠𝑠𝑠𝑠𝑠2𝑋𝑋)

2
            (2.5) 

For different values of PL, VL has four solutions. Out of the four solutions of 

VL only two are physically meaningful. These two physical solutions 

correspond to high voltage (blue colour) and low voltage (red colour) solution 

as shown in figure 2.2.  Since the power systems are designed for high 

voltages and low currents, the solutions in the upper side of the curve are 

considered. It can be observed from the figure that the two solutions coalesce 

at a point called the critical point or saddle-node bifurcation point or the 

point of maximum power transfer. The maximum power is termed as the 

theoretical transfer limit and the voltage is termed as critical voltage. This 

point indicates the maximum power that can be transferred to that load bus 

before power system becomes unstable. 
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Figure 2.2 P-V curve 

Figure 2.3 shows a family of PV curves for different power factors. 

 
Figure 2.3 P-V curves with different power factors 

The PV curve for the load shows the dependency of the power consumed by 

the load with respect to the bus voltage magnitude. This curve depends on 

the load characteristics [5]. The commonly referred PV curve is the network 

PV curve. It is the network voltage dependency due to changes in the load 

consumption at a particular bus. There are a number of factors such as the 

generator reactive power limit, contingencies, load dynamics etc., that affect 
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the distance between the nose point and the current operating point. By 

understanding these factors the system can be moved away from the saddle 

node point and make it stable.  

2.1.2.2 QV curves 

PV curves can be used to understand how the active power transfer affects 

the load bus voltage. But in order to understand the impact of reactive power 

transfer, the concept of QV curves is important. For the given bus of interest, 

these curves can be used to illustrate the reactive power requirement at a 

given bus to maintain certain voltage for a fixed value of active power 

transfer. A QV curve can be determined by connecting a fictitious generator 

with 𝑃𝑃𝑃𝑃 = 0 and unlimited reactive power capacity to a PQ bus as shown in 

figure 2.4. 

 
Figure 2.4 Connection of a fictitious generator to calculate the QV curves 

The QV curves are determined by successive power flow calculations [3]. The 

reactive power generated versus the voltage at the fictitious generator gives a 

plot such as the one shown in figure 2.5. It should be noted that 𝑄𝑄𝑃𝑃 < 0 

indicates the generator absorbs/consumes reactive power and 𝑄𝑄𝑃𝑃 > 0 

indicates that the generator injects/produces reactive power. 

The intersection between the QV curve and 𝑄𝑄𝑃𝑃 = 0 gives the operating 

point/solution of the system. For the cases when the QV curve intersects 

𝑄𝑄𝑃𝑃 = 0 then the system is stable in the region where the gradient of the Q-V 

curve is positive i.e. the voltage level will increase if the reactive power is 

injected. The critical operating point is reached when 
𝑑𝑑𝑄𝑄𝑔𝑔
𝑑𝑑𝑑𝑑𝐿𝐿

= 0. The voltage at 

this point is the critical voltage as shown in figure 2.5. Hence, power system is 

stable on the right hand side of the minimum and unstable to the left hand 

side [4]. If the QV curve does not intersect 𝑄𝑄𝑃𝑃 = 0, then there is no 
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operating point in the system i.e. the system is unstable. These simulated 

curves can be used to evaluate the reactive power compensation at the bus of 

interest. Figure 2.5 shows two Q-V curves representing two different 

transfers of AP.  

 
Figure 2.5 Q-V curve with different active power loading 

The intersection between the Q-V curve and the dashed line corresponds to 

no compensation. The reactive power compensation required to maintain a 

specific voltage at the load bus can be obtained from figure 2.5. 

2.1.2.3 Q-V sensitivity 

One way to identify the buses in the grid that are prone to voltage collapse is 

to calculate the Q-V sensitivity at the selected buses [6]. The Q-V sensitivity 

represents the slope of the ∆𝑄𝑄
∆𝑉𝑉

 curve at the selected bus at a given operating 

point. A criterion for voltage stability is that at a given operating point for 

every bus “i” 

𝑑𝑑𝑄𝑄𝑖𝑖
𝑑𝑑𝑉𝑉𝑖𝑖

> 0                                                  (2.6) 

where 𝑄𝑄𝑠𝑠 is the injected reactive power at bus “i”. The physical interpretation 

of (2.6) is that reactive power at a bus “i” will result in increasing of the 
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voltage magnitude of bus “i”. The system is voltage unstable if for any bus 

“i”, the condition (2.6) is not satisfied [3]. 

A positive slope represents stable operation, i.e. the bus voltage increases 

when the reactive power injection is increased. The smaller the gradient of the 

positive slope, the less sensitive the system will be. As the sensitivity index 

increases towards infinite value when the loading is increased, the system 

approaches a state of instability. Therefore, the weaker buses can be identified 

by determining which have the steepest positive slopes.  

2.1.2.4 Voltage Collapse Proximity Indicator (VCPI) 

VCPI is another way to identify the weak buses in the system [3, 7]. The index 

varies from close to unity during lightly loaded conditions to infinity at a 

collapse situation. The VCPI can be used to determine the most effective 

locations for emergency load shedding or reactive power compensation. 

𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉𝑄𝑄 relates how the total generation of reactive power in the system is 

affected by an increase in reactive power load at bus “i”. The VCPI with 

respect to reactive power is given by, 

𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉𝑄𝑄𝑖𝑖 =
∑ ∆𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔∈𝐺𝐺𝑘𝑘

∆𝑄𝑄𝑖𝑖
, 𝑠𝑠 ∈ 𝐺𝐺𝐿𝐿                                (2.7) 

Where Gk is the set of the generator buses and GL is the set of studied load 

buses. ∆𝑄𝑄𝑖𝑖 represents a small increase in reactive power demand at the 

studied bus “i” and ∆𝑄𝑄𝑔𝑔𝑔𝑔 is the change in reactive power output at generator 

“j” for change in reactive power demand at the studied bus “i”. The weakest 

bus of the studied grid is determined by identifying the bus with the highest 

𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉𝑄𝑄 value. Bus “m” will thus be the weakest bus of the current operating 

point of the given system if the (2.8) holds. 

𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉𝑄𝑄𝑚𝑚 = max�𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉𝑄𝑄𝑖𝑖� , 𝑠𝑠 ∈ 𝐺𝐺𝐿𝐿                        (2.8) 

2.1.3 Voltage instability mechanisms 

In this section, some grid mechanisms that could lead the system into a state 

of voltage instability are discussed. These mechanisms are not usually 
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instability mechanisms by themselves, but in a heavily loaded power system 

they trigger the voltage instability phenomena. 

2.1.3.1 Load Tap Changing (LTC) transformers 

An LTC is a transformer with variable turns-ratio. LTC transformers are 

commonly used in power transmission systems to add an additional level of 

control. The function of LTC is to control the voltage at the load by changing 

the turns-ratio. The taps are located on the high voltage side of the 

transformer because the current rating is less on high voltage side when 

compared to low voltage side, which prevents the sparking when there is tap 

changing in the transformer. Moreover, high voltage winding is easy to access 

because it is wound over the low voltage winding. So, because of these 

reasons the taps are located on the high voltage side of the transformer 

providing control of low voltage side. The voltage control capability of the 

LTC transformers plays an important role in load restoration following a 

disturbance in the grid. 

Consider a fictitious power system which is fully loaded. Due to a 

disturbance, one of the transmission lines is disconnected that further 

increases the loading on other available transmission lines. Outage of the fully 

loaded transmission line will cause a voltage drop at the nearby load centers. 

This further increases the power demand of the system due to increased 

current consumption by the loads. To counteract this voltage drop, the LTC 

transformers in the area will attempt to restore the voltage in the distribution 

grid (which is set based on the grid code/operator). Each change in tap ratio 

to restore load bus voltage further increases the stress on the system because 

the increase in load voltage leads to increase in load power consumption 

(since it is voltage dependent). An increase in load power implies higher 

current through the transmission system that results in higher losses. These 

additional losses will further decrease the voltage level of the transmission 

system. But LTC function is based on the local voltage, it still tries to 

maintain the voltage at the load bus. This increases the load power 

consumption that leads to increased current consumption. This further leads 



 

 14 

to increase in losses in the system. To compensate the demand in the system, 

the connected generators increase their generation. Eventually, generators 

would hit the current limits governed by over-excitation limiters and cause its 

terminal voltage to drop. This causes the difference between increased 

demand and generation eventually leading to a voltage collapse situation. 

The driving force behind the voltage collapse situation is the load restoration 

performed by LTC transformers. A run-down situation causing voltage 

instability occurs when the load dynamics attempt to restore power 

consumption beyond the capability of the transmission network and the 

connected generation to provide the required reactive power support.  

2.1.3.2 Stalling of Induction motors 

Induction motors are most commonly used electric motors in industry due to 

its low maintenance and robustness. Induction motors is one of the reasons 

for fast voltage instability due to its fast load-restoring actions. After a 

disturbance such as tripping of a long transmission line or short circuit, 

Induction motor responds quickly to match the mechanical torque as shown 

in (2.9)  

2𝐻𝐻�̇�𝑠 = 𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑠𝑠(𝑈𝑈𝐿𝐿 , 𝑠𝑠)                                      (2.9) 

where H is the inertia constant, 𝑇𝑇𝑚𝑚 is the mechanical torque, 𝑇𝑇𝑠𝑠 is the 

electrical torque, 𝑠𝑠 is the motor slip and 𝑈𝑈𝐿𝐿is the voltage at the bus where 

motor is located. Torque is the twisting force that causes the rotation and Slip 

of an induction motor is the difference between the synchronous speed and 

induction motor speed at full load. Further details can be found in [8]. Due to 

increased impedance, the motor mechanical and electrical torque curves may 

not intersect after the disturbance, leaving the system without post-

disturbance equilibrium point. As a result the motor stall and the network 

voltage collapse. 

2.1.4 Prevention of voltage instability 

In [9]-[10], a number of different preventive and corrective actions to 

counteract voltage instability are comprehensively described. However, we 
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limit our discussion to two different corrective actions to prevent voltage 

instability. 

Reactive power support should take place close to the load which leads to 

decrease of power losses in the transmission system, and an increase of the 

maximum deliverable active power to the loads. This can be performed by 

switching on the shunt capacitor banks, switching off shunt inductors in the 

transmission system, synchronous condensers etc. 

Load reduction can be done by blocking the LTC tap changing or reducing 

the LTC set point or by load shedding. 

2.2 Decision Trees (DTs) 

With the introduction of wide area monitoring [11] in a power system, there is 

an abundance of data. Given the accuracy and speed of measurements, DTs 

are useful for applications like state estimation, feedback control systems, 

adaptive relaying and security monitoring. During an event or fault, this data 

can also be used for understanding the behavior of the system, updating 

parameters of the power system model and prediction of instability in the 

system. In this section, voltage stability assessment using DTs is explained in 

detail. This approach is suitable for online applications because the time 

consuming calculations are done offline and therefore the decision results can 

be obtained instantaneously.  

The extraction of implicit, previously unknown and potentially useful 

information from data is known as “Data Mining” [12]. Although, modern 

power systems has a high volume of data, the need for data mining 

applications in power systems can be traced quite far back after the Northeast 

(USA) blackout in 1965. The first attempt to apply statistical pattern 

recognition to power system security was done by Dy Liacco in 1967 to 

introduce the concept of “preventive (normal)”, “emergency” and 

“restoration” operating states [13]. The “preventive” state is the normal state 

wherein the system is stable with all the components within grid operating 

limits. The “emergency” state arises when the system begins to lose stability 
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or when a power system component operating constraint is violated. The 

“restoration” state is when service to some customers has been lost (usually 

due to progression through “emergency” state). 

The voltage stability assessment is a classification problem. Artificial Neural 

Networks (ANNs) [14] and Decision Trees (DTs) [15] are the two most 

commonly used classification algorithms for voltage stability assessment. The 

advantage of DTs over ANNs is that DTs are white box models while ANNs 

are black box models [14]. Knowing the attribute of splitting in a DT helps us 

to monitor the region associated to the attribute for stability and control 

functions. For example, if outage of a line is causing overloading in other line 

leading to instability in the system. The DTs trained on the data has the 

power flow of the overloading line as the node that helps the user to interpret 

the result. 

2.2.1 Illustration of a DT 

A decision tree is a data representation technique that uses a branching 

method to separate every possible outcome of a decision [12]. The tree 

consists of nodes and branches. The nodes are the points in a tree where a 

test is done on the attribute; branches are the outcomes of the test that lead to 

another node. There are three kinds of nodes: root node, internal node and 

leaf node. Root node is the topmost node, internal node is the node which is 

in-between and leaf node is the end node. The completion of the test is 

decided by the purity of the node. If a node attains a certain pre-defined level 

of class purity (i.e. having only one type of output in that node) then the node 

is terminated. In order to classify a new sample, the attribute values are tested 

against the decision tree. A path is traced from root node to the leaf node that 

holds the class prediction for that sample. The structure and working of 

decision tree can be explained by using the data given in table 2.1. 

