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Abstract—Recently, low-density parity-check (LDPC) codes which can lead to very good iterative decoding performances
have attracted much attention because of their excellent error- in moderate block length.
correcting performance and highly parallelizable decoding Unfortunately, all these code construction methods gave
scheme. However, the effective VLSI implementation of an . . . iy . ;
LDPC decoder remains a big challenge and is a crucial issue little conS|de(at|on on efficient decodgr VLSI implementation.
in determining how well we can exploit the benefits of the The conventionalcode-to-decodemesign, first construct a
LDPC codes in the real applications. In this paper, following the code with good error-correcting performance, then develop
joint code and decoder design philosophy, we propose a semi-the decoder VLSI implementation for that specific codakes
random design scheme to construct the LDPC codes that not the efficient LDPC decoder VLS| implementation a nearly

only exhibit very good error-correcting performance but also . ible task. In thi desi h
effectively fit to partially parallel VLSI decoder implementations. Impossiole task. In this paper, we propose a design scheme

The corresponding partially parallel decoder has a very regular t0 construct the LDPC codes that not only exhibit very
structure and simple control mechanism. Our computer simula- good error-correcting performance but also effectively fit to

tions show that such LDPC codes achieve very good performance efficient partially parallel decoder VLSI implementations. The
comparable to their counterparts constructed |n_qfu|ly randpm underlying philosophy, originally proposed in [5] [6], is to
scheme, which however have little chance of fitting to partially . . . . . .
parallel decoder implementations. jointly consider the code _deS|gn a_nd decoc_jer implementation.
When we prepared the final version of this paper, we found
that the proposed code construction strategy is very similar
to a recently proposed IIP code construction scheme [7] in
Low-density parity-check (LDPC) codes have become the matrix permutation and expansion, which can date back to
topic of great current interest because of their excellent err&FT approach in [8].
correcting performance and highly parallelizable decoding The remainder of this paper is organized as follows. We
scheme. The past a few years experienced significant improleiefly discuss some LDPC decoder implementation issues in
ment on the design and analysis of the LDPC codes wiBection Il. In Section Ill, we present our proposed method to
near Shannon-limit performance. However, the realization obnstruct partially parallel decoder implementation oriented
an LDPC decoder VLSI implementation still remains a bigDPC codes. Section IV presents the corresponding partially
challenge and is a crucial issue determining how well we caarallel decoder structure. The simulation results are shown in
exploit the unmatched merits of the LDPC codes in the re8kction V to illustrate the error-correcting performance of such
application. LDPC codes. Section VI provides some concluding remarks.
Most LDPC codes are constructed by first choosing the
required code block length and the node degree distributions, ] )
then pseudo-randomly generating a parity-check matrix (or 'h€ main challenge in the LDPC code decoder VLSI
the corresponding bipartite graph) under certain constrainf@Plementation is how to effectively manage the message
Gallager [1] constructed th@, k)-regular LDPC code ensem-Passing during the iterative behgf propagangn (BP) dgcodmg.
ble based on thd, k)-regular matrices with rows divided Genera!ly, the LDPC decoder implementations fall into two
into j submatrices, the first composed Bycopies of the Catégories:
identity matrix and with subsequent submatrices being randome Fully parallel decoderghat directly instantiate the bipar-
column permutations of the first. Luby et al. [2] proposed tite graph of the LDPC code to the hardware.
LDPC codes with irregular node degree distributions which « Partially parallel decoderghat maps a certain number of
outperform regular ones. They introduced tools based on Variable nodes or check nodes to a single hardware unit
linear programming for designing irregular code ensembles in time-division multiplexing mode.
for which the maximally allowed crossover probability of the In a fully parallel decoder, each individual variable node
binary symmetric channel is optimized. Richardson and Ueor check node is physically implemented as a node decoding
banke [3] extended the work of Luby et al. to any binary inputnit, and all the units are connected through an interconnection
memoryless channel and to soft decision message passiegvork reflecting the bipartite graph connectivity. It is clear
decoding. They determined the capacity of message pasdimgt such fully parallel decoders can achieve very high de-
decoders applied to LDPC code ensembles by a method calbeding throughput, e.g., Howland and Blanksby [9] [10] have
density evolution. Recently, Kou and Lin [4] developed @amplemented a 1Gbps decoder for 1024-bit, rate 1/2 LDPC
finite geometric approach to the construction of LDPC codesde. However, the fully parallel decoders suffers from high

