
Design of VLSI Implementation-Oriented LDPC Codes

Hao Zhong and Tong Zhang
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute, Troy, NY, USA
zhongha@rpi.edu, tzhang@ecse.rpi.edu

Abstract— Recently, low-density parity-check (LDPC) codes
have attracted much attention because of their excellent error-
correcting performance and highly parallelizable decoding
scheme. However, the effective VLSI implementation of an
LDPC decoder remains a big challenge and is a crucial issue
in determining how well we can exploit the benefits of the
LDPC codes in the real applications. In this paper, following the
joint code and decoder design philosophy, we propose a semi-
random design scheme to construct the LDPC codes that not
only exhibit very good error-correcting performance but also
effectively fit to partially parallel VLSI decoder implementations.
The corresponding partially parallel decoder has a very regular
structure and simple control mechanism. Our computer simula-
tions show that such LDPC codes achieve very good performance
comparable to their counterparts constructed in a fully random
scheme, which however have little chance of fitting to partially
parallel decoder implementations.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes have become a
topic of great current interest because of their excellent error-
correcting performance and highly parallelizable decoding
scheme. The past a few years experienced significant improve-
ment on the design and analysis of the LDPC codes with
near Shannon-limit performance. However, the realization of
an LDPC decoder VLSI implementation still remains a big
challenge and is a crucial issue determining how well we can
exploit the unmatched merits of the LDPC codes in the real
application.

Most LDPC codes are constructed by first choosing the
required code block length and the node degree distributions,
then pseudo-randomly generating a parity-check matrix (or
the corresponding bipartite graph) under certain constraints.
Gallager [1] constructed the(j, k)-regular LDPC code ensem-
ble based on the(j, k)-regular matrices with rows divided
into j submatrices, the first composed byk copies of the
identity matrix and with subsequent submatrices being random
column permutations of the first. Luby et al. [2] proposed
LDPC codes with irregular node degree distributions which
outperform regular ones. They introduced tools based on
linear programming for designing irregular code ensembles
for which the maximally allowed crossover probability of the
binary symmetric channel is optimized. Richardson and Ur-
banke [3] extended the work of Luby et al. to any binary input
memoryless channel and to soft decision message passing
decoding. They determined the capacity of message passing
decoders applied to LDPC code ensembles by a method called
density evolution. Recently, Kou and Lin [4] developed a
finite geometric approach to the construction of LDPC codes

which can lead to very good iterative decoding performances
in moderate block length.

Unfortunately, all these code construction methods gave
little consideration on efficient decoder VLSI implementation.
The conventionalcode-to-decoderdesign, first construct a
code with good error-correcting performance, then develop
the decoder VLSI implementation for that specific code, makes
the efficient LDPC decoder VLSI implementation a nearly
impossible task. In this paper, we propose a design scheme
to construct the LDPC codes that not only exhibit very
good error-correcting performance but also effectively fit to
efficient partially parallel decoder VLSI implementations. The
underlying philosophy, originally proposed in [5] [6], is to
jointly consider the code design and decoder implementation.
When we prepared the final version of this paper, we found
that the proposed code construction strategy is very similar
to a recently proposed IIP code construction scheme [7] in
the matrix permutation and expansion, which can date back to
SFT approach in [8].

The remainder of this paper is organized as follows. We
briefly discuss some LDPC decoder implementation issues in
Section II. In Section III, we present our proposed method to
construct partially parallel decoder implementation oriented
LDPC codes. Section IV presents the corresponding partially
parallel decoder structure. The simulation results are shown in
Section V to illustrate the error-correcting performance of such
LDPC codes. Section VI provides some concluding remarks.

II. LDPC DECODERIMPLEMENTATION ISSUES

The main challenge in the LDPC code decoder VLSI
implementation is how to effectively manage the message
passing during the iterative belief propagation (BP) decoding.
Generally, the LDPC decoder implementations fall into two
categories:

• Fully parallel decodersthat directly instantiate the bipar-
tite graph of the LDPC code to the hardware.

• Partially parallel decodersthat maps a certain number of
variable nodes or check nodes to a single hardware unit
in time-division multiplexing mode.

In a fully parallel decoder, each individual variable node
or check node is physically implemented as a node decoding
unit, and all the units are connected through an interconnection
network reflecting the bipartite graph connectivity. It is clear
that such fully parallel decoders can achieve very high de-
coding throughput, e.g., Howland and Blanksby [9] [10] have
implemented a 1Gbps decoder for 1024-bit, rate 1/2 LDPC
code. However, the fully parallel decoders suffers from high



implementation complexity, especially the prohibitive routing
wire overhead with too many global long routing wires.
Moreover, the random-like connection between the variable
nodes and check nodes may cause routing congestion. Hence,
the fully parallel decoder is only a feasible option for LDPC
codes with short code length, i.e., few thousand bits.