Table 2.1 Illustrative example-Weather data 

Outlook Temperature Humidity Windy Play Golf 
Sunny Hot High False No 
Sunny Hot High True No 

Overcast Hot High False Yes 
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Rainy Mild High False Yes 
Rainy Cool Normal False Yes 
Rainy Cool Normal True No 

Overcast Cool Normal True Yes 
Sunny Mild High False No 
Sunny Cool Normal False Yes 
Rainy Mild Normal False Yes 
Sunny Mild Normal True Yes 

Overcast Hot High True Yes 
Overcast Hot Normal False Yes 

Rainy Mild High True No 
Figure 2.6 shows the decision tree that can be obtained for the given data.  

 
Figure 2.6 Decision Tree for the data given in table 2.1 

The objective of the data in table 2.1 is to decide whether a given day is 

suitable for playing golf. Therefore, the class attribute ‘Play Golf’ needs to be 

predicted. The values the attribute ‘Play Golf’ takes are the class values. In 

this example there are two values to predict, i.e. ‘Yes’ or ‘No’. All the 

elements in the first row are the attributes and the values they take listed along 

the columns are called ‘Instances’. 

If the attributes are continuous numbers they are called numeric attributes. As 

per the definitions which are defined earlier in this section, ‘Outlook’ is the 

root node, ‘Humidity’ and ‘Windy’ are the internal nodes and the decision 

nodes are the leaf nodes. During the construction of the decision tree, an 

attribute for a node is decided based on its ability to reduce the impurity 

(uncertainty) of the division that it produces on a dataset. 
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2.2.1.1 DT Building 

The basic task in building a DT is to repeatedly find an attribute to be tested 

on a node and then branch to another node The process of finding an 

attribute for testing and branching is called splitting. The objective of a split in 

a tree is to reduce the impurity (uncertainty) in the dataset with respect to 

class in the next stage which can be accomplished by calculating the 

information gain. This calculation is done in two stages. First, the Entropy 

(ENT) of the dataset is measured as (2.10).  

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸 (𝑆𝑆) = −∑  𝐸𝐸𝑖𝑖𝑠𝑠
𝑖𝑖=1 log2(𝐸𝐸𝑖𝑖)                          (2.10) 

where 

c: number of classes, 

S: training data/instances, 

p: proportion of S classified as i. 

Expected information gain is calculated by using ENT as shown in (2.11). 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆,𝑡𝑡) = 𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆)− ∑ |𝑆𝑆𝑣𝑣|
|𝑆𝑆|𝑣𝑣∈𝑣𝑣𝑋𝑋𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)          (2.11) 

where 

𝑆𝑆𝑣𝑣 = {𝑠𝑠 ∈ 𝑆𝑆:𝑡𝑡(𝑠𝑠) = 𝑣𝑣} with 𝑣𝑣 being the value of the attribute, 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆,𝑡𝑡) is the expected information gain obtained from the knowledge of 

the attribute ‘a’. Now the Entropy of the dataset in table 2.1 can be calculated 

as 

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆) = −�𝐸𝐸𝑖𝑖

𝑠𝑠

𝑖𝑖=1

log2(𝐸𝐸𝑖𝑖) =
−9
14

log2 �
9

14
� −

5
14

log2 �
5

14
� = 0.94 

Similarly for instances of the attribute ‘Outlook’ the entropy values are the 

following: 

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸�𝑆𝑆𝑠𝑠𝑣𝑣𝑋𝑋𝑋𝑋𝑠𝑠� = 0.97 

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆𝑜𝑜𝑣𝑣𝑠𝑠𝑜𝑜𝑠𝑠𝑋𝑋𝑠𝑠𝑋𝑋) = 0 

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸�𝑆𝑆𝑜𝑜𝑋𝑋𝑖𝑖𝑋𝑋𝑠𝑠� = 0.97 

The expected information gains can then be calculated using (2.11), 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆, 𝑐𝑐𝑜𝑜𝑡𝑡𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙) = 𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆) − �
|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝑣𝑣∈𝑣𝑣𝑋𝑋𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠(𝑜𝑜𝑣𝑣𝑋𝑋𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜)

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣) 
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= 0.94−
5

14
∗ 0.97−

4
14

∗ 0 −
5

14
∗ 0.97 = 0.23 

Similarly, expected information gain is computed for other attributes. 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆, 𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑜𝑜𝐸𝐸𝑡𝑡) = 0.03 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆,ℎ𝑜𝑜𝑡𝑡𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝐸𝐸) = 0.15 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆,𝑤𝑤𝑠𝑠𝑠𝑠𝑢𝑢𝐸𝐸) = 0.05 

It can be observed that expected information gain is highest for the attribute 

‘Outlook’, so it is therefore chosen as the root node in figure 2.5. The 

attribute ‘Outlook’ has three instances; hence it will result in three branches. 

The next step is to find the attribute used for branching. Consider all the 

instances which have ‘Outlook’ to be ‘Sunny’. After doing this, total number 

of instances in the data set decreases (reduces to 5). The entropy and expected 

information gain is computed for the remaining attributes. 

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆) = −�𝐸𝐸𝑖𝑖

𝑠𝑠

𝑖𝑖=1

log2(𝐸𝐸𝑖𝑖) =
−2
5

log2 �
2
5
� −

3
5

log2 �
3
5
� = 0.97 

For the attribute ‘Temperature’ entropy for its instances, 

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆ℎ𝑜𝑜𝑋𝑋) = 0 

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆𝑚𝑚𝑖𝑖𝑣𝑣𝑑𝑑) = 1 

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆𝑠𝑠𝑜𝑜𝑜𝑜𝑣𝑣) = 0 

The expected information gain for attribute ‘Temperature’ is given by, 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆,𝑇𝑇𝑡𝑡𝑡𝑡𝐸𝐸) = 𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆) − �
|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝑣𝑣∈𝑣𝑣𝑋𝑋𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠(𝑇𝑇𝑠𝑠𝑚𝑚𝑇𝑇)

𝐸𝐸𝑠𝑠𝑡𝑡𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣) 

= 0.97−
2
5
∗ 0 −

2
5
∗ 1 −

2
5
∗ 0 = 0.57 

Similarly, expected information gain is computed for other attributes. 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆,ℎ𝑜𝑜𝑡𝑡𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝐸𝐸) = 0.97 

𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠(𝑆𝑆,𝑤𝑤𝑠𝑠𝑠𝑠𝑢𝑢𝐸𝐸) = 0.02 

It can be observed that the information gain is highest for the attribute 

‘Humidity along the branch ‘Sunny’. As a result it becomes the second node. 

Thus, by repeating these calculations for other branches and nodes, the entire 

tree is developed. 
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2.2.2 Issues with Decisions Trees 

The approach pursued in developing the above tree is called a greedy search. 

That is because the decision is based on what is best now and the nodes 

which are not included in the training are not being considered. Although this 

approach seems to be a good solution for the training dataset, the classifier 

may not do well with other datasets. This is called over-fitting [12]. Over-

fitting makes the tree larger and more complex (which requires longer 

computation time) but do not give better the rules for the general case. A 

solution to this problem can be to prune the tree. 

The real world applications have large amounts of data to be handled; hence 

scalability (ability of the system to handle the growing amount of data) 

becomes another prime issue. The strategy is to increase resources for 

computation or adaptive algorithm with better scalability features or perform 

data reduction. Data reduction can be achieved by data compression and/or 

dimensionality reduction. Data compression is the process of transforming of 

original data to a reduced representation. Dimensionality reduction is the 

process of eliminating insignificant attributes i.e. the attributes that does not 

give any new information for decision making. 



 

 21 

2.3 Optimal Power Flow (OPF) 

The optimal power flow (OPF) was first introduced by Carpentier in 1962 as 

a network-constrained economic dispatch problem [16]. The goal of OPF is 

to find the optimal settings of a given power system network that optimize 

the system objective function while satisfying the power flow equations, 

system security and equipment operating limits.  

The objective function can be total generation cost, system loss, bus voltage 

deviation, emission of generating units, number of control actions and load 

shedding. According to the selected objective function and constraints there 

are different mathematical formulations for the OPF problem. They can be 

broadly classified as follows: 

• Linear problem in which objectives and constraints are given in linear 

forms with continuous control variables 

• Nonlinear problem where either objectives or constraints or both 

combined are nonlinear with continuous control variables 

• Mixed integer linear problems when control variables are both 

discrete and continuous 

The algorithms that are used to solve the OPF problem are broadly classified 

into three groups: (1) Conventional optimization methods such as Linear 

programming, Quadratic programming etc., (2) Intelligence search methods 

such as neural network, Evolutionary algorithms etc., and (3) Nonquantity 

approach to address uncertainties in objectives and constraints such as Fuzzy 

set applications, Analytic hierarchical process [17, 18]. 

2.3.1 General OPF problem formulation 

The general OPF problem formulation to minimize the objective function  

ℱ(𝑥𝑥) is summarized as follows: 

Minimize ℱ(𝑥𝑥)  

Subject to 𝗀𝗀(𝑥𝑥) = 0 (2.12) 
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and  ℎ(𝑥𝑥) ≤ 0  

The optimality conditions for (2.12) can be derived by formulating the 

Lagrange function ℒ: 

ℒ = ℱ(𝑥𝑥) + 𝜆𝜆𝑇𝑇𝗀𝗀(𝑥𝑥) + 𝜇𝜇𝑇𝑇ℎ(𝑥𝑥)                              (2.13) 

The Kuhn-Tucker theorem [17] states that if x� is the relative extremum of  

ℱ(x) that satisfies all the constraints of (2.10) at the same time then the 

vectors �̂�𝜆, �̂�𝜇 that satisfy (2.14) must exist. 

𝜕𝜕ℒ
𝜕𝜕𝑥𝑥

= 
𝜕𝜕
𝜕𝜕𝑥𝑥

(ℱ(𝑥𝑥) + 𝜆𝜆𝑇𝑇𝗀𝗀(𝑥𝑥) + 𝜇𝜇𝑇𝑇ℎ(𝑥𝑥))|x� ,𝜆𝜆�,𝜇𝜇�

= 0 

 

𝜕𝜕ℒ
𝜕𝜕𝜆𝜆

= 𝗀𝗀(𝑥𝑥)|𝑥𝑥� = 0 
 

  (2.14) 

𝑢𝑢𝑠𝑠𝑡𝑡𝑃𝑃{𝜇𝜇}
𝜕𝜕ℒ
𝜕𝜕𝜇𝜇

= 𝑢𝑢𝑠𝑠𝑡𝑡𝑃𝑃{𝜇𝜇} h(𝑥𝑥)|𝑥𝑥�,𝜇𝜇� = 0  

 �̂�𝜇 ≥ 0  
It is the goal of OPF algorithms to find a solution point 𝑥𝑥� and corresponding 

vectors �̂�𝜆, �̂�𝜇 that satisfy the above conditions. 

2.3.2 Classification of OPF algorithms 

OPF algorithms are classified mainly into classes [17] considering the fact that 

very powerful methods exist for power flow that provide an easy access to 

intermediate solutions in the course of iteration process. The following are 

the two classes of OPF. 

• Class A: In this class, the optimization starts from a solved power 

flow. The Jacobian and other sensitivity relations are used in 

optimizing process. The process as a whole is iterative and after each 

iteration the power flow equations are solved anew. 

• Class B: In this class, power flow relations are attached as equality 

constraints for methods relying on the exact optimality conditions. 

There is no prior knowledge of load flow solution. Load flow study is 

a steady-state analysis whose target is to determine the voltages, 

currents and real and reactive power flows in the system. The process 
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is iterative and each intermediate solution approaches the power flow 

solution.  

There are advantages and disadvantages in both methods, which have a 

certain bearing depending on the objective, the size of the problem and the 

envisaged application.  

2.3.3 The Interior Point Method (IPM) 

Several strategies were proposed in [19] for an OPF with active power 

dispatch and voltage security using an IPM that proved to be robust. The 

majority of the IPM implementations for solving market problems and power 

system security constraints use linear programming techniques. In [20], use of 

IPM for non-linear problems using Newton’s direction method and 

Merhotra’s predictor-corrector was explained. The latter method reduces the 

number of iterations to obtain the final solution. Non-linear optimization 

techniques were also used to address a variety of voltage stability issues, such 

as the maximization of loading parameters in voltage collapse studies as 

explained in [21] and [22]. 

Further details of OPF for maximization of distance from voltage collapse 

and the methodology/work flow adopted in this thesis are explained in detail 

in chapter 5. 
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C h a p t e r  3  

3. PROPOSED VOLTAGE STABILITY INDEX  

Voltage instability phenomena can be identified by both static and dynamic 

analysis. However, when only time-series from dynamic simulation is 

available, it is necessary to identify an equivalent from the time-series of the 

simulations. The choice of the model used was made by considering the 

constraint between model accuracy, speed to compute the stability limits and 

the fact that no other information about the power system other than the 

time series was available. 

3.1 Equivalent Models 

Simple equivalent models of the power system and the load at the 

measurement point are estimated from the data, and are then used for 

calculating the PV curves to predict the stability limits [10, 23]. 

