
Low Power State-Parallel Relaxed Adaptive Viterbi Decoder
Design and Implementation

Fei Sun and Tong Zhang
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute, USA
Email: sunf@rpi.edu, tzhang@ecse.rpi.edu

Abstract— In this paper, we present an algorithm/architecture-
level design solution for implementing state-parallel adaptive
Viterbi decoders that, compared with their Viterbi counterparts,
can achieve significant power savings and modest silicon area
reduction, while maintaining almost the same decoding perfor-
mance and throughput. The effectiveness of the proposed solution
has been demonstrated using convolutional codes decoders as test
vehicles, where Synopsys tools are used for synthesis, layout, and
post-layout power estimation.

I. I NTRODUCTION

Adaptive Viterbi algorithm [1], [2], combining the Viterbi
algorithm with the principle ofT-algorithm [3], has a compu-
tational activity adaptive to the run-time signal to noise ratio
(SNR) and a great potential of realizing significant power sav-
ings. As the main difference from the Viterbi algorithm, in the
adaptive Viterbi algorithm, the winner path at each trellis state
does not necessarily become a survivor path, i.e., only those
whose path metrics are better than a global non-survivor purge
limit will be feed to the next decoding depth as survivors. The
non-survivor purge limit varies from one decoding depth to the
next and depends on the metric of the overall best winner at
each decoding depth. Due to the serial nature of thesearch-the-
best-winneroperation, the adaptive Viterbi algorithm cannot fit
into a state-parallel decoder structure, hence its power-saving
advantage cannot be leveraged by applications demanding very
high throughput.

In this work, we developed arelaxed adaptive Viterbi
decoder that eliminates the search-the-best-winner operation
and directly fits into a state-parallel decoder structure. Com-
pared with its state-parallel Viterbi counterpart, a state-parallel
relaxed adaptive Viterbi decoder can realize significant power
saving and modest silicon area reduction, while maintaining
almost the same decoding performance and throughput. Using
a 0.13µm CMOS standard cell library and Synopsys tools
for synthesis, layout, and post-layout power estimation, we
designed relaxed adaptive Viterbi decoders for rate-1/2 con-
volutional codes with 64, 128, and 256 states, respectively.
When operating at 400Mbps, compared with their Viterbi
counterparts, the relaxed adaptive Viterbi decoders realize up
to 62.7% of power savings on the decoding computation1, and

1The total power consumption of a convolutional code decoder contains
two parts, including (1) power consumed bydecoding computationincluding
ACS (add-compare-select) computation, branch metric computation, etc., and
(2) power consumed bydecoder output generationthat is carried out by a
trace-back unit.

up to 70.5% of overall decoder power savings if the register-
exchange approach is used to implement the trace-back unit.

II. RELAXED ADAPTIVE V ITERBI DECODER

A. Decoding Algorithm

Fig. 1(a) shows the recursive decoding data flow diagram
of an adaptive Viterbi algorithm, which adds two functional
blocks, including the Best Winner Search and Non-Survivor
Purge, into the original Viterbi algorithm. At each decod-

(a)

(b)

Branch Metric
Computation

ACS

Best Winner Search

Non-Survivor
Purge

D

Branch Metric
Normalization

ACS

Threshold
Check

Non-Survivor
Purge

D

Branch Metric
Computation

Fig. 1. The recursive decoding data flow diagrams of (a) original adaptive
Viterbi algorithm and (b) proposed relaxed adaptive Viterbi algorithm.

ing depth, after each ACS unit determines a local winner,
the Best Winner Search block finds the winner having the
best (minimum) path metric, denoted asΓ

(n)
B , and the Non-

Survivor Purge block deletes the local winners whose metric
Γ (n) ≥ Γ

(n)
B + T and feeds the others as survivors to the

next decoding depth, whereT is a fixed positive number. The
value ofΓ (n)

B + T is called non-survivor purge limit. Due to
the serial essence of the search operation, the Best Winner
Search block inevitably incurs a large delay in the recursive
decoding datapath, which makes the adaptive Viterbi algorithm
not suitable for a state-parallel decoder structure.