Partially parallel LDPC decoder [6] [11] [12] targets on ap-
propriate trade-offs between hardware complexity and decod-
ing speed. By using time-division multiplex mapping in which
a certain number of variable nodes or check nodes are mapped
to a single decoding unit, partially parallel decoder trades the
decoding speed for reduced wire and logic implementation
complexity. In this work, we are interested in the LDPC codes
suitable for partially parallel decoder implementations.

As mentioned in the above, the construction of the LDPC
codes typically relies on random construction that results in
unstructuredbipartite graph topology. However, the partially
parallel decoder implementation demands relativelystructured
LDPC code bipartite graph topology that could lead to the
efficient realization of partially parallel message passing. Thus
the partially parallel decoder implementation is not trivial. In
this paper, we propose an approach to construct a class of
LDPC codes that have relatively structured bipartite graph
topologies that lead to very good performance and directly
fit to partially parallel decoder implementations.

III. LDPC CODE DESIGN

In this section we present our proposed LDPC code con-
struction approach. To construct an LDPC code with anM×N
parity check matrix, provided thatM = p·Ms andN = p·Ns,
the proposed construction approach performs the following
three steps:

1) Use a heuristic algorithm to construct a group ofbase
parity check matrices with the size ofMs ×Ns.

2) Randomlyexpandeach base matrix into ap ·Ms×p ·Ns

parity check matrix.
3) Apply a cycle effectcriterion to select an LDPC code

from the developed code group.

A. Base Matrices Construction

Generally speaking, there are two factors that mainly deter-
mine the error-correcting performance of an LDPC code: the
effectiveness of the iterative belief propagation algorithm and
the minimum distance of the LDPC code. While the LDPC
code has a reasonably large code length (larger than1K), its
minimum distancealmost for surewill be sufficiently good.
So the error-correcting performance is mainly determined by
the effectiveness of the iterative belief propagation algorithm.
Therefore, we only need to concentrate on how to construct
an LDPC code which can be effectively decoded under the
iterative BP algorithm.

It is well known that when the bipartite graph of the
LDPC code is cycle-free, the belief propagation algorithm
becomes a recursive algorithm that always converges to the
true maximizing a posteriori (MAP) algorithm after a finite
number of messages have been passed. However, all the

good codes inevitably have cycles in their bipartite graphs.
Fortunately, the BP algorithm performs remarkably well when
the bipartite graph does not contain too many small cycles.

Hence, in the construction of the base matrices, we try
to avoid small cycles as much as possible. We adopt the
heuristic approach called bit-filling proposed by Campello
and Modha [13] to construct a certain number ofMs × Ns

base matrices whose corresponding bipartite graphs have large
girths1. The basic idea behind this strategy is to insert 1’s
into the corresponding matrix one by one while maintaining
the prescribed girth constraint. The construction starts with
insisting on a large girth constraint, until it cannot add
more bits without violating the girth constraint. Then the
girth constraint is decreased and the process continues. The
algorithm terminates when all the needed bits (edges) are
inserted into the matrix (graph) or the girth constraint falls
below a specified minimum value. To make the algorithm
applicable to an LDPC code with an arbitrary weight (or
node degree) distribution, we redefine the problem and revise
the algorithm as follows.

Problem: Given the weight distribution of the rows and
columns, we would like to construct anm × n parity check
matrix H with large girth g(H), whereg(H) ≥ g, g is the
minimum allowable girth value.

Algorithm 3.1: Bit-filling Algorithm

1) According to the weight distribution of the columns,
generate a sequence{a1, a2, ..., an}, whereaj (1 ≤ j ≤
n) denotes the number of 1’s in j-th column of H.

2) According to weight distribution of rows, generate a
sequence{b1, b2, ..., bL}, wherebi (1 ≤ i ≤ L) is the
row position of an1 in H, and L is the total number of
ones in H.

3) Set H = O and g′ = g, where g is the initial girth
constraint.

4) For each columnj, insert 1’s atH(j, bi) until the weight
of column j is equal toaj . For each insertion of1,
the constraintg(H) < g′ should be maintained;bi is
randomly picked and removed from{b1, b2, ..., bL} after
a successful insertion atH(j, bi).

5) If step 4 can not proceed without violating the constraint,
reduceg′ by two and go back to step 4.

6) Stop when L ones are inserted in H, org′ < g.

B. Matrices Expansion

As we mentioned in Section II, our target is to construct
LDPC codes that have relatively structured bipartite graph
topology that lead to very good performance and directly fit
to partially parallel decoder implementations. The following
matrix expansionplays a key step in reaching this target.