3.1.1 Single Voltage Source Model 

A Thevenin equivalent of the power system as viewed from the measurement 

point can be constructed as shown in figure 3.1. Thevenin equivalent network 

is computed based on Thevenin’s theorem, which states that any combination 

of sinusoidal AC sources and impedances with two terminals can be replaced 

by a single voltage source and single series impedance as shown in 3.1. 

Further details can be found in [6].  

                                      𝐸𝐸∠𝛿𝛿                                     𝑉𝑉∠00 
 

 

                                                                                                                                                                    

Figure 3.1 Equivalent model 

Here we assume that the network resistances can be neglected. The equivalent 

model parameters (𝐸𝐸, 𝛿𝛿,𝑋𝑋) are calculated from the time series data as shown 

below. 

𝑃𝑃 + 𝑗𝑗𝑄𝑄 

X 
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𝑃𝑃 = 𝐸𝐸𝑉𝑉
𝑋𝑋

 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿,                𝑄𝑄 = 𝑉𝑉(𝐸𝐸𝑠𝑠𝑜𝑜𝑠𝑠𝐸𝐸−𝑉𝑉)
𝑋𝑋

                         (3.1) 
 
‘𝑡𝑡’ 𝑠𝑠𝑡𝑡𝑡𝑡𝐸𝐸𝑙𝑙𝑡𝑡𝑠𝑠 𝑡𝑡𝑡𝑡 𝑡𝑡𝑠𝑠𝐸𝐸 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 𝑐𝑐𝑜𝑜 𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡 𝐸𝐸𝑠𝑠𝑡𝑡𝑙𝑙𝑢𝑢𝑠𝑠: 
 

𝑃𝑃𝑖𝑖𝑋𝑋 − 𝑉𝑉𝑖𝑖𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑖𝑖 = 0 
                                                                , 𝑠𝑠 = 1, …,                 (3.2) 

𝑄𝑄𝑖𝑖𝑋𝑋 − 𝑉𝑉𝑖𝑖𝐸𝐸𝑐𝑐𝑐𝑐𝑠𝑠𝛿𝛿𝑖𝑖 + 𝑉𝑉𝑖𝑖2 = 0 
 
Only 𝑡𝑡 + 2 variables are unknown with 2𝑡𝑡 equations in (3.2). Equation 

(3.2) is thus overdetermined, and the model parameters can be estimated by 

solving the following least squares problem: 

𝑡𝑡𝑠𝑠𝑠𝑠
𝐸𝐸,𝑋𝑋, 𝛿𝛿𝑖𝑖

�

�

𝑃𝑃1𝑋𝑋 − 𝑉𝑉1𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿1
𝑄𝑄1𝑋𝑋 − 𝑉𝑉1𝐸𝐸𝑐𝑐𝑐𝑐𝑠𝑠𝛿𝛿1 + 𝑉𝑉12

.

.

.
𝑃𝑃𝑚𝑚𝑋𝑋 − 𝑉𝑉𝑚𝑚𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑚𝑚

𝑄𝑄𝑚𝑚𝑋𝑋 − 𝑉𝑉𝑚𝑚𝐸𝐸𝑐𝑐𝑐𝑐𝑠𝑠𝛿𝛿𝑚𝑚 + 𝑉𝑉𝑚𝑚2
�

�

                              (3.3) 

 
3.1.2 Load Model 

The equation of the considered linear P-Q load model is given by 𝑄𝑄 = 𝛼𝛼 +

𝛽𝛽𝑃𝑃. The values of 𝛼𝛼 and 𝛽𝛽 are calculated by solving the least square problem 

shown in (3.4). 

𝑡𝑡𝑠𝑠𝑠𝑠
𝛼𝛼,𝛽𝛽 ��

1 𝑃𝑃1
. .. .

1 𝑃𝑃𝑚𝑚
� �
𝛼𝛼
𝛽𝛽� − �

𝑄𝑄1
.
.
𝑄𝑄𝑚𝑚

��                                 (3.4) 

 
This linear P-Q load model can be combined with the single voltage source 

model in order to calculate the PV curve and the voltage stability limit for the 

power transfer at the bus of interest by solving (3.5). 

𝑃𝑃2𝑋𝑋2 − 𝐸𝐸2𝑉𝑉2 + (𝛼𝛼𝑋𝑋 + 𝛽𝛽𝑃𝑃𝑋𝑋 + 𝑉𝑉2)2                         (3.5) 
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3.2 Three Layer Severity Index 

The proposed Voltage Stability (VS) index provides a measure of how far the 

system is from the maximum loadability limit. The three layers of the index 

are: 

• Single Bus Index (SBI) 

• All Buses Index (ABI) 

• Global Bus Index (GBI) 

The SBI is a R(2Nb×b) matrix where 𝑁𝑁𝑁𝑁 is the number of buses under 

analysis as shown in (3.6). The SBI provides the distance in pre-and-post 

contingency (PV space) for each load power consumption to the power 

(𝑃𝑃𝑣𝑣𝑖𝑖𝑚𝑚) and voltage (𝑉𝑉𝑣𝑣𝑖𝑖𝑚𝑚) limits of a selected bus or group of buses. SBI is 

defined in (3.6) and is divided as follows: columns 1 to 3 correspond to the 

distance from each of the given loading levels to the limit with respect to 

power while column 4 to 6 corresponds to the distance for each loading level 

to the limit with respect to the voltage. In SBI, for each bus there are four 

rows in which odd rows corresponds to pre-contingency data and even rows 

corresponds to post-contingency data. First row and second row corresponds 

to pre-contingency curve-1 and post-contingency curve with respect to pre 

contingency curve-1 respectively. While third and fourth row corresponds to 

pre-contingency-2 and post-contingency curve with respect to pre 

contingency curve-2 respectively 

𝑆𝑆𝑆𝑆𝑉𝑉 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑠𝑠𝑁𝑁(1,1) 𝑠𝑠𝑁𝑁(1,2) 𝑠𝑠𝑁𝑁(1,3)
𝑠𝑠𝑁𝑁(2,1) 𝑠𝑠𝑁𝑁(2,2) 𝑠𝑠𝑁𝑁(2,3)

𝑠𝑠𝑁𝑁�1′,1� 𝑠𝑠𝑁𝑁�1′,2� 𝑠𝑠𝑁𝑁�1′,3�
   
𝑠𝑠𝑁𝑁(1,4) 𝑠𝑠𝑁𝑁(1,5) 𝑠𝑠𝑁𝑁(1,6)
𝑠𝑠𝑁𝑁(2,4) 𝑠𝑠𝑁𝑁(2,5) 𝑠𝑠𝑁𝑁(2,6)

𝑠𝑠𝑁𝑁�1′,4� 𝑠𝑠𝑁𝑁�1′,5� 𝑠𝑠𝑁𝑁�1′,6�
𝑠𝑠𝑁𝑁�2′,1� 𝑠𝑠𝑁𝑁�2′,2� 𝑠𝑠𝑁𝑁�2′,3�  𝑠𝑠𝑁𝑁�2′,4� 𝑠𝑠𝑁𝑁�2′,5� 𝑠𝑠𝑁𝑁�2′,6�. . .
. . .
. . .

               
. . .
. . .
. . .

                      
. . .
. . .
. . .

               
. . .
. . .
. . .

𝑠𝑠𝑁𝑁(𝑋𝑋,1) 𝑠𝑠𝑁𝑁(𝑋𝑋,2) 𝑠𝑠𝑁𝑁(𝑋𝑋,3)

𝑠𝑠𝑁𝑁(𝑚𝑚,1) 𝑠𝑠𝑁𝑁(𝑚𝑚,2) 𝑠𝑠𝑁𝑁(𝑚𝑚,3)
𝑠𝑠𝑁𝑁�𝑋𝑋′,1� 𝑠𝑠𝑁𝑁�𝑋𝑋′,2� 𝑠𝑠𝑁𝑁�𝑋𝑋′,3�

   
𝑠𝑠𝑁𝑁(𝑋𝑋,4) 𝑠𝑠𝑁𝑁(𝑋𝑋,5) 𝑠𝑠𝑁𝑁(𝑋𝑋,6)

𝑠𝑠𝑁𝑁(𝑚𝑚,4) 𝑠𝑠𝑁𝑁(𝑚𝑚,5) 𝑠𝑠𝑁𝑁(𝑚𝑚,6)
𝑠𝑠𝑁𝑁�𝑋𝑋′,4� 𝑠𝑠𝑁𝑁�𝑋𝑋′,5� 𝑠𝑠𝑁𝑁�𝑋𝑋′,6�

𝑠𝑠𝑁𝑁�𝑚𝑚′,1� 𝑠𝑠𝑁𝑁�𝑚𝑚′,2� 𝑠𝑠𝑁𝑁�𝑚𝑚′,3�  𝑠𝑠𝑁𝑁�𝑚𝑚′,4� 𝑠𝑠𝑁𝑁�𝑚𝑚′,5� 𝑠𝑠𝑁𝑁�𝑚𝑚′,6�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

       

(3.6)           
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𝑠𝑠𝑁𝑁(𝑖𝑖,𝑔𝑔) =
𝑃𝑃𝑖𝑖,𝑣𝑣𝑖𝑖𝑚𝑚 − 𝑃𝑃𝑖𝑖,𝑔𝑔

𝑃𝑃𝑖𝑖,𝑣𝑣𝑖𝑖𝑚𝑚
, 𝑠𝑠𝑁𝑁(𝑖𝑖,𝑜𝑜) =

𝑉𝑉𝑖𝑖,𝑣𝑣𝑖𝑖𝑚𝑚 − 𝑉𝑉𝑖𝑖,𝑔𝑔
𝑉𝑉𝑖𝑖,𝑣𝑣𝑖𝑖𝑚𝑚

, 

𝑠𝑠𝑁𝑁�𝑖𝑖′,𝑔𝑔� =
𝑃𝑃𝑖𝑖′,𝑣𝑣𝑖𝑖𝑚𝑚 − 𝑃𝑃𝑖𝑖′,𝑔𝑔

𝑃𝑃𝑖𝑖′,𝑣𝑣𝑖𝑖𝑚𝑚
, 𝑠𝑠𝑁𝑁�𝑖𝑖′,𝑜𝑜� =

𝑉𝑉𝑖𝑖′,𝑣𝑣𝑖𝑖𝑚𝑚 − 𝑉𝑉𝑖𝑖′,𝑔𝑔
𝑉𝑉𝑖𝑖′,𝑣𝑣𝑖𝑖𝑚𝑚

, 

𝑠𝑠𝑁𝑁(𝑜𝑜,𝑔𝑔) =
𝑃𝑃�𝑜𝑜,𝑣𝑣𝑖𝑖𝑚𝑚 − 𝑃𝑃�𝑜𝑜,𝑔𝑔

𝑃𝑃�𝑜𝑜,𝑣𝑣𝑖𝑖𝑚𝑚
, 𝑠𝑠𝑁𝑁(𝑜𝑜,𝑜𝑜) =

𝑉𝑉�𝑜𝑜,𝑣𝑣𝑖𝑖𝑚𝑚 − 𝑉𝑉�𝑜𝑜,𝑔𝑔

𝑉𝑉�𝑜𝑜,𝑣𝑣𝑖𝑖𝑚𝑚
, 

𝑠𝑠 = 1,4,7,9 … . ,𝑠𝑠              𝑗𝑗 = 1,2,3 

𝑠𝑠′ = 2,5,8,10. . ,𝑠𝑠′            𝑗𝑗 = 1,2,3 

𝐸𝐸 = 3,6,9,12 … . ,𝑡𝑡          𝑙𝑙 = 4,5,6 

𝑡𝑡 = 2𝑁𝑁𝑁𝑁                         𝑠𝑠 = 𝑡𝑡 − 1 

𝑡𝑡′ = 2𝑁𝑁𝑁𝑁                         𝑠𝑠′ = 𝑡𝑡′ − 1 
If an element of SBI is negative, then the power or the voltage at the some 

loading level has exceeded the operational limits. It should be noted that the 

voltage and power limits considered are not the theoretical maximum 

loadability limits but the operational limits i.e. a ϵ smaller than the theoretical 

limits. ϵ is set to the best judgement of the analyst, e.g. Pmax = Pmax −

ϵPmax. Since in real power system, the operational limits is lesser than the 

theoretical limits because they are based on other factors like thermal rating of 

the transmission line. 

The All Bus Index 𝐴𝐴𝑆𝑆𝑉𝑉 is a R(1×6) vector with the loading points of the bus 

which has the minimal distance to the power and voltage limits in pre-and 

post-contingency is shown in (3.7). 

𝐴𝐴𝑆𝑆𝑉𝑉 = �∆𝑃𝑃�𝑋𝑋(1,1) ∆𝑃𝑃�𝑏𝑏(1,2) ∆𝑃𝑃�𝑠𝑠(1,3)   ∆𝑉𝑉�𝑋𝑋(1,1) ∆𝑉𝑉�𝑏𝑏(1,2) ∆𝑉𝑉�𝑠𝑠(1,3)�   (3.7) 

∆𝑃𝑃�(1,𝑔𝑔) = 𝑡𝑡𝑠𝑠𝑠𝑠�
∆𝑃𝑃𝑖𝑖,𝑔𝑔
∆𝑃𝑃�𝑜𝑜,𝑔𝑔

� ,             ∆𝑉𝑉�(1,𝑜𝑜) = 𝑡𝑡𝑠𝑠𝑠𝑠�
∆𝑉𝑉𝑖𝑖,𝑜𝑜
∆𝑉𝑉�𝑜𝑜,𝑜𝑜

� 

Where i, j, r and k are defined below (3.6). 