In this work, we developed a method to eliminate the
search-the-best-winner operation and hence enable the high-
throughput state-parallel adaptive Viterbi decoder implemen-
tation. The basic idea is todynamically normalizethe branch
metrics in such a way that the metric of the overall best winner



(a)

Branch
Metric Unit

Normalization Unit Parallel Modified
ACS Array TraceBack

Unit

0
r

{SM, Vb}

{Dec, Vb}

{Tb}

(b)
SM

Dec

VbComparator+

+
M
U
X

Compare
with -T+R

Tb

Vb1

Vbn

BM1

SM1

BMn

SMn

clock-gating

Fig. 2. Architectures of (a) the state-parallel relaxed adaptive Viterbi decoder, and (b) a modified ACS unit.

is almost always very close to−T , which means the non-
survivor purge limit is almost always very close to zero. As
a relaxation, we simply fix the non-survivor purge limit as
zero at each decoding depth, which directly eliminates the
search-the-best-winner throughput bottleneck in the recursive
decoding datapath. The resulted algorithm is referred to as
relaxed adaptive Viterbi algorithm. The branch metric dynamic
normalization is realized by the two shaded functional blocks
as shown in Fig.1(b), which are described as follows:

• Threshold Check: It checks whether at least one survivor
has a metric less than−T + R, whereR is a positive
number that is much less thanT . If yes, it outputs a zero,
otherwise, it outputsr, wherer is a positive number that
is less than or equal toR.

• Branch Metric Normalization: At each depth, it finds the
best (minimum) branch metric, denoted asBM

(n)
B . Given

the inputd(n) from the Threshold Check, which is either
zero orr, it subtractsBM

(n)
B + d(n) from each branch

metric.

If at least one survivor has a metric less than−T +R (i.e.,
the metric of the best survivor is very close to−T sinceR
is much less thanT ), the normalized branch metrics will be
non-negative with the minimum value of zero, and the path
metrics will monotonically increase. If non of the survivors
has a metric less than−T + R (i.e., the metric of the best
survivor is not very close to−T ), we bias the branch metric
normalization byr to push the path metrics toward−T . With
appropriate selection ofR and r, we can dynamically adjust
the best metric almost always very close−T .

B. State-Parallel Decoder Architecture

The above relaxed adaptive Viterbi algorithm can be directly
mapped onto a state-parallel decoder hardware architecture,
as illustrated in Fig. 2(a), that is very similar to that of a
state-parallel Viterbi decoder. Notice that the search-the-best-
branch-metric operation in the normalization unit will not lead
to a throughput bottleneck because (i) the number of branch
metrics is typically very small, and (ii) it locates outside
the recursive datapath and hence can be directly pipelined if
necessary.

The Threshold Check functional block in the above relaxed
Viterbi algorithm is realized in a distributed manner, i.e.,

the compare-with-(−T + R) is realized by each individual
modified ACS unit, and the pass/fail decisions from all the
modified ACS units are AND together to determine whether
a zero or r should be sent to the normalization unit, as
illustrated in Fig. 2(a). The architecture of a modified ACS
unit is shown in Fig. 2(b), which generates four outputs,
including (1) survivor path metric SM, (2) decision bits Dec,
(3) validity bit Vb (Vb=0 indicates that a survivor is generated
from the present trellis state), and (4) threshold check result Tb
(Tb=0 indicates that the corresponding path metric is less than
−T + R). As demonstrated in the implementation examples
described in the next section, compared with its state-parallel
Viterbi decoder counterpart, a state-parallel relaxed adaptive
Viterbi decoder can achieve:

• Significant power saving: The power saving is gained
from both decoding computation and decoder output
generation:

1) The power saving on decoding computation is real-
ized by clock-gating the path metric output SM of
non-survivors (as shown in Fig. 2(b)), which leads
to a largely reduced switching activity in the sub-
sequent ACS computation due to the significantly
reduced number of survivors.

2) The power saving on decoder output generation
depends on the implementation of trace-back unit:
(a) If we use the register-exchange approach, we can
simply clock-gate the registers associated with non-
survivors; (b) If we use the memory-based approach,
we may force the decision bits of non-survivors
to be a constant to reduce the switching activity
in memory storage (i.e., very likely the constant
will be written into the same memory location
successively). Notice that, although memory-based
approach tends to consume less power, in order to
match the high throughput of state-parallel decoding
computation, it requires complex memory structure
design and/or multi-frequency/phase clock signals,
and may incur certain decoding performance degra-
dation.