I. INTRODUCTION

Il. LDPC DECODERIMPLEMENTATION ISSUES



implementation complexity, especially the prohibitive routingood codes inevitably have cycles in their bipartite graphs.
wire overhead with too many global long routing wiresFortunately, the BP algorithm performs remarkably well when
Moreover, the random-like connection between the variablee bipartite graph does not contain too many small cycles.
nodes and check nodes may cause routing congestion. Hencélence, in the construction of the base matrices, we try
the fully parallel decoder is only a feasible option for LDPGo avoid small cycles as much as possible. We adopt the
codes with short code length, i.e., few thousand bits. heuristic approach called bit-filling proposed by Campello
Partially parallel LDPC decoder [6] [11] [12] targets on apand Modha [13] to construct a certain number M x N,
propriate trade-offs between hardware complexity and decdzhse matrices whose corresponding bipartite graphs have large
ing speed. By using time-division multiplex mapping in whiclgirths'. The basic idea behind this strategy is to insert 1's
a certain number of variable nodes or check nodes are mapped the corresponding matrix one by one while maintaining
to a single decoding unit, partially parallel decoder trades tlige prescribed girth constraint. The construction starts with
decoding speed for reduced wire and logic implementatiamsisting on a large girth constraint, until it cannot add
complexity. In this work, we are interested in the LDPC codewore bits without violating the girth constraint. Then the
suitable for partially parallel decoder implementations. girth constraint is decreased and the process continues. The
As mentioned in the above, the construction of the LDP&lgorithm terminates when all the needed bits (edges) are
codes typically relies on random construction that results inserted into the matrix (graph) or the girth constraint falls
unstructuredbipartite graph topology. However, the partiallybelow a specified minimum value. To make the algorithm
parallel decoder implementation demands relatigttyctured applicable to an LDPC code with an arbitrary weight (or
LDPC code bipartite graph topology that could lead to theode degree) distribution, we redefine the problem and revise
efficient realization of partially parallel message passing. Thtlse algorithm as follows.
the partially parallel decoder implementation is not trivial. In
this paper, we propose an approach to construct a class oProblem: Given the weight distribution of the rows and
LDPC codes that have relatively structured bipartite gramolumns, we would like to construct an x n parity check
topologies that lead to very good performance and directiyatrix H with large girth g(H), whereg(H) > g, ¢ is the
fit to partially parallel decoder implementations. minimum allowable girth value. o
Algorithm 3.1: Bit-filling Algorithm
1) According to the weight distribution of the columns,
generate a sequende , as, ..., a, }, Wherea; (1 < j <

[1l. LDPC CoDE DESIGN
In this section we present our proposed LDPC code con-
struction approach. To construct an LDPC code withlar N n) denotes the number of 1's in j-th column of H.

parity check matrix, provided thaf = p-M, andN =p-Ns, 2y According to weight distribution of rows, generate a
the proposed construction approach performs the following sequence(by, b, ..., bz}, whereb; (1 < i < L) is the

three steps: row position of anl in H, and L is the total number of

1) Use a heuristic algorithm to construct a groupbake ones in H.

parity check matrices with the size a8f, x N;,. 3) SetH = O and ¢’ = g, whereg is the initial girth
2) Randomlyexpandeach base matrix into@ M, x p- N, constraint.

parity check matrix. 4) For each columry, insert 1's atH (3, b;) until the weight
3) Apply acycle effectcriterion to select an LDPC code of columnj is equal toa;. For each insertion ofl,

from the developed code group. the constraintg(H) < ¢’ should be maintained); is

randomly picked and removed frofhy, bs, ..., b } after
a successful insertion &t (7, b;).