The Global Bus Index 𝐺𝐺𝑆𝑆𝑉𝑉 is a vector with 2 entries that provides the 

shortest distance to the power and voltage limits with respect to all the buses 

as show in (3.8). 
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𝐺𝐺𝑆𝑆𝑉𝑉 = [∆𝑃𝑃� ∆𝑉𝑉�]                                                 (3.8) 

∆𝑃𝑃� = 𝑡𝑡𝑠𝑠𝑠𝑠�∆𝑃𝑃�𝑋𝑋(1,1) ∆𝑃𝑃�𝑏𝑏(1,2) ∆𝑃𝑃�𝑠𝑠(1,3)� , 

∆𝑉𝑉� = 𝑡𝑡𝑠𝑠𝑠𝑠�∆𝑉𝑉�𝑋𝑋(1,1) ∆𝑉𝑉�𝑏𝑏(1,2) ∆𝑉𝑉�𝑠𝑠(1,3)� 
 

3.3 Voltage Stability (VS) Index Computation 

This index is developed as part of the project FP7 iTesla [24]. This project 

aims to build a software toolbox. The off-line analysis workflow within iTesla 

toolbox does the dynamic impact assessment of the detailed time domain 

simulations. The iTesla toolbox can run time domain simulation continuously 

for only one time. So, this index is developed in a way to comply with the 

requirements of iTesla toolbox. 

3.3.1 Assumptions 

In this new method, only one set of time domain simulation is considered as 

input to the VS index. The time domain simulation consists of a one pre-

contingency operating state followed by three or more post-contingency 

operating states as shown in figure 3.2. A minimum of three operating points 

are required to estimate the PV curve for a particular network configuration. 

Information of only one operating point is available from time domain 

simulations for pre-contingency state. 

 
Figure 3.2 Time domain simulation 

So, the remaining two operating points are given as input by the operator. 

Information about the no-load operating point (𝑉𝑉𝑜𝑜 ,𝑃𝑃𝑜𝑜), operational point 
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based on voltage limits (𝑉𝑉𝑣𝑣𝑖𝑖𝑚𝑚,𝑃𝑃1)  & MVA limits (𝑉𝑉2,𝑃𝑃𝑣𝑣𝑖𝑖𝑚𝑚) of the line for 

pre-contingency state are given as input to the program by the operator. 

Based on these operating points two PV curves can be estimated for pre-

contingency state as shown in figure 3.3. The exact solution exists between 

these two PV curves. 

 
Figure 3.3 Pre-contingency PV curve estimation 

3.3.2 Summary of the voltage stability index computation method 

The following flow chart explains the execution sequence of the VS severity 
index computation. 

 
Figure 3.4 Index computation flow chart 

In the new method, the VS severity index is computed in the following steps. 
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1. The information from time domain simulation is divided into pre- 
and-post contingency states. 

2. Using the post-contingency operation states (𝑃𝑃𝑖𝑖,𝑄𝑄𝑖𝑖) from time 
series data, (𝛼𝛼,𝛽𝛽) are estimated by solving (4). 

3. Using the estimated (𝛼𝛼,𝛽𝛽) values and (𝑉𝑉𝑖𝑖,𝑃𝑃𝑖𝑖) from time series data, 
the PV curve is estimated by solving (5) using least square problem. 

4. Using the data (𝑉𝑉1,𝑃𝑃1,𝑄𝑄1) from time series and the input values 
based on no load operating point (𝑉𝑉𝑜𝑜,𝑃𝑃𝑜𝑜), operational point based 
on voltage limits (𝑉𝑉𝑣𝑣𝑖𝑖𝑚𝑚,𝑃𝑃1)  & MVA limits (𝑉𝑉2,𝑃𝑃𝑣𝑣𝑖𝑖𝑚𝑚) of the line, the 
PV curve is estimated by solving (5) using least square problem. 

5. Based on the estimated PV curves and input operation states the 
severity indices are calculated as explained in Section-2. 

3.4 Index Computation using synthetic simulations 

This section illustrates the use of the proposed index as described in the 

above sections and interpretation of its results. The aim is to calculate the 

distance from different operating points in pre-and-post contingency state to 

the maximum operational limits in terms of voltage and power. 

For this illustrative example a simple two-bus system connected with two 

lines as described in figure 3.1 was used. Time domain simulation was done 

for duration of 20 seconds. Contingency was applied at 5th sec and load 

perturbations applied for every five seconds until the end of simulation. The 

time domain simulation with Voltage and Power along time axis is shown in 

Figure 3.5 and the estimated post-contingency PV curve is shown in Figure 

3.6. 
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Figure 3.5 Set of simulations and data required to calculate the index 

The red colour points in the figure 3.6 are the sampled values from time series 

data and blue colour curve is the estimated PV curve. 

 
Figure 3.6 Estimated post-contingency PV curve 

Figure 3.7 (a) and (b) depicts the estimated post contingency curve with 

respect to estimated pre-contingency curves. These curves were estimated 

using the blue and red sections highlighted in figure 3.5 which are shown as 

brown colour points on pre-contingency curve and red color points on post-

contingency curve. 

(a) Post-contingency with respect to pre-contingency curve-1 

 
(b) Post-contingency with respect to pre-contingency curve-2 
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Figure 3.7 Estimated PV curves using pre-and-post fault data 

It can be observed from figure 3.7 that the post-contingency curve (red) is 

smaller than the pre-contingency curves (blue, green) because the impedance 

of the system increased after the disturbance in the network at 5th sec. It 

should also be noted that the distances (∆𝑃𝑃′𝑠𝑠 𝑡𝑡𝑠𝑠𝑢𝑢 ∆𝑉𝑉′𝑠𝑠) in the post-

contingency are smaller than in pre-contingency curves and negative in some 

cases. In post-contingency the curve shrinks and the power limit decreases. 

Table 3.1 Voltage stability indices for the synthetic case 
    ∆𝑃𝑃� ∆𝑉𝑉�    

GBI   -0. 8939 -0.0385   

∆𝑃𝑃�𝑋𝑋 ∆𝑃𝑃�𝑏𝑏 ∆𝑃𝑃�𝑠𝑠 ∆𝑉𝑉�𝑋𝑋 ∆𝑉𝑉�𝑏𝑏 ∆𝑉𝑉�𝑠𝑠 

ABI 1.0000 0.0909 -0.8939 0.4975 0.1578 -0.0385 

∆𝑃𝑃𝑋𝑋 ∆𝑃𝑃𝑏𝑏 ∆𝑃𝑃𝑠𝑠 ∆𝑉𝑉𝑋𝑋 ∆𝑉𝑉𝑏𝑏 ∆𝑉𝑉𝑠𝑠 

SBI 

𝑆𝑆11 1.0000 0.5543 0.3056 0.5249 0.4110 0.3124 

𝑆𝑆�11 1.0000 0.0909 -0.4205 0.4975 0.1578 -0.0385 

𝑆𝑆12 1.0000 0.5733 0.1135 0.5707 0.4533 0.2302 

𝑆𝑆�12 1.0000 0.0909 -0.8939 0.4975 0.1578 -0.0385 

After estimating the equivalent model, the index described in the above 

section is computed and the results are shown in table 3.1. GBI is used to 

interpret the given operating point that is very near to the voltage stability 

limits of the system. In this case, both the elements of GBI are negative 

indicating that at least one power and voltage limit was violated. ABI is used 
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to retrieve more specific information i.e. in this case elements (1, 3) and (1, 6) 

of the given load levels are negative indicating that there are violations at 

heavy loading level in both power and voltage. From SBI it can be observed 

that elements (4, 3) and (4, 6) are negative indicating that during post-

contingency these loading levels are on the right hand side of the power limit 

and below the voltage limit as shown in figure 3.7(a) and 3.7(b).  Thus, from 

severity index it can be interpreted that operation of the system at this loading 

level will lead voltage instability in case of this contingency. 
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C h a p t e r  4  

4.  A METHOD FOR VOLTAGE STABILITY ASSESSMENT 
USING DECISION TREES 

In this chapter, the proposed approach and workflow to create and use 

decision trees for voltage stability assessment is explained in detail. 

4.1 Attribute selection for the DTs 

In this thesis, load active powers and voltages are considered as attributes for 

splitting the data because they are one of the important factors in assessing 

the voltage stability of the system. From the definitions of different voltage 

instabilities explained in chapter 2, it can be observed that systems inability to 

cater the power demand of the load is one important reason for voltage 

instability. A power system is designed to supply power to the loads and the 

knowledge of systems capability to cater load requirements/increments in 

different network configuration can help the operator to understand the state 

of the system and foresee the consequences for different load requirements. 

The chosen attribute should be such that it can discriminate between different 

system conditions. For example, the voltage of a voltage controlled bus is a 

bad attribute as it hardly changes, while voltages and angles of the buses that 

are electrically distant from the generators (eg. radially connected loads with 

high impedance) are good attributes for stability classification. Thus, load 

active powers and voltages are used as attributes to build the decision trees 

that can aid the power system operator with voltage stability assessment for 

different load power consumptions and network configurations. 

4.2 Workflow  

The workflow adopted to build a decision tree for the selected network is 

shown in figure 4.1. Initially, a network for study is selected and the loads are 

assumed to be constant PQ loads in this thesis. 



 

 35 

 

Figure 4.1 Workflow for creation of decision tree 

For each topology, such as the base case and after different contingencies, a 

database is created with the load flow results for different load power 

consumptions. These databases are then used to build the decision trees that 

are used to predict the voltage stability of the considered system using 

measured load powers and voltages.  
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It is possible that the data obtained from simulated environment lack the 

exact representation of the system state and may be biased with respect to the 

assumptions like load variations, scenarios etc. For example in this thesis, all 

the loads are assumed to be constant PQ loads in the system, which is not the 

case in a real power system. The loads in a real power system are quite 

diversified because it contains devices like refrigerators, pumps, heaters, lamps 

etc. For example the refrigerator power consumption varies with respect to 

compression process and temperature absorption process but a PQ load 

consumes constant amount of power.  

Moreover the load composition changes based on weather, time and 

economy. Hence, it is complicated and time consuming to represent 

individual load characteristics for large scale system studies. The advantages of 

having simulated data is the accessibility to get variety of data within a very 

short span of time which is not the case for real time data, interpret the 

response of the system in case of a fault which happens seldom in real system 

and low cost and low risk environment to try all the possible scenarios etc. 

Data is required to train and test a decision tree. The training set is used to 

build the decision tree and the test set is used to check accuracy of the 

decision tree. Depending upon the availability of data, there are various 

procedures as cross validation, leave one out and bootstrap to use for model 

validity [12]. 
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4.2.1 Input for the DTs 

The DTs are created with respect to every load bus for different network 

configurations. The number of DTs created is therefore proportional to 

number of load buses and topologies considered. The number of branches 

for a tree increases with increase in data. Creating one tree for a network 

configuration increases the size of the tree that further complicates 

interpretation. Moreover, creating one tree for a network configuration 

increases the computational burden and lookup time.  

For these reasons every network configuration will have a tree with respect 

to every load bus. Load flow simulations are done for different network 

configuration with several load variations that are then used to train and test 

the decision tree for that network configuration. 

4.2.2 Voltage Stability classification for training the DTs 

Publications based on DT applications to power systems were provided in 

[25]. According to [15, 25], there is no standard universal approach for voltage 

stability classification using DTs. The region of operation is classified to 

“stable” and “unstable”. The disadvantage of classifying the region of 

operation to only “stable” and “unstable” is that if the system is operating in 

the boundary of these regions, the decision tree trained on this data identifies 

the current operating point in “stable” region. In order to avoid this problem, 

the region of operation in this thesis is classified to four regions. They are the 

“stable within grid limits”, “stable outside grid limits”, “marginally stable” and 

“unstable” regions. Initially, the Euclidean distance is calculated for the given 

load operating point 𝑠𝑠 with respect to load bus 𝑡𝑡 (considering loads at bus 𝑡𝑡, 

𝑁𝑁 and 𝑐𝑐) (𝑃𝑃𝑡𝑡𝑖𝑖,𝑃𝑃𝑁𝑁𝑐𝑐𝑖𝑖) from nearest unstable point (𝑃𝑃𝑡𝑡𝑋𝑋𝑆𝑆𝑛𝑛𝑛𝑛,𝑃𝑃𝑁𝑁𝑐𝑐𝑋𝑋𝑆𝑆𝑛𝑛𝑛𝑛) using 

(4.1). 

𝐷𝐷𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑐𝑐𝑡𝑡 = �(𝑃𝑃𝑡𝑡𝑋𝑋𝑆𝑆𝑛𝑛𝑛𝑛 − 𝑃𝑃𝑡𝑡𝑖𝑖)2 + (𝑃𝑃𝑁𝑁𝑐𝑐𝑋𝑋𝑆𝑆𝑛𝑛𝑛𝑛 − 𝑃𝑃𝑁𝑁𝑐𝑐𝑖𝑖)2  (4.1) 

Margin is calculated as given in (4.2). 