• Modest silicon area reduction: Contrary to the first im-
pression that the relaxed adaptive Viterbi decoder may
occupy larger area due to the extra functional blocks, the



2.5 3 3.5 4 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

B
E

R

E
b
/N

0
(dB)

2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

B
E

R

E
b
/N

0
(dB)

2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

B
E

R

E
b
/N

0
(dB)

2.5 3 3.5 4 4.5
20

30

40

50

60

70

A
ve

ra
ge

 #
 o

f S
ur

vi
vo

rs

E
b
/N

0
(dB)

2.5 3 3.5 4
20

40

60

80

100

120

140

A
ve

ra
ge

 #
 o

f S
ur

vi
vo

rs

E
b
/N

0
(dB)

2.5 3 3.5 4
0

50

100

150

200

250

300

A
ve

ra
ge

 #
 o

f S
ur

vi
vo

rs

E
b
/N

0
(dB)

Relaxed Adapt. Viterbi
Viterbi
Ideal Viterbi

Relaxed Adapt. Viterbi
Viterbi

Relaxed Adapt. Viterbi
Viterbi
Ideal Viterbi

Relaxed Adapt. Viterbi
Viterbi

Relaxed Adapt. Viterbi
Viterbi
Ideal Viterbi

Relaxed Adapt. Viterbi
Viterbi

K=7 

K=7 

K=8 

K=8 

K=9 

K=9 

Fig. 3. Simulated BER and average number of survivors.

branch metric normalization can help to reduce the finite
word-length of the path metrics, leading to an overall
modestly reduced silicon area (as demonstrated in the
next section).

Moreover, as demonstrated in the next section, the re-
laxed adaptive Viterbi decoders can achieve almost the same
decoding performance (with appropriate selection ofT , R,
andr) and decoding throughput, compared with their Viterbi
counterparts. The reason for the latter can be briefly explained
as follows:

1) The reduced finite word-length of path metric can com-
pensate the latency overhead incurred by the slightly
more complex operation in the ACS computation;

2) The threshold check operation will not incur a through-
put bottleneck because the involved operation is very
simple and it can be directly pipelined if necessary (in
the design examples described later, the overall decoder
critical path always lies in ACS computation).

Finally, we note that, due to their very similar architectures,
the circuit-level design/optimization techniques ever developed
for state-parallel Viterbi decoders can be equally applied to
state-parallel relaxed adaptive Viterbi decoders.

III. D ESIGN EXAMPLES

For the purpose of demonstration, we designed state-parallel
relaxed adaptive Viterbi decoders for rate-1/2 convolutional
codes with the constraint lengths K of 9, 8 and 7 (correspond-
ing to the trellises with 256, 128 and 64 states, respectively).
The code generators are (561, 753) for K=9, (247, 371)

for K=8, and (133, 171) for K=7. For comparison, we also
designed the state-parallel Viterbi counterparts. The trace-
back units are realized as register-exchange with majority vote
(as discussed in [4], the majority vote can be slightly more
power-efficient for register-exchange trace-back unit). We use
a 0.13µm CMOS standard cell library and Synopsys tool
sets are used for synthesis (Design Compiler), layout (Astro),
and post-layout power estimation (Prime Power). The design
parameters are outlined in Table I. We note that the branch
metric normalization in relaxed adaptive Viterbi decoders help
to reduce the finite word-length of the path metrics.

TABLE I

DESIGN PARAMETERS

Viterbi Relaxed Adaptive Viterbi
Decision Length 55 (K=9), 46 (K=8), 40 (K=7)

Soft Input 3 bits
Path metric2 8 bits 6 bits

Others N/A T = 24, R = r = 3

2In the Viterbi decoder, the computation of path metric is based on
modulo arithmetic, where the configuration of 3-bit soft input and
8-bit path metric is widely used in open literature, e.g., see [5].