Generally speaking, there are two factors that mainly deter-5y f step 4 can not proceed without violating the constraint,
mine the error-correcting performance of an LDPC code: the ~ yequcey’ by two and go back to step 4.

effectiveness of the iterative belief propagation algorithm and 6) Stop when L ones are inserted in H, gr< g.

the minimum distance of the LDPC code. While the LDPC -

code has a reasonably large code length (larger thgnits B. Matrices Expansion

minimum distancealmost for surewill be sufficiently good.  As we mentioned in Section Il, our target is to construct

So the error-correcting performance is mainly determined yypc codes that have relatively structured bipartite graph

the effectiveness of the iterative belief propagation algorithiypology that lead to very good performance and directly fit

Therefore, we only need to concentrate on how to constrygt partially parallel decoder implementations. The following

an LDPC code which can be effectively decoded under thgatrix expansiorplays a key step in reaching this target.

iterative BP algorithm. For eachM, x N, base matrix generated by the above
It is well known that when the bipartite graph of theygorithm, we randomly expand it by a factprto obtain a

LDPC code is cycle-free, the belief propagation algorithlp.Ms x p- N, matrix, as illustrated in Figure 1. Eachin the

becomes a recursive algorithm that always converges to §i&e matrix is expanded topa p zero sub-matrixO and each
true maximizing a posteriori (MAP) algorithm after a finite

number of messages have been passed. However, all tHeirth is the length of the minimum cycle in a graph

A. Base Matrices Construction



1 at the position(u, v) is expanded to @ x p sub-matrixT,, ,,
that is obtained by right cyclic shifting @x p identity matrix
by k.. columns. Each integek, , is generated randomly.

reflects the bipartite graph connectivity is jointly realized by
the memory address generation and the interconnection among
memory blocks and node computation units. Suppose the base

matrix is M, x N, and containsL 1's, and the expansion
p factor is p. The expanded matrix contains permutated

r . identity matrices, each one denoted s, as illustrated in

T, O O 0 T, O Ip Figure 1. We can show that the LDPC code defined by such

tooo1o0 : : an expanded matrix exactly fits to the partially parallel decoder

010100 —> © T O T, O © as shown in Figure 2. This partially parallel decoder contains
100001 - 1olololols M check_ node_ computation units (CNUSsY, variable node
a1 36 computation units (VNUs), anfl+ N, memory blocks among

Baf@mg” — Expanded Mt 11 x — which L blocks store the iterative decoding messages, each

(PM PN one denoted as DMEM,, and N, blocks stores the channel
messages, each one denoted as CMEM

Fig. 1. Matrix expansion.
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Notice that the above matrix expansion scheme is beneficial
to both error-correcting performance and decoder hardware
implementations. The girth of the expanded matrix is always
larger than or equal to the girth of the base matrix that has
been optimized with its girth. The random cyclic permutation
of each identity matrix further increases the value of the
average cycle length, which will improve the effectiveness
of BP algorithm. As we will see later, such expansion will
directly lead to a partially parallel decoder consisting of a
structured array of memory and processors. Moreover, the
random cyclic permutation of each identity matrix results in
very simple control logic for generating the memory access
address.

Partially parallel decoder structure.

L + Ng Memory Blocks

Fig. 2.