𝑀𝑀𝑡𝑡𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑋𝑋𝑋𝑋𝑋𝑋𝑠𝑠𝑠𝑠
𝑃𝑃𝑋𝑋𝑖𝑖+𝑃𝑃𝑏𝑏𝑠𝑠𝑖𝑖

                                        (4.2) 
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If (4.2) is less than 25%, then the region of operation is classified as 

“marginally stable” region. If the available margin is greater than or equal to 

25% with voltages at all the load buses being greater than 0.95 pu (per unit is 

the expression of system quantities as fractions of a defined base unit 

quantity. Further details about per unit can be found in [26]), then the region 

is classified as “stable within grid limits” region, otherwise it is classified as 

“stable outside grid limits” region. If the given load operating point is the 

saddle node bifurcation point or it exists further away from the given saddle 

node bifurcation point, then the region is classified as being in the “unstable” 

region. The classification criteria are visualized in figure 4.2.  

The given load flow outputs are classified in to the regions based on the 

conditions explained above. The trained decision trees are tested with the test 

set and the accuracy of the classification is calculated. Low accuracy in 

classification indicates that the decision tree is not trained properly and it is 

needed to be retrained. 

 

Figure 4.2 The classification criteria used 

These classification rules were also used to verify the classification of time 

domain simulation output by the created trees. The results are provided and 

explained in chapter 6. 

Margin ≥ 0.25 and  
Min. (Voltages) ≥ 0.95 
 

Margin ≥ 0.25 and  
Min. (Voltages) < 0.95 
  

Margin < 0.25  
  

If 
  

Else if 
  

Else if 
  

Stable within 
grid limits 

Stable outside  
grid limits 

Marginally  
stable Unstable 

Else 
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C h a p t e r  5  

5. A METHOD FOR LOOKING UP PRE-CALCULATED 
PREVENTIVE ACTIONS AGAINST VOLTAGE PROBLEMS 

In this chapter, the proposed approach and workflow used to generate 

optimal power flow solutions is explained in detail. 

5.1 OPF with Voltage Stability Constraints – Maximization of the 

Distance from Collapse 

In this OPF problem, maximization of the distance between the current value 

of the loading parameter and its value at the voltage collapse point is 

considered as objective function. Therefore as the system moves towards the 

bifurcation point more weight is given to the voltage stability when compared 

to the generation cost. In this thesis, the following optimization problem that 

is available in Power System Analysis Toolbox (PSAT) [27] is used to generate 

OPF solutions to the operating points. This optimization problem represents 

the system security through use of voltage stability conditions. It is based on 

interior point method proposed in [20] and OPF formulations for maximizing 

the distance from voltage collapse proposed in [21] and [22]. 

Max. 𝐺𝐺 = 𝜆𝜆                                                      (5.1) 

S.t    (𝛿𝛿,𝑉𝑉,𝑄𝑄𝐺𝐺 ,𝑃𝑃𝑆𝑆,𝑃𝑃𝐷𝐷) = 0                                PF equations 

            𝑃𝑃𝑠𝑠(𝛿𝛿𝑠𝑠,𝑉𝑉𝑠𝑠,𝑄𝑄𝐺𝐺𝑠𝑠 , 𝜆𝜆𝑠𝑠,𝑃𝑃𝑆𝑆,𝑃𝑃𝐷𝐷) = 0        Max load PF equations 

𝜆𝜆𝑚𝑚𝑖𝑖𝑋𝑋 ≤ 𝜆𝜆 ≤ 𝜆𝜆𝑚𝑚𝑋𝑋𝑥𝑥                      Loading margin 

𝑃𝑃𝑆𝑆𝑚𝑚𝑖𝑖𝑋𝑋 ≤ 𝑃𝑃𝑆𝑆 ≤ 𝑃𝑃𝑆𝑆𝑚𝑚𝑋𝑋𝑥𝑥  Supply bid blocks 

𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑋𝑋 ≤ 𝑃𝑃𝐷𝐷 ≤ 𝑃𝑃𝐷𝐷𝑚𝑚𝑋𝑋𝑥𝑥  Demand bid blocks 

𝜙𝜙𝑖𝑖𝑔𝑔(𝛿𝛿, 𝑣𝑣) ≤ 𝜙𝜙𝑖𝑖𝑔𝑔𝑚𝑚𝑋𝑋𝑥𝑥  Flow limits 

𝜙𝜙𝑔𝑔𝑖𝑖(𝛿𝛿, 𝑣𝑣) ≤ 𝜙𝜙𝑔𝑔𝑖𝑖𝑚𝑚𝑋𝑋𝑥𝑥  

𝜙𝜙𝑖𝑖𝑔𝑔(𝛿𝛿𝑠𝑠, 𝑣𝑣𝑠𝑠) ≤ 𝜙𝜙𝑖𝑖𝑔𝑔𝑚𝑚𝑋𝑋𝑥𝑥  

𝜙𝜙𝑔𝑔𝑖𝑖(𝛿𝛿𝑠𝑠, 𝑣𝑣𝑠𝑠) ≤ 𝜙𝜙𝑔𝑔𝑖𝑖𝑚𝑚𝑋𝑋𝑥𝑥  

𝑄𝑄𝐺𝐺𝑚𝑚𝑖𝑖𝑋𝑋 ≤ 𝑄𝑄𝐺𝐺 ≤ 𝑄𝑄𝐺𝐺𝑚𝑚𝑋𝑋𝑥𝑥  Gen. 𝑄𝑄 limits 
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𝑄𝑄𝐺𝐺𝑚𝑚𝑖𝑖𝑋𝑋 ≤ 𝑄𝑄𝐺𝐺𝑠𝑠 ≤ 𝑄𝑄𝐺𝐺𝑚𝑚𝑋𝑋𝑥𝑥  

𝑉𝑉𝑚𝑚𝑖𝑖𝑋𝑋 ≤ 𝑉𝑉 ≤ 𝑉𝑉𝑚𝑚𝑋𝑋𝑥𝑥  𝑉𝑉 security limits 

𝑉𝑉𝑚𝑚𝑖𝑖𝑋𝑋 ≤ 𝑉𝑉𝑠𝑠 ≤ 𝑉𝑉𝑚𝑚𝑋𝑋𝑥𝑥  

Constants: 

𝑃𝑃𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
 upper limit of the energy bid offered by unit 𝑠𝑠  

𝑃𝑃𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖
 lower limit of the energy bid offered by unit 𝑠𝑠  

𝑃𝑃𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔
 upper limit of the energy bid demanded by consumer 𝑗𝑗  

𝑃𝑃𝐷𝐷𝑚𝑚𝑖𝑖𝑚𝑚𝑔𝑔
 lower limit of the energy bid demanded by consumer 𝑗𝑗 

𝜆𝜆 the loading margin 

An electricity market is a system enabling purchases (bidding), sales and short-

term trades generally in the form of financial or obligation swaps. Energy bids 

are the tenders for purchasing energy from different generations in the 

electricity markets. Market bidding is the process of purchasing electricity in 

electricity markets [28].  

In this case, a second set of power flow equations and constraints with a 

superscript 𝑐𝑐 is introduced to represent the system at critical conditions 

associated with the loading margin 𝜆𝜆 that drives the system to its maximum 

loading condition. The critical power flow equations 𝑃𝑃𝑠𝑠 can present a line 

outage. The maximum or critical loading point could be either associated with 

violation of either a thermal (thermal limits are not considered in this thesis) 

or a bus voltage limit or being at the voltage stability limit (saddle-node point) 

corresponding to a system singularity. Thus, for the current operation point 

and maximum loading, the generator and load powers are defined as, 

respectively 

𝐸𝐸𝐺𝐺 = 𝐸𝐸𝐺𝐺0 + 𝐸𝐸𝑆𝑆 (5.2) 

𝐸𝐸𝐿𝐿 = 𝐸𝐸𝐿𝐿0 + 𝐸𝐸𝐷𝐷  

𝐸𝐸𝐺𝐺𝑠𝑠 = (1 + 𝜆𝜆 + 𝑙𝑙𝐺𝐺𝑠𝑠)𝐸𝐸𝐺𝐺  

𝐸𝐸𝐿𝐿𝑠𝑠 = (1 + 𝜆𝜆)𝐸𝐸𝐿𝐿  
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Where 𝐸𝐸𝐺𝐺0 and 𝐸𝐸𝐿𝐿0 stand for generator and load powers which are not part of 

market bidding and 𝑙𝑙𝐺𝐺𝑠𝑠  represents a scalar variable which distributes system 

losses associated depending up on the power injection by the generators i.e. a 

generator injecting more power in to the grid contributes more power for 

losses than the generator injecting less power. It is assumed that losses 

corresponding to maximum loading level defined by 𝜆𝜆 in (5.1) are distributed 

among all the generators depending on the power injection by the 

corresponding generators in to the grid. 

5.2 Application of OPF 

In this thesis, OPF with voltage stability constraints and distance from saddle 

node bifurcation point is applied to find optimal operating points to the 

operating points in “stable outside grid limits” or “marginally stable” region. 

It is implemented in this way because all these OPF solutions are grouped in 

to a database with operating points mapped to their corresponding OPF 

solutions. This database is used for searching the OPF solution of nearest 

operating point. Further details are explained in the following sub-sections.  

5.2.1 Workflow execution 

In the first step of the workflow, the current load operating points (P, V) is 

given as an input to the trained DTs to identify the region of operation. If the 

output from DTs is “stable outside grid limits” or “marginally stable” then 

workflow proceeds to the OPF section, otherwise it proceeds to next load 

operating point that is needed to be classified. In the OPF section, the given 

objective function of maximizing the distance from voltage collapse is solved 

for a solution satisfying the conditions explained in section 5.1. If OPF fails to 

find a solution for the satisfying the given conditions, then the following 

conditions are relaxed in the given order of preference.  

1. Acceptable minimum voltage level is decreased from 0.95 pu in steps 

of 0.01 up to 0.85 pu.  

2. Removal the voltage limits. 

3. Reduction in the load active power and reactive power (load 

shedding). 
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The work flow used to generate OPF solutions is shown in figure 5.1. 

 
Figure 5.1 Workflow for creating OPF solutions 

The active power direction for load reduction is given in (5.3) 

𝑃𝑃𝐷𝐷 = −𝑃𝑃𝑋𝑋𝑖𝑖
‖𝑃𝑃𝑋𝑋𝑖𝑖+𝑃𝑃𝑏𝑏𝑖𝑖+𝑃𝑃𝑠𝑠𝑖𝑖‖

                                              (5.3) 

where 𝑃𝑃𝑡𝑡, 𝑃𝑃𝑁𝑁 and 𝑃𝑃𝑐𝑐 are the load active powers for the given load operating 

point “i”. Similarly, the reactive power direction is given by replacing the load 

active powers in (5.3) with load reactive powers. If OPF fails to find a 

solution even after relaxing the conditions then it is saved as an operating 

point with no OPF solution. All these solutions obtained from OPF are being 

mapped to from their corresponding operational points. So, when the DTs 

identify the state of the system as “stable outside grid limits” or ‘marginally 
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stable’, the algorithm searches for nearest operating point in database and 

applies its OPF solution to the system.  

5.2.2 Database of OPF solutions 

All the operating points that are simulated are mapped with their OPF 

solutions and are made into a database. The block diagram in figure 5.2 

explains how these OPF solutions are used. 

 
Figure 5.2 Workflow showing the usage of OPF solutions from database 

From the figure 5.2, it can be observed that the current load active power and 

voltages from the system are given as inputs to the created DTs (DTs created 

from the training set). If these DTs classify the system operation in “outside 

grid limits” or the “marginally stable” region, the algorithm searches for the 

nearest operating point in the database and will then retrieve the OPF 

solution of the nearest operating point. This OPF solution is applied to the 

system by rescheduling the generating units and/or doing load shedding in 

order to improve the state of the system. 
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5.2.3 Significance of the proposed approach 

The advantage of the proposed method can be highlighted with respect to the 

time taken to retrieve the OPF versus online OPF calculation. It can be 

explained by considering exponential recovery loads. Exponential recovery 

loads are given by (5.4) 

�̇�𝑥𝑇𝑇 = −𝑥𝑥𝑝𝑝
𝑇𝑇𝑝𝑝

+ 𝑃𝑃𝑠𝑠 + 𝑃𝑃𝑋𝑋                                             (5.4) 

where 𝑥𝑥𝑇𝑇 is the state variable for the load active power, 𝑃𝑃𝑠𝑠 and 𝑃𝑃𝑋𝑋 are the 

static and transient real power absorptions, which depend on load voltage as 

given in (5.5). 𝑇𝑇𝑇𝑇 is the active power time constant. 