For eachMs × Ns base matrix generated by the above
algorithm, we randomly expand it by a factorp to obtain a
p ·Ms×p ·Ns matrix, as illustrated in Figure 1. Each0 in the
base matrix is expanded to ap×p zero sub-matrixO and each

1Girth is the length of the minimum cycle in a graph



1 at the position(u, v) is expanded to ap×p sub-matrixTu,v

that is obtained by right cyclic shifting ap×p identity matrix
by ku,v columns. Each integerku,v is generated randomly.

1 0 0 0 1 0

0 1 0 1 0 0

1 0 0 0 0 1

OO O O

O O O O

O O O O

Base Matrix
(Msx Ns) Expanded Matrix

(pMs x pNs)

T1,1

T3,1

T2,2

T1,5

T2,4

T3,6

p

p

Fig. 1. Matrix expansion.

Notice that the above matrix expansion scheme is beneficial
to both error-correcting performance and decoder hardware
implementations. The girth of the expanded matrix is always
larger than or equal to the girth of the base matrix that has
been optimized with its girth. The random cyclic permutation
of each identity matrix further increases the value of the
average cycle length, which will improve the effectiveness
of BP algorithm. As we will see later, such expansion will
directly lead to a partially parallel decoder consisting of a
structured array of memory and processors. Moreover, the
random cyclic permutation of each identity matrix results in
very simple control logic for generating the memory access
address.

C. Code Selection

The last step is to select the code from the code ensemble
constructed above leading to very good error-correcting per-
formance. It is well known that the cycles, particularly short
cycles, in the bipartite graph degrade the effectiveness of the
iterative BP decoding algorithm and hence the error-correcting
capability of the LDPC codes. Therefore, we select the code
based on the metric calledcycle effect, which is also known
as loopiness [14]. The cycle effect is defined as:

L =
∑

i=4,6,8,...

Ni · αi,

where Ni is the number of cycles with lengthi and α is
a value chosen for the sum to converge. We may intuitively
justify the effectiveness of this selection criterion based on the
well-known fact that the LDPC iterative belief propagation
decoding algorithm works well if the code graph does not
contain too many short cycles.

IV. PARTIALLY PARALLEL DECODERSTRUCTURE

Exploiting the characteristics of the LDPC codes con-
structed in the above, we develop a partially parallel decoder
structure as shown in Figure 2. It consists of an array of node
computation units to perform all the node computation in time-
division multiplexing mode and an array of memory blocks
to store all the decoding message. The message passing that

reflects the bipartite graph connectivity is jointly realized by
the memory address generation and the interconnection among
memory blocks and node computation units. Suppose the base
matrix is Ms × Ns and containsL 1’s, and the expansion
factor is p. The expanded matrix containsL permutated
identity matrices, each one denoted asTu,v as illustrated in
Figure 1. We can show that the LDPC code defined by such
an expanded matrix exactly fits to the partially parallel decoder
as shown in Figure 2. This partially parallel decoder contains
Ms check node computation units (CNUs),Ns variable node
computation units (VNUs), andL+Ns memory blocks among
which L blocks store the iterative decoding messages, each
one denoted as DMEMu,v, andNs blocks stores the channel
messages, each one denoted as CMEMv.

L + NS Memory Blocks

VNUNs

CNUMs
CNUiCNU1

VNUi
VNU1

Fig. 2. Partially parallel decoder structure.

Each DMEMu,v connects with CNUu and VNUv, and
stores p decoding messages associated with thep 1’s in
the permutated matrixTu,v. This decoder completes each
decoding iteration in2 ·p clock cycles. It works in check node
processing mode during the 1stp clock cycles, and variable
node processing mode during the 2ndp clock cycles. The
operations in the two modes are as follows:

• Check Node Processing: CNUs compute check-to-
variable messages for all the check nodes in a time
division multiplexing fashion. All the DMEMs store
the variable-to-check messages at the beginning. In
each clock cycle, one variable-to-check message in each
DMEM is converted to the corresponding check-to-
variable message by aread-computation-writeprocess.
The memory access address of each DMEMu,v is gener-
ated by a counter that starts from the block permutation
valueku,v.

• Variable Node Processing: VNUs calculate extrinsic
variable-to-check messages and update the decoding deci-
sion of all the variable nodes in a time division multiplex-
ing fashion. All the DMEMs store the check-to-variable
messages at the beginning. Similarly, in each clock cycle,
one check-to-variable message in each DMEM is con-
verted to a variable-to-check message and the decoding
decision of the corresponding is updated. The memory
access addresses of all the DMEMs and CMEMs are
generated by a counter that starts from0.



Clearly, the number of node decoding units in this par-
tially parallel decoder is reduced by the expansion factorp
compared with its fully parallel counterpart. This partially
parallel decoder is well suited for efficient high speed hardware
implementation because of the regular structure and simple
control logic. Compared with previous work [5] [6] [12], our
proposed design scheme supports much more flexible code
rate configurations and degree distributions, hence has great
potential on achieving very good error-correcting performance.