Each DMEM, , connects with CN{ and VNU,, and
C. Code Selection storesp decoding messages associated with thd'’s in

The last step is to select the code from the code ensemBlé permutated matrixl’, . This decoder completes each
constructed above leading to very good error-correcting pétecoding iteration ir2-p clock cycles. It works in check node
formance. It is well known that the cycles, particularly shoRrocessing mode during the Istclock cycles, and variable
cycles, in the bipartite graph degrade the effectiveness of thiede processing mode during the 2pdclock cycles. The
iterative BP decoding algorithm and hence the error-correctifgerations in the two modes are as follows:
capability of the LDPC codes. Therefore, we select the codes Check Node Processing: CNUs compute check-to-
based on the metric calleticle effectwhich is also known variable messages for all the check nodes in a time
as loopiness [14]. The cycle effect is defined as: division multiplexing fashion. All the DMEMSs store

i the variable-to-check messages at the beginning. In

Z N;- o, each clock cycle, one variable-to-check message in each

=4,6.8,... DMEM is convertedto the corresponding check-to-

L =

where N; is the number of cycles with length and « is

a value chosen for the sum to converge. We may intuitively
justify the effectiveness of this selection criterion based on the
well-known fact that the LDPC iterative belief propagation
decoding algorithm works well if the code graph does not
contain too many short cycles.

IV. PARTIALLY PARALLEL DECODERSTRUCTURE

Exploiting the characteristics of the LDPC codes con-
structed in the above, we develop a partially parallel decoder
structure as shown in Figure 2. It consists of an array of node
computation units to perform all the node computation in time-
division multiplexing mode and an array of memory blocks

variable message by gead-computation-writeprocess.
The memory access address of each DMEMs gener-
ated by a counter that starts from the block permutation
value k,, ,,.

Variable Node Processing: VNUs calculate extrinsic
variable-to-check messages and update the decoding deci-
sion of all the variable nodes in a time division multiplex-
ing fashion. All the DMEMSs store the check-to-variable
messages at the beginning. Similarly, in each clock cycle,
one check-to-variable message in each DMEM is con-
verted to a variable-to-check message and the decoding
decision of the corresponding is updated. The memory
access addresses of all the DMEMs and CMEMs are

to store all the decoding message. The message passing thatgenerated by a counter that starts from



Clearly, the number of node decoding units in this pak/e note that these codes achieve comparable error-correcting
tially parallel decoder is reduced by the expansion fagtor performance to their counterparts constructed in fully random
compared with its fully parallel counterpart. This partialllscheme. However the fully randomly constructed codes have
parallel decoder is well suited for efficient high speed hardwalittle chance of fitting to efficient partially parallel decoder
implementation because of the regular structure and simjpieplementations.
control logic. Compared with previous work [5] [6] [12], our
proposed design scheme supports much more flexible code V1. CoNcLUSION
rate configurations and degree distributions, hence has gredf this paper, we present an approach to construct the

potential on achieving very good error-correcting performandeDPC codes that not only have very good error-correcting
performance but also fit to efficient partially parallel decoder

V. SIMULATION RESULTS hardware implementations. The code construction scheme and

Applying our proposed design scheme, we construct twibe corresponding partially parallel decoder design have been
(3, 6)-regular LDPC codes, denoted &$ and C5, to demon- described in details. The main advantage of this proposed
strate the error-correcting performance. The code lengthsapfproach that it could realize flexible trade-off between hard-
C:1 and C; are4K and 8K, respectively. They have the samavare complexity and decoding speed and support any arbitrary
expansion factop = 64. The base matrices @, andC, are node distribution configuration, hence shows great potential on
32x 64 and64 x 128, respectively. For each code, we randomlgpchieving very good error-correcting performance.
generated500 base matrices optimized with the girth, then Future work is directed to the investigation of appropriate
randomly expanded each base matrix to one expanded matipegular node degree distribution suited to this proposed code
Finally we selected the one leading to the best cycle effect @ssign scheme and how to reduce the encoding complexity by
the selected parity check matrix. In the simulation, we assumexploring the regularity of the code structure.
that both codes were modulated by BPSK and transmitted over
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Figure 3 shows the simulated bit error rate (BER), frame er-
ror rate (FER), and the average number of decoding iterations.