𝑃𝑃𝑠𝑠 = 𝑃𝑃0 �
𝑉𝑉
𝑉𝑉0
�
𝛼𝛼𝑠𝑠

 
  (5.5) 

𝑃𝑃𝑋𝑋 = 𝑃𝑃0 �
𝑉𝑉
𝑉𝑉0
�
𝛼𝛼𝑡𝑡

 

where 𝛼𝛼𝑠𝑠 and 𝛼𝛼𝑋𝑋 are the static and transient active power exponents and 𝑉𝑉0 is 

the voltage at the load bus from the load flow solution. Similar equations hold 

for reactive power. The response of the exponential recovery load for an 

outage of one of the two available transmission lines in a simple two bus 

system is shown in figure 5.3. The response of the load after the event 

(overshoot/undershoot) depends on 𝛼𝛼𝑋𝑋. The time taken to recover the load 

power consumption to the value (load power consumption before the event) 

before the occurrence of the event depends active power time constant. If 

𝛼𝛼𝑋𝑋 = 0, there will be load undershoot. For the values of 𝛼𝛼𝑋𝑋 < 0, there will be 

load overshoot and for the values of 𝛼𝛼𝑋𝑋 > 0, there will be load undershoot. 

The undershoot for 𝛼𝛼𝑋𝑋 > 0  is more than the undershoot for 𝛼𝛼𝑋𝑋 = 0 and the 

same can be observed in figure 5.3. 
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Figure 5.3 Active power response of exponential recovery load for outage of the line 

in two bus system  

It should be noted that when 𝛼𝛼𝑋𝑋 = 0, from (3.5) active power 𝑃𝑃𝑋𝑋 = 𝑃𝑃0 and 

reactive power 𝑄𝑄𝑋𝑋 = 𝑄𝑄0. This indicates that the load acts as a constant PQ 

load. The same can be observed in figure 5.3. Similarly, when 𝛼𝛼𝑋𝑋 > 0 i.e. 

𝛼𝛼𝑋𝑋 = 1 or 𝛼𝛼𝑋𝑋 =  2 it acts as constant current or constant impedance load 

respectively. Load models, where active and reactive powers vary directly with 

the voltage magnitudes are known as Constant current loads. Nonlinear load 

models, where active and reactive powers vary with square of the voltage 

magnitude are known as Constant impedance loads. 

For 𝛼𝛼𝑋𝑋 > 0 before the load recovers, by using this proposed approach it 

would take less time to search for OPF solution of nearest operating point 

and apply to the power system before it becomes unstable. The idea of this 

approach is that, by using this proposed approach it would take less time to 

identify the state of the system and apply OPF solution after the contingency 

than to compute the OPF solution online. The time taken to retrieve the OPF 

solution from database versus the time taken to calculate OPF solution online 

is investigated in the case studies of chapter 6. 



 

 46 

C h a p t e r  6  

6. CASE STUDIES 

In this chapter, the results obtained from the proposed approach (explained 

in chapters 3, 4 and 5) on the test system are provided and explained in detail. 

6.1 Background 

The main objective of this case study was to demonstrate the use of decision 

trees and offline computed OPF solutions for early identification of voltage 

instability and suggest remedial actions. This proposed approach was tested 

on the IEEE 9 bus system. Computer simulations were carried out on this 

system for different loading conditions and different network configurations. 

The simulation of IEEE 9 bus system for different loading conditions and 

network configurations was performed in PSS/E. The simulations in PSS/E 

were automated by a Python script. Machine learning toolbox in MATLAB 

was used to train and test the decision trees on this simulation results 

obtained from PSS/E. OPF was performed using Power System Analysis 

Toolbox (PSAT) [22], a program that operates in MATLAB numerical 

computing environment. Finally, a MATLAB script was written to validate 

the created decision trees and the computed OPF solutions by generating 

random load powers. 

6.2 Inputs 

This section presents the process of selecting appropriate input data for the 

case study, with an emphasis on the need of the data and models used, to 

accurately describe the power system. 

6.2.1 General Inputs 

The power system data for the case study was in the formats used by PSS/E 

and PSAT. Therefore, power system data (Transmission line impedances, 

Transformer impedances, generator ratings and exciter types) in both the files 
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was verified manually and care was taken to make the power flow converge to 

the same bus voltage magnitudes and angles for both the files.  

• The loads are assumed to have no dynamic components and are 

modeled as consuming constant power under a constant power 

factor. 

• Simulations were performed for different loading conditions with 

respect to every load bus for different network configurations. 

6.2.2 Test system 

The IEEE 9 bus system represents a simple approximation of the Western 

System Coordinating Council (WSCC) to an equivalent system with nine 

buses and three generators as shown in figure 6.1.  The system data was 

available in PSS/E and PSAT.  

 

Figure 6.1 Single Line Diagram of IEEE 9 bus system  

This test system consists of 9 buses, 3 generators, 3 two-winding 

transformers, 6 transmission lines and 3 loads. The voltage level of the 

transmission system is 230 kV and the voltage levels of the generators 13.8, 

16.5 and 18 kV. Further generator data is given in table 6.1. 

Table 6.1 Generator data 

Gen. Bus No. Voltage (kV) Type Generator* Exciter* Turbine Governor* Stabilizer* 
1 16.5 Swing GENSAL IEEE T1 IEESGO PSS2A 
2 18.0 PV GENROU IEEE T1 IEESGO PSS2A 
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3 13.8 PV GENROU IEEE T1 IEESGO PSS2A 
*-detailed values of each type are given in Appendix. 

6.2.3 Simulated network configurations 

Load flow studies were conducted by varying the load demand at the load 

buses. These simulations were automated using a python script. Data was 

generated for different network configurations with respect to every load. 

Apart from the base case where all the transmission lines are in service, the 

following network configurations were also simulated. 

• Outage of line between Bus 4 and 5 

• Outage of line between Bus 5 and 7 

• Outage of line between Bus 4 and 6 

• Outage of line between Bus 6 and 9 

• Outage of line between Bus 7 and 8 

• Outage of line between Bus 8 and 9 

For the above mentioned network configurations, power flow simulations 

were conducted for load variations with respect to every load. For the above 

mentioned network configurations, power flow calculations were conducted 

for Load variations with respect to load 5, load 6 and load 8. On an average, 

each network configuration has 100,000 simulated operational points. The 

generated data was stored in .mat files.  

6.3 Results for voltage stability assessment using DTs 

The set of simulated load data points for the base case network configuration 

is shown in figure 6.2 with respect to load 5 i.e. for a fixed change in demand 

at load 6 and load 8, demand at load 5 is changed in small steps. These points 

were split into a training set (65% of the data) and testing set (35% of the 

data). The points in the testing set were then classified to regions, based on 

the classification rules given in chapter 4.  
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Figure 6.2 Data of different loading conditions for base case with respect to load 5 

Figure 6.3 shows the data in figure 6.2 classified as per classification rules. 

 
Figure 6.3 Data of different loading conditions for base case with respect to load 5 

classified based on classification rules 

This classified data was used to create the decision tree for base case network 

configuration with respect to load 5. 

6.3.1 Creating the Voltage Stability Assessment DTs 

For a network configuration, decision trees were created for variations with 

respect to every load. So, every network configuration of IEEE 9 bus system 
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has three decision trees. The MATLAB function fitctree in Statistics and 

Machine Learning Toolbox was used to create the decision trees. This 

function performs the following steps [29]. 

1. Start with all the input data, and examine all possible binary splits on 

every predictor. 

2. Select a split based best optimization criterion subject to minimum 

leaf size constraint. 

3. Impose the split 

4. Repeat steps 1-4 recursively for the two child nodes 

The function stops when it cannot make any more splits or if further splits 

would not improve classification accuracy. The optimal value for minimum 

leaf size was chosen by calculating the prediction error using the kfoldloss 

function (Statistics and Machine Learning Toolbox) in MATLAB [29]. This 

function calculates the error by checking the prediction of the decision trees 

on trained on particular percentage of training set. For example the training 

set is divided to two sets with 75% and 25 % data. The decision trees are 

trained on the 75% of the data and tested on the 25% of data to calculate 

error. The imposed minimum leaf size versus the cross validated error for 

base case network configuration is shown in figure 6.4. It can be observed 

from figure 6.4 that the cross-validated error remains constant for decision 

tree with respect to load 5 for minimum leaf size greater than 8000. This 

helps to give insight whether the training set has enough data points to train 

the decision trees for. It can also be observed from the figure that for decision 

tree with respect to load 6 and 8 has a constant cross-validated error for 

minimum leaf size ranging from 3500 to 7500. Based on this cross-validated 

error the function fitctree sets an optimum value for minimum leaf size when 

training the DTs. When the leaf size is less than the selected, it stops splitting 

the nodes. 
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Figure 6.4 Cross-validated errors as a function of min. leaf size for base case 

network configuration decision trees  

The created tree has an average of 35 branches (size). The obtained size is the 

optimal size based in the cross-validation error as shown in the above figure. 

6.3.2 Testing the Voltage Stability Assessment DTs for base case 

network configuration 

The created decision trees for different network configurations were tested on 

the test set (35% of the data). The test set data was given as input to the 

created decision trees and these outputs were verified with classification 

criteria used to create the decision trees. Based on the number of 

misclassifications by the created decision trees, the accuracy was calculated for 

base case network configuration with respect to load 5 is tabulated in 6.2. 

 

 

 

 

Table 6.2 Accuracy of the created decision tree with respect to load 5 on test set 
data for base case network configuration  

 Actual: 
 Train/Test 

48077/16026 Stable Out of grid limits Marginally stable Unstable 

Stable 100 % 
(4434/4434) - - - 

E
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im
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s: 
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Out of grid 
limits - 99.96 % 

(2706/2707) 1 - 

Marginally stable - - 99.96 % 
(8822/8819) - 

Unstable - - 2 99.97 % 
(64/66) 

 

The values that are given under the percentage in the table are in the format 

of (estimated/actual). It can be observed from table 6.2 that two operating 

points in “unstable” region are misclassified as “marginally stable” region and 

one operating point in “outside grid limits” region is misclassified as 

“marginally stable”. The prediction accuracy is low in “outside grid limits” 

and “marginally stable” region. The classification accuracy of the decision tree 

for base case network configuration with respect to load 6 is tabulated in 6.3. 

Table 6.3 Accuracy of the created decision tree with respect to load 6 on test set 
data for base case network configuration 

 Actual: 
 Train/Test 

41403/13801 Stable Out of grid limits Marginally stable Unstable 

Stable 99.96 % 
(3037/3036) - - - 

Out of grid 
limits 1 99.69 % 

(2592/2600) 7 - 

Marginally stable - - 99.88 % 
(8121/8112) - 

Unstable - - 2 99.96 % 
(51/53) 

 

It can be observed from table 6.3 that the prediction accuracy is low in 

“outside grid limits” region since seven operating points are misclassified to 

“marginally stable” region. The classification accuracy of the decision tree for 

base case network configuration with respect to load 8 is tabulated in 6.4. 

Table 6.4 Accuracy of the created decision tree with respect to load 8 on test set 
data for base case network configuration 

 Actual: 
 Train/Test 

47628/15876 Stable Out of grid limits Marginally stable Unstable 

Stable 100 % 
(3240/3240) - - - 

Out of grid 
limits - 99.79 % 

(3385/3392) 7 - 

Marginally stable - - 99.89 % 
(9191/9181) - 

E
st

im
at

ed
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s: 
E
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im
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ed

 a
s: 
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Unstable - - 3 99.95% 
(60/63) 

 

It can be observed from table 6.4 that the prediction accuracy is low in 

“outside grid limits” region since seven operating points are misclassified to 

“marginally stable” region. It can be observed from table 6.2, 6.3 and 6.4 that 

even though there are misclassifications, each DT has an average prediction 

accuracy of 99.9 %. 

6.3.3 Testing the Voltage Stability Assessment DTs for outage of line 

between bus 5 and bus4 

The prediction accuracy of decision trees created for network configurations 

involving outage of the line were tested on test sets and also using time 

domain simulations results from PSS/E. Time domain simulations were 

automated by a Python script. The time domain simulations were run for 

t=20 seconds and the change in network configuration was applied at t=10 

seconds.  

The details of prediction accuracy on the test set of the created decision tree 

with respect to load 5 for outage of line between bus 5 and 4 is given in table 

6.5. Since the decision trees were created using power flow solutions, it was 

tested on the time domain simulation outputs from PSS/E.  This test was 

done only for the decision trees that were created for different configuration 

involving outage of a line. 

 

Table 6.5 Accuracy of the created decision trees for network configuration with 
outage of line between bus 5 and 4 

 Actual: 
 Train/Test 

16627/5743 Stable Out of grid limits Marginally stable Unstable 

Stable 99.93 % 
(1517/1516) - - - 

Out of grid 
limits - 99.98 % 

(250/246) - - 

Marginally stable 1 4 99.92 % 
(3922/3925) - 

Unstable - - 2 96.42 % 
(54/56) 
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These decision trees were tested with the output from time domain 

simulations in the following steps. 

1. A set of random load power values were generated. 

2. These load powers were applied on the base case network 

configuration. 

3. Time domain simulations were simulated with these load powers on 

the base case network configuration up to t=10 seconds. 

4. At the end of t=10 seconds the change in network configuration was 

applied and the simulation was continued up to 20 seconds. For 

example, in this case the time domain simulations were simulated for 

20 seconds with line outage between bus 5 and 4 at end of t=10 

seconds. 