Assuming these convolutional codes are modulated by
BPSK (binary phase shift keying) and transmitted over an
AWGN (additive white Gaussian noise) channel, Fig. 3 shows
the simulated BER (bit error rate) and average number of
survivors of the decoders. In each case, we also show the
performance of ideal Viterbi decoding (i.e., floating point
precision and infinite decision length). The relaxed adaptive



Viterbi decoders can achieve almost the same decoding per-
formance as their Viterbi counterparts, while incurring much
less number of survivors.

During synthesis and layout, we set the target throughput as
400Mbps (with the power supply of 1.1V) and the results show
that all the decoders can meet this target with similar timing
slack. The post-layout silicon area and power estimation (when
the decoders run at 400Mbps) results are listed in Tables
II, III and IV for K=7, 8, and 9, respectively. They clearly
show the effectiveness of the proposed relaxed adaptive Viterbi
decoders, where the power-saving efficiency improves as the
constraint length increases.

TABLE II

POST-LAYOUT AREA AND POWER ESTIMATION FORK=7

Viterbi Relaxed
Adaptive Viterbi

Core Area (mm2) 0.204 0.196 (-3.9%)
SNR 4dB 3dB 4dB

Decoding 48.1 27.3 25.2
Power Computation (-43.2%) (-47.7%)
(mW) Output

57.4 56.4 45.0@ Generation
400Mbps (reg. exchange)

Total 105.5 83.7 70.2
(-20.6%) (-33.5%)

3The number in parenthesis represents the percentage of decrease
against the Viterbi decoder.

TABLE III

POST-LAYOUT AREA AND POWER ESTIMATION FORK=8

Viterbi Relaxed
Adaptive Viterbi

Core Area (mm2) 0.463 0.424 (-8.4%)
SNR 4dB 3dB 4dB

Decoding 103.2 49.6 43.5
Power Computation (-51.9%) (-57.9%)
(mW) Output

123.7 76.7 53.1@ Generation
400Mbps (reg. exchange)

Total 226.9 126.3 96.6
(-44.3%) (-57.4%)

TABLE IV

POST-LAYOUT AREA AND POWER ESTIMATION FORK=9

Viterbi Relaxed
Adaptive Viterbi

Core Area (mm2) 1.10 1.02 (-7.3%)
SNR 4dB 3dB 4dB

Decoding 221.5 94.8 82.6
Power Computation (-57.2%) (-62.7%)
(mW) Output

344.4 139.1 84.1@ Generation
400Mbps (reg. exchange)

Total 565.9 233.9 166.7
(-58.7%) (-70.5%)

IV. CONCLUSIONS

This paper presents the algorithm design and VLSI imple-

mentation of state-parallel relaxed adaptive Viterbi decoders

for high-throughput and low-power trellis decoding. Supported

with detailed synthesis, layout, and post-layout power esti-

mation results, the key feature that distinguishes this design

solution from the existing work is that it can realize significant

power saving and modest silicon area reduction without degra-

dation on the decoding performance and throughput, compared

with state-parallel Viterbi decoders.

REFERENCES

[1] R. Henning and C. Chakrabarti, “An approach for adaptively

approximating the Viterbi algorithm to reduce power consump-

tion while decoding convolutional codes,”Transactions on Signal

Processing, vol. 52, pp. 1443–1451, May 2004.

[2] M.-H. Chan, W.-T Lee, M.-C. Lin, and L.-G. Chen, “IC design

of an adaptive Viterbi decoder,”IEEE Transactions on Consumer

Electronics, vol. 42, pp. 52–62, Feb. 1996.

[3] S. J. Simmons, “Breadth-first trellis decoding with adaptive

effort,” IEEE Transactions on Communications, vol. 38, pp. 3–

12, Jan. 1990.

[4] M. Petrov A.M. Obeid, A. Garcia and M. Glesner, “A multi-

path high speed viterbi decoder,” inProceedings of the 2003

10th IEEE International Conference on Electronics, Circuits and

Systems (ICECS), Dec 2003, pp. 1160–1163.

[5] Y.-N. Chang, H. Suzuki, and K. K. Parhi, “A 2-Mb/s 256-state

10-mW rate-1/3 Viterbi decoder,”IEEE Journal of Solid-State

Circuits, vol. 35, pp. 826–834, June 2000.