V. SIMULATION RESULTS

Applying our proposed design scheme, we construct two
(3, 6)-regular LDPC codes, denoted asC1 andC2, to demon-
strate the error-correcting performance. The code lengths of
C1 andC2 are4K and 8K, respectively. They have the same
expansion factorp = 64. The base matrices ofC1 andC2 are
32×64 and64×128, respectively. For each code, we randomly
generated500 base matrices optimized with the girth, then
randomly expanded each base matrix to one expanded matrix.
Finally we selected the one leading to the best cycle effect as
the selected parity check matrix. In the simulation, we assumed
that both codes were modulated by BPSK and transmitted over
AWGN channel.

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a)

B
E

R
(F

E
R

)

E
b
/N

0
(dB)

C
1
 −BER

C
1
 −FER

C
2
 −BER

C
2
 −FER

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
4

6

8

10

12

14

16

18
(b)

N
um

be
r 

of
 A

ve
ra

ge
 It

er
at

io
ns

E
b
/N

0
(dB)

C1
C2

Fig. 3. Simulation results of (a) BER vs. SNR, and (b) average number of
decoding iterations vs. SNR, where the maximum iteration number is20 and
each point is obtained with the simulation up to at least100 frame errors
occur.

Figure 3 shows the simulated bit error rate (BER), frame er-
ror rate (FER), and the average number of decoding iterations.

We note that these codes achieve comparable error-correcting
performance to their counterparts constructed in fully random
scheme. However the fully randomly constructed codes have
little chance of fitting to efficient partially parallel decoder
implementations.

VI. CONCLUSION

In this paper, we present an approach to construct the
LDPC codes that not only have very good error-correcting
performance but also fit to efficient partially parallel decoder
hardware implementations. The code construction scheme and
the corresponding partially parallel decoder design have been
described in details. The main advantage of this proposed
approach that it could realize flexible trade-off between hard-
ware complexity and decoding speed and support any arbitrary
node distribution configuration, hence shows great potential on
achieving very good error-correcting performance.

Future work is directed to the investigation of appropriate
irregular node degree distribution suited to this proposed code
design scheme and how to reduce the encoding complexity by
exploring the regularity of the code structure.

REFERENCES

[1] R. G. Gallager,Low-Density Parity-Check Codes, M.I.T Press, 1963.
[2] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,

“Improved low-density parity-check codes using irregular graphs,”IEEE
Transactions on Information Theory, vol. 47, pp. 585–598, Feb. 2001.

[3] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,”IEEE Transactions on
Information Theory, vol. 47, pp. 599–618, Feb. 2001.

[4] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check
codes based on finite geometries: a rediscovery and new results,”IEEE
Transactions on Information Theory, vol. 47, pp. 2711–2736, Nov. 2001.

[5] E. Boutillon, J. Castura, and F. R. Kschischang, “Decoder-first code
design,” inProceedings of the 2nd International Symposium on Turbo
Codes and Related Topics, Brest, France, Sept. 2000. available at
http://lester.univ-ubs.fr:8080/˜boutillon/publications.html, pp. 459–462.

[6] T. Zhang and K. K. Parhi, “VLSI implementation-oriented
(3, k)-regular low-density parity-check codes,” inIEEE Work-
shop on Signal Processing Systems (SiPS), Sept. 2001. available at
http://www.ecse.rpi.edu/homepages/tzhang/, pp. 25–36.

[7] D. E. Hocevar, “Ldpc code construction with flexible hardware im-
plementation,” inIEEE International Conference on Communications,
2003, pp. 2708 –2712.

[8] T. Fuja D. Sridhara and R.M. Tanner, “Low density parity check codes
from permutation matrices,” inConf. On Info. Sciences and Sys., The
John Hopkins University, March 2001.

[9] C. Howland and A. Blanksby, “Parallel decoding architectures for low
density parity check codes,” inProc. of 2001 IEEE Int. Symp. on Circuits
and Systems, Sydney, May 2001.

[10] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,”IEEE Journal of Solid-State
Circuits, vol. 37, no. 3, pp. 404–412, March 2002.

[11] E. Yeo, P. Pkzad, N. Nikolic, and V. Anantharam, “VLSI architectures
for iterative decoders in magnetic recording channels,”IEEE Trans. on
Magnetics, vol. 37, no. 2, pp. 748–755, March 2001.

[12] M. M. Mansour and N. R. Shanbhag, “Low power VLSI decoder
architectures for LDPC codes,” in2002 International Low Power
Electronics and Design, 2002, pp. 284–289.

[13] J. Campello and D. S. Modha, “Extended bit-filling and ldpc code
design,” in IEEE Global Telecommunications Conference, 2001, pp.
985–989.

[14] J. Thorpe, “Design of ldpc graphs for hardware implementation,” in
IEEE International Symposium on Information Theory, 2002, pp. 483–
483.