5. Mean load consumptions values and voltages at the load buses from 

t=18 seconds to end of simulation (t=20 seconds) were considered as 

input to the trained DTs.  

6. Classification criterion was applied on these operating points to verify 

them with the trained DTs classification. 

7. The classification accuracy is calculated and the outputs are plotted to 

visualize the misclassified operating points by the decision trees. 

Classification of time domain simulation outputs using classification criteria 

and decision tree with respect to load 5 for outage of line between bus 5 and 

4 is shown in figure 6.5. 
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Figure 6.5 Classification of time domain simulation outputs by classification criteria 

and created decision trees with respect to load 5 for outage of line between bus 5 and 

4  

It was observed that misclassification happened in the boundary region 

because of the decimal values of the load powers and voltages (time domain 

simulations). For example, if 0.25 is the boundary value between two regions 

(“outside grid limits”, “marginally stable”). It was observed that 

Misclassification happened for the values 0.251, 0.252…0.254 etc. that are 

classified as “outside grid limits” instead of “marginally stable”. 

6.4 Results for Pre-calculated Optimal Power Flow Solutions 

An Optimal power flow solution was generated for each of the operational 

points in the training set that do not lie in the “stable” region. The loading 

margin λ that drives the system to its maximum loading condition is limited to 

values between 0.1 and 0.25. The lower and upper voltage limits were set to 

0.95 and 1.05 pu, respectively. If OPF fails to converge, the optimization 

problem was relaxed by lowering the minimum voltage limit by 0.01 pu (i.e. if 

it fails for the first time, the voltage is 0.94 pu) every time it fails to find an 

OPF solution. Relaxation of the minimum voltage limit is done up to 0.85 pu 

until OPF finds a solution for the given operating point. If OPF fails to find a 

solution even after relaxing minimum voltage level to 0.85 pu, then the 
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voltage limits are completely removed. Even then if OPF still fails to find a 

solution, then active power direction 𝑃𝑃𝐷𝐷 and reactive power direction 𝑄𝑄𝐷𝐷 for 

load reduction is set as shown in the expression in chapter 5. Thus, OPF 

solutions can be found for all the operating points that do not lie in the 

“stable” region and are mapped with their corresponding operating point in 

to database and their outcome when applied to the system. 

6.4.1 Generating OPF database 

For the given network configuration, OPF solutions were found for the 

operating points that do not lie in the ‘stable’ region with respect to every 

load. For example, for base case network configuration OPF solutions were 

found for the operating points that do not lie in the ‘stable’ region with 

respect to load 5, load 6 and load 8. The OPF solutions to the operating 

points that do not lie in the ‘stable’ region for the base case network 

configuration w.r.t load 5 are shown in figure 6.6.  

 
Figure 6.6 OPF solutions of the operating points that do not lie in stable region with 

respect to load 5 

From figure 6.6, all the OPF solutions to the operating points that do not lie 

in “stable” region lie above the voltage level 0.9 pu. This is because the OPF 

solution is calculated by imposing the constraints. If OPF solution does not 

exist for the given constraints, the minimum voltage constraint is relaxed as 

explained in previous sub-section. So, from the figure it should be noted that 
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the minimum voltage level is reduced to 0.9 pu. OPF solutions were 

generated to the operating points (that do not lie in the “stable” region) for 

different network configuration with respect to load 5, 6 and 8. All these 

solutions for one network configuration were grouped in to a database and 

were mapped with their corresponding operating point. This database was 

used to search for nearest operating point and retrieve its OPF solution. 

6.4.2 Testing OPF scheme 

The obtained OPF solutions were tested in the following steps. 

1. Random load powers were generated using rand function in 

MATLAB. The function rand returns a vector of uniformly 

distributed random numbers in the interval (0, 1).  

2. These obtained random load values are multiplied with the difference 

of maximum and minimum load values from the database. 

3. Then, these load values were applied to the given network and power 

flow was simulated. 

4. The state of the system was predicted using the decision trees. 

5. If the system was not in “stable” region, then the database was 

searched for the nearest operating point and the OPF solution of the 

nearest operating point was applied to the system. 

6. The state of the system was checked again by DTs after applying the 

OPF solution. 

7. An OPF solution was calculated online for the given operating point 

and it was compared with the OPF solution retrieved from database. 

1000 random load consumption values were created to verify the proposed 

approach and these load values were applied to IEEE 9 bus system. The 

number of operating points predicted for each region is given in table 6.6. 

Table 6.6 DTs prediction of operating points in different regions 

Region predicted by the DTs: No. of operating points in region: 
Stable 303 

Outside grid limits 243 
Marginally stable 400 

Unstable 54 
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When the OPF solution of the nearest operating points in database was 

applied to operating points in “outside grid limit” region, some OPF solutions 

improved the state of the system to “stable” region, while some OPF 

solutions improved the voltages but not the state of the system. Table 6.7 

provides these details for operating points in ‘outside grid limits’ region. 

Table 6.7 No. of operating points that changed state/ remained in same state 

after applying OPF solution from “outside grid limits” region  

Predicted region after applying OPF solution from 
database No. of operating points 

Stable 62 
(25.51%) 

Outside grid limits 181 
(74.48%) 

 

It should be noted that only 25.51% of the operating points in “outside grid 

limits” region were improved to “stable” region after applying the OPF 

solution of the nearest operation point from database. For these 62 operating 

points, the Euclidean distance to the nearest operational point in the database 

is shown in figure 6.7. The mean Euclidean distance of these 62 operating 

points is 0.1256 pu.  

 
Figure 6.7 Euclidean distance for the improved 62 operating points between the 

current operating point and the nearest operating point in the database  
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Figure 6.8 shows the difference in load reduction done for the OPF solution 

of the nearest operating point from database versus the OPF solution 

calculated online for the 62 operating points in which system state is 

improved.  

 
Figure 6.8 Difference in load reductions as per the OPF solution calculated online 

and OPF solution from database to improve the state from “outside grid limits” to 

“stable” region 

The maximum, minimum and average load reduction required by the OPF 

solutions for these 62 operating points are given in table 6.8. 

Table 6.8 Maximum, minimum and average load reduction by the OPF 

solution from database and online OPF  

 Database 
(pu) 

Online OPF 
(pu) 

Maximum 5.20 2.50 
Minimum 0 0 
Average 1.15 0.05 

 

Maximum load reduction of 5.20 pu was done only for one operating point 

and it was located near the boundary of “outside grid limits” region and 

“marginally stable” region. Out of the 62 operating points, 10 operating 

points were located in this boundary region for which the load reduction was 

greater than 3.0 pu. Load reduction in this operating region can be reduced by 
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having the more operating points with OPF solutions from this region in the 

database. 

When the OPF solution of the nearest operating points in database were 

applied to operating points in “marginally stable” region, some OPF solutions 

improved the state of the system to “stable” or “outside grid limits” region, 

while some OPF solutions improved the voltages but not the state of the 

system. Table 6.9 provides these details for operating points in “marginally 

stable” region. 

Table 6.9 No. of operating points in each region after applying OPF solution 

from “marginally stable” region  

Predicted region after applying OPF solution from 
database No. of operating points 

Stable 147 
(36.75%) 

Outside grid limits 113 
(28.25%) 

Marginally stable 139 
(34.75%) 

Unstable 1 
(0.25%) 

 

It can be observed from the table that 36.75% of the operating points in 

“marginally stable” region were improved to “stable” region and 28.25% of 

the operating points in “marginally stable” region were improved to “outside 

grid limits” region after applying the OPF solution of the nearest operating 

point from database. For these 260 operating points, the Euclidean distance 

to the nearest operational point in the database is shown in figure 6.9.  
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Figure 6.9 Euclidean distance for the improved 260 operating points between the 

current operating point and the nearest operating point in the database  

For these 260 operating points, the mean Euclidean distance to the nearest 

operating point in database is 0.086 pu. Figure 6.10 shows the difference in 

load reduction done as per the OPF solution of the nearest operating point 

from database versus the online OPF solution for the 260 operating points in 

which system state is improved.  

 
Figure 6.10 Difference in load reductions as per the OPF solution calculated online 

and OPF solution from database to improve the state from “marginally stable” to 

“outside grid limits” and “stable” region 
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The maximum, minimum and average load reduction in these 260 operating 

cases is given in table 6.10. 

Table 6.10 Maximum, minimum and average load reduction by the OPF 

solution from database and online OPF  

 Database 
(pu) 

Online OPF 
(pu) 

Maximum 4.06 5.09 
Minimum 0.04 0 
Average 1.36 0.65 

 

It should be noted that the maximum load reduction is more for the OPF 

solution calculated online because the given operating point lies between 

“marginally stable” and “unstable” regions but the nearest operating point in 

database is located on the boundary. It was observed from the OPF solutions 

that the further they are towards “unstable” region, the larger the load 

reduction in the OPF solution. Since the given operating point is further 

towards the “unstable” region its exact OPF solution has more load reduction 

than the OPF solution of the operating point (that is located on the boundary 

– a bit far from the “unstable” region than the given operating point) from 

database. This indicates that more operating points are required in the 

boundary regions to reduce the ambiguity.  

It can also be observed that the difference in mean load reduction for 

improving the state from “marginally stable” region was 0.71 pu and the 

difference in mean load reduction for improving the state from “outside grid 

limits” region was 1.1 pu. For one operating point, the system state is 

deteriorated when applied with OPF solution from database. When it was 

checked in detail, it was observed that the operating point is misclassified by 

DTs. The reason for this misclassification is that this operating point is very 

close to the boundary of “marginally stable” and “unstable” region indicating 

the significance of the boundary region. 

Figure 6.11 shows the percentage of the operating points that are in 

“stable”/”unstable” region, the operating points for which the OPF solution 

from database and online calculated OPF solution did not change the region 
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of operation of the system, OPF solution from database and online calculated 

OPF solution that improved the state of the system and OPF solution from 

database and online calculated OPF solution that deteriorated the state of the 

system respectively. 

From figure 6.11, it should be noted that the percentage of operating points 

for which online calculated OPF solutions improved the state is 3.0 % more 

than the percentage of operating points for which OPF solutions from 

database improved the state. Due to misclassification by decision trees there is 

deterioration of state of operating point (0.1 %) when OPF solution of from 

database is applied. There are 2.9 % more operating points that remained in 

the same state after applying the OPF solution of the nearest operating point 

from database when compared to OPF solution calculated online. 

 
Figure 6.11 Percentage of the (1) operating points that are in “stable”/”unstable” 

region, (2) the operating points for which the OPF solution from database and 

online calculated OPF solution did not change the region of operation of the system, 

(3) OPF solution from database and online calculated OPF solution that improved 

the state of the system and (4) OPF solution from database and online calculated 

OPF solution that deteriorated the state of the system 

The maximum, minimum and average time taken to search for an OPF 

solution in database and to calculate OPF solution online is given in table 

6.11. 
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Table 6.11 Maximum, minimum and average time taken to search for an 

OPF solution in database and to calculate OPF solution online  

 Database 
(sec.) 

Online OPF 
(sec.) 

Maximum 1.310 10.12 
Minimum 0.211 2.012 
Average 0.512 5.561 

 

Table 6.11 shows that the average time taken to retrieve an OPF solution of 

the nearest operating point from database is 10 times faster than online OPF 

calculation. Even the maximum time taken to retrieve the OPF solution of 

the nearest operating point from database is 8 times faster than online OPF 

calculation. This signifies the advantage of offline computation. It should be 

noted that the time taken to retrieve OPF solution of nearest operating point 

and online OPF calculation might vary with respect to the computer 

configuration that is used for calculations but the mean time taken to search 

for an OPF solution of the nearest operating point is observed to be less than 

the time taken to compute OPF solution online. This less time taken to 

retrieve the OPF solution from database in the proposed approach could be 

useful to make quick decisions during critical system conditions.  

6.5 Advantage of the proposed approach 

It took less time to retrieve OPF solution of the nearest operating point from 

database than to calculate the OPF solution online. This significance was 

demonstrated by simulating time domain simulation with exponential 

recovery loads in IEEE 9 bus system with active power time constant set to 5 

seconds. 

Time domain simulation was run for t=20 seconds with outage of line 

between bus 5 and 4 is created at t=10 seconds. The operating point was 

chosen such that the system is heavily loaded. So, when the outage of the line 

between bus 5 and 4 was created it lead to the instability in the system. It can 

observed figure 6.12 that system becomes unstable (after the contingency) at 

the end of simulation. It can also be observed from the figure that after the 

contingency the load consumption at bus 5 is recovering to the pre-
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contingency load power consumption because they are modelled as 

exponential recovery loads with 𝛼𝛼𝑋𝑋 = 1 as in sub-section 5.2.3. As the load 

power consumption recovers to the pre-contingency load power 

consumption values, the voltage at the load buses reduces (from equation 5.5, 

when 𝛼𝛼𝑋𝑋 = 1 then 𝑃𝑃𝑋𝑋 = 𝑃𝑃0 � 𝑉𝑉
𝑉𝑉0
�) as shown in figure 6.12. As the load power 

consumption recovers, the voltage at the load buses drop leading to 

oscillations and further making the system unstable. The load bus voltage 

magnitudes for this contingency are shown in figure 6.13. 

 
Figure 6.12 Active power consumption at the load buses for outage of line between 

bus 5 and 4 
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Figure 6.13 Voltage magnitudes at the load buses for a line outage between bus 5 

and 4 in IEEE 9 bus system  

The proposed approach of using pre-calculated OPF solutions from database 

is applied to this scenario after 0.512 seconds, i.e. the average time taken to 

retrieve OPF solution from the database (as shown in Table 6.11). So, the 

active power and voltage magnitudes at the load buses of the system after 

applying the OPF solution at 10.512 seconds can be observed in figure 6.14 

and 6.15 respectively. 

 
Figure 6.14 Active power consumption for outage of line between bus 5 and 4 after 

applying the proposed approach 
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Figure 6.15 Voltage magnitudes at the load buses for outage of line between bus 5 

and 4 after applying the proposed approach 

The online calculate OPF solution of this operating point is applied to the 

system 5.561 seconds (from table 6.11) after applying contingency. The active 

power and voltage magnitudes at the load buses of the system after applying 

the OPF solution at 15.561 seconds can be observed in figure 6.16 and 6.17 

respectively. 

 
 Figure 6.16 Active power consumption for outage of line between bus 5 and 4 after 

applying the online calculated OPF solution 

 



 

 68 

Figure 6.17 Voltage magnitudes at the load buses for outage of line between bus 5 

and 4 after applying the online calculated OPF solution 

From the figures 6.14 and 6.15, when the OPF solution of the nearest 

operating point is applied to the system 0.512 seconds (from table 6.11) after 

the contingency, there is load reduction and improvement in the voltages at 

the load buses. The oscillations in load consumption and voltage magnitudes 

are damped after applying OPF solution as shown in figures 6.14 and 6.15. 

From the figures 6.16 and 6.17, when the online calculated OPF solution is 

applied to the system 5.561 seconds (from table 6.11) after the contingency, 

there is load reduction and improvement in the voltages at the load buses. But 

the oscillations in load consumption and voltage magnitudes are reduced after 

applying OPF solution as shown in figures 6.16 and 6.17. It should be noted 

from figure 6.14 and figure 6.16 that time of application of OPF solution 

plays an important role in stabilizing the system. Since the proposed method 

retrieves the OPF solution of the nearest operating point from database in 

less time than calculating OPF solution online, the system is stabilized when 

the proposed method is applied as shown in figures 6.14 and 6.15. 

6.6 Discussion 

The decision trees that are trained on the power flow data to determine the 

security regions has an average accuracy of 99.96% for IEEE 9 bus system. 

From the accuracy of the decision tree results on the time domain simulations 

presented in the sub-section 6.3.3, it was observed that boundary areas of the 

classified regions are more prone to misclassification. Misclassification can be 

evaded by including more operational points in the boundary of the classified 

regions when training the decision trees.   

From the results presented in sub-section 6.4.2, (approximately) one third 

(32.2 %) of the given operating points were improved in the state of the 

system when OPF solution of the nearest operating point from the database 

was applied. While other one third (32%) of all the given operating points did 

not change the system state but the voltages at the load buses were improved. 
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From the results presented in section 6.5,  the time taken to retrieve the OPF 

solutions of the nearest operating point was considerably less than the time 

taken to compute the OPF solution online and this approach could be useful 

to evade the unstable condition by aiding the system operator during critical 

system conditions. 
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C h a p t e r  7  

7. CLOSURE 

7.1 Summary 

The growing demand for electricity driven by deregulated electricity markets, 

has forced modern power systems to operate closer to operating limits. Due 

to deregulated markets and large scale integration of renewable energy sources 

the power systems are operating under stress conditions making them 

vulnerable to a range of contingencies. Because of these reasons, application 

of new effective security assessment and control methods are essential in 

evaluating and enhancing the power system’s stability. By computing the 

regions and boundaries for a power system the stability status can be 

predicted, and, based on these computations, preventive measures can be 

suggested in order to restore system’s stability. 

This report has suggested the idea of using decision trees to enlarge and 

generalize the existing security boundary method of stable and unstable 

regions to classify the operating regions based on distance from the nearest 

SNB point. A theoretical background and different steps involved in 

achieving the objectives (refer chapter-1) were presented and explained in 

detail in their corresponding chapters.  

The workflow used to train the decision trees on the power flow output for 

different network configurations was presented in chapter-4. Each network 

configuration has decision trees w.r.t every load bus. These trained decision 

trees were used to predict the region of operation (“unstable”, “outside grid 

limits”, “marginally stable”, “unstable”) of a power system. The optimization 

problem from PSAT that is used to calculate the OPF solution of the 

operating points and the work flow used for calculating OPF solutions was 

explained and presented in detail in chapter 5. 
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In the case studies chapter presented in this thesis, the proposed approach 

was tested on IEEE 9 bus system. Decision trees were created on the training 

set and tested on the testing set. The accuracy results for the created DTs and 

the observations on the misclassifications were presented in the sub-section 

6.3.2 and 6.3.3. The pre-calculated OPF solutions were mapped to their 

corresponding operating point to form a database. The proposed approach 

was tested on random load power values and the advantage of proposed 

approach was explained with a particular scenario in a power system.   

7.2 General Conclusions and Recommendations 

The decision trees can be created using the historical data but to get variety of 

historical data requires long time. Moreover historical data may not contain all 

type of faults. So, considering these aspects simulated data was used to create 

the decision trees. The decision trees in this study were created using the 

power flow results of the given power system model. Therefore, the 

prediction accuracy of the created decision trees for a real power system 

depends on the accurate modeling in the power system analysis software. 

The decision trees were trained using the power flow results since the time 

domain simulations take more computational time. The power flow 

simulations for different network configurations and different load power 

consumptions were automated in order to reduce total computational time 

for training DTs.  

7.3 Conclusions from Case Studies 

The average accuracy of classification by the created decision trees on power 

flow data for random time domain simulations was 99.06 %. It was observed 

that the majority of the misclassified operating points lie on the boundary of 

regions. Therefore, more operating points are required in the boundaries of 

the regions when training the decision trees in order to reduce the 

misclassification of operating points in the boundary region. 

From the results presented in sub-section 6.4.2, one third of the given 

operating points were improved in the state of the system when OPF solution 
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of the nearest operating point from the database was applied. While other one 

third of all the given operating points did not change the system state but the 

voltages at the load buses were improved. Due to misclassification by the 

decision trees, system state was deteriorated when the OPF solution of the 

nearest operating point from database was applied for one operating point. 

It was also shown in the case studies that the time taken to retrieve the OPF 

solutions of the nearest operating point was considerably less than the time 

taken to compute the OPF solution online. It should be noted that this could 

significantly help the operator in scenarios like the one explained section 6.5. 

The idea of this approach to use decision trees to classify the operating 

regions (“unstable”, “outside grid limits”, “marginally stable”, “unstable”) 

based on distance from the nearest SNB point has proved it to be fruitful in 

applying OPF solution of the nearest operating point in the database because 

of the less time taken to classify the region and search for nearest operating 

point OPF solution. However, further study on a bigger power system model 

is essential to further identify any anomaly behaviors such as impact of 

voltage control devices like FACT devices, Tap changing transformer or any 

neglected conditions such as impact of intermittency of the renewable energy 

generation. Overall, the case studies has shown that the offline computation 

of the decision trees for different network configuration and pre-calculated 

OPF solutions can assist power system operators in voltage stability 

assessment and fast preventive control. 

7.4 Future Work 

1. The OPF solution of the operating point could possibly be improved 

by searching for (k) k-nearest operating points within a specified 

distance and allocate weights (𝑤𝑤𝑖𝑖) to the OPF solutions of these 

operating points (OP). The OPF solution of the current operating 

point could then be given as shown in (7.1) with respect to (7.2). 

𝑂𝑂𝑃𝑃𝑂𝑂 = 1
𝑜𝑜
∑ 𝑤𝑤𝑖𝑖
𝑜𝑜
𝑖𝑖=1 ∗ 𝑂𝑂𝑃𝑃𝑂𝑂(𝑂𝑂𝑃𝑃𝑖𝑖)                                   (7.1) 
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𝑠𝑠. 𝑡𝑡.∑ 𝑤𝑤𝑖𝑖 = 1𝑜𝑜
𝑖𝑖=1                                              (7.2) 

         This could further improve the OPF solution of the operating point. 

2. Include the options of how to apply the control actions and their 

sequence of operation when applying the preventive control on the 

system based on pre-calculated OPF solution. 

3. Use smarter methods to generate the training data e.g. Continuation 

Power Flow (CPF) 

4. In real-world power systems, the loads often depend on both the 

voltage and frequency at their respective buses. But in this thesis, the 

load dynamics are neglected by assuming constant PQ loads, which are 

generally considered as worst case scenario. In order to make the 

proposed approach to work under realistic power systems scenario, it is 

essential to model certain percentage of the loads as voltage dependent 

or frequency dependent loads. 

5. The proposed approach should be applied on a larger power system, 

e.g. IEEE 39-bus system, in order to check if there is any anomalous 

behavior or short-comings in the proposed approach with the increase 

in size of the decision trees or computational time etc. 

6. The proposed approach should be tested on a system that has voltage 

controlled buses. Voltage controlled buses maintain constant voltage at 

a particular bus irrespective of the load consumption at that bus. So, 

including voltage as an attribute for the creation of decision tree can 

cause ambiguity problem because the voltage at that bus does not vary 

as a function of the load consumption at that bus. This could result in 

erroneous classification of security regions.  Proper attribute selection 

in these cases could be a further research topic. 

7. Inclusion of cost for the load shedding to be done as per the OPF 

solution from the database can help to further develop the existing 
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method to search for nearest operating point with any possible 

minimum interruption cost load shedding OPF solution. 

8. Using smart methods like Continuation Power Flow (CPF) to generate 

the training data for decision trees. 
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APPENDIX 

IEEE 9-bus System data: 

Line Data 
From bus To bus R (pu) X (pu) 

4 1 0.0000 0.0576 
4 5 0.0100 0.0850 
4 6 0.0170 0.0920 
7 2 0.0000 0.0625 
7 5 0.0320 0.1610 
7 8 0.0085 0.0720 
9 3 0.0000 0.0586 
9 6 0.0390 0.1700 
9 8 0.0119 0.1008 

 

Generator parameters Gen-1 Gen-2 Gen-3 
𝑇𝑇𝑑𝑑0′  8.9600 6.0000 5.8900 
𝑇𝑇𝑑𝑑0′′  0.0500 0.0500 0.0500 
𝑇𝑇𝑞𝑞0′  - 0.5350 0.6000 
𝑇𝑇𝑞𝑞0′′  0.0500 0.0500 0.0500 

Inertia H 9.5500 3.3300 2.3500 
Damping D 1.6000 0.6700 0.4700 

𝑋𝑋𝑑𝑑 0.3615 1.7200 1.6800 
𝑋𝑋𝑞𝑞 0.2400 1.6600 1.6100 
𝑋𝑋𝑑𝑑′  0.1508 0.2300 0.2321 
𝑋𝑋𝑞𝑞′  - 0.3700 0.3200 

𝑋𝑋𝑑𝑑′′ = 𝑋𝑋𝑞𝑞′′ 0.1000 0.2100 0.2100 
𝑋𝑋𝑣𝑣 0.0600 0.1000 0.1536 

 

IEEET1 
𝑇𝑇𝑅𝑅(𝑠𝑠𝑡𝑡𝑐𝑐)  0.0000 
𝐾𝐾𝐴𝐴 20.000 

𝑇𝑇𝐴𝐴(𝑠𝑠𝑡𝑡𝑐𝑐) 0.2000 
𝑉𝑉𝑅𝑅𝑅𝑅𝐴𝐴𝑋𝑋 3.0000 
𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛 -3.0000 
𝐾𝐾𝐸𝐸 1.0000 

𝑇𝑇𝐸𝐸(𝑠𝑠𝑡𝑡𝑐𝑐) 0.3140 
𝐾𝐾𝐹𝐹 0.0630 
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𝑇𝑇𝐹𝐹(𝑠𝑠𝑡𝑡𝑐𝑐) 0.3500 
𝐸𝐸1 2.8000 

𝑆𝑆𝐸𝐸(𝐸𝐸1) 0.3034 
𝐸𝐸2 3.7300 

𝑆𝑆𝐸𝐸(𝐸𝐸2) 1.2884 
 

IEESGO 
𝑇𝑇1  25.000 
𝑇𝑇2  0.0000 
𝑇𝑇3  1.0000 
𝑇𝑇4  1.0000 
𝑇𝑇5  12.500 
𝑇𝑇6  0.0000 
𝐾𝐾1 5.0000 
𝐾𝐾2 3.0000 
𝐾𝐾3 0.5000 
𝐸𝐸1 2.8000 
𝑃𝑃𝑚𝑚𝑋𝑋𝑥𝑥 1.0000 
𝑃𝑃𝑚𝑚𝑖𝑖𝑋𝑋 0.0000 
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