
354 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 61, NO. 5, MAY 2014

Realizing Unequal Error Correction for NAND Flash
Memory at Minimal Read Latency Overhead

Jiangpeng Li, Kai Zhao, Jun Ma, and Tong Zhang

Abstract—In NAND Flash memory, all pages have the same
storage capacity and hence accommodate the same amount of re-
dundancy in support of error correction. In current practice, user
data in all the pages are protected by the same error correction
code. However, different types of pages in multibit per cell mem-
ory have largely different bit error rates, for which appropriate
unequal error correction can achieve a better utilization of mem-
ory redundancy and hence improve program/erase (P/E) cycling
endurance. Nevertheless, a straightforward realization of unequal
error correction suffers from severe memory read latency penalty.
This brief presents a design strategy to implement unequal error
correction through concatenated coding, which can well match the
unequal error rates among different types of pages at minimal
memory read latency penalty. Based on measurement results from
commercial sub-22-nm 2 bits/cell NAND Flash memory chips, we
carried out simulations from both the coding and storage system
perspectives, and the results show that this design strategy can
improve the P/E cycling endurance by 20% and only incur less
than 7% increase of storage system read response time at the end
of Flash memory lifetime with the P/E cycling of around 1800.

Index Terms—Error correction coding (ECC), NAND Flash
memory.

I. INTRODUCTION

N AND Flash memory data access is performed in the
unit of page, and all the pages have the exactly same

storage capacity and hence accommodate the same amount of
redundancy in supporting error correction. In current practice,
all the user data are protected by the same error correction code
(ECC), and all the pages store the same number of equal-sized
ECC codewords. Such equal error correction can simplify the
Flash memory data management and ensure that we only need
to read one page in order to recover the user data being pro-
tected by a single ECC codeword. For multibit per cell NAND

Flash memory, different bits within each memory cell belong
to different pages. This makes different types of pages have
largely different bit error rates [1], leading to a mismatch with
the equal error correction. As a result, available redundancy in
NAND Flash memory is not fully utilized.

Manuscript received November 21, 2013; accepted March 12, 2014. Date
of publication April 21, 2014; date of current version May 14, 2014. This
work was supported in part by the Research Fund for the Doctoral Program
of Higher Education of China under Grant 20110073110055 and in part by the
National Science Foundation under Grants 1162152 and 1162165. This brief
was recommended by Associate Editor Z. Wang.

J. Li and J. Ma are with Shanghai Jiao Tong University, Shanghai 200240,
China (e-mail: lijiangpeng@sjtu.edu.cn; majun@sjtu.edu.cn).

K. Zhao and T. Zhang are with Rensselaer Polytechnic Institute, Troy, NY
12180 USA (e-mail: tzhang@ecse.rpi.edu).

Color versions of one or more of the figures in this brief are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2014.2312640

To address this issue, we may employ unequal error correc-
tion among different types of pages, e.g., for multilevel per cell
(MLC) NAND Flash memory, we may allocate more coding
redundancy for protecting upper pages and meanwhile accord-
ingly reduce the coding redundancy for protecting lower pages.
Since all the pages have the same storage capacity, a certain por-
tion of upper page coding redundancy has to be stored in lower
pages. Hence, if upper pages are simply protected by a single
ECC, we have to access one lower and one upper page when
we need to read user data in an upper page. This will largely
degrade memory read latency and, hence, system read response
time. To address this read latency overhead issue, we propose
a partial concatenated coding design strategy to protect user
data stored in upper pages. When using this technique, reading
user data being stored in upper pages does not always incur the
lower page read, and the memory read latency overhead only
gradually increases as program/erase (P/E) cycling gradually
wears out Flash memory cells. Based on measurement results
from sub-22-nm MLC Flash memory chips, we carried out sim-
ulations from both the coding and storage system perspectives,
and the results show that this design strategy can improve the
P/E cycling endurance by 20% at the cost of less than 7%
increase of storage system read response time at the end of
Flash memory lifetime with the P/E cycling of around 1800.

II. BACKGROUND AND MOTIVATIONS

Memory cells on each NAND Flash memory die are orga-
nized in a plane⇒block⇒wordline hierarchy: each memory die
contains few independent planes, each plane consists of a large
number of blocks, each block contains a number of wordlines,
and each wordline drives a very large number of memory
cells. Since memory cells driven by the same wordline can
be programmed or read simultaneously, NAND Flash memory
handles data programming and read in the unit of page. For
multibit per cell NAND Flash memory, different bits within each
memory cell belong to different pages. This can be illustrated
in Fig. 1 for MLC Flash memory, where the most significant bit
and the least significant bit belong to a lower and an upper page.
Such a multipage data organization can reduce memory read
latency, e.g., as illustrated in Fig. 1, reading a lower (or upper)
page only involves one (or two) sensing cycle with the reference
voltage of Vlower (or Vupper1 and Vupper2). In comparison, if
both bits within one memory cell belong to the same page, we
have to spend three sensing cycles to read one page.

As technology scales down, NAND Flash memory increas-
ingly relies on ECC to ensure the data storage integrity. There-
fore, Flash memory manufacturers have to fabricate enough
number of memory cells along each wordline to accommodate
both user data and coding redundancy. With the multipage

1549-7747 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LI et al.: REALIZING UNEQUAL ERROR CORRECTION FOR NAND FLASH MEMORY 355

Fig. 1. Illustration of (a) data storage within each MLC memory cell and (b) multipage data organization for MLC memory cells on each wordline.

Fig. 2. Illustration of the endurance gap between upper and lower pages.

data organization, lower and upper pages have the exactly
same size (as illustrated in Fig. 1) and accommodate the same
amount of coding redundancy. Unfortunately, such an equal
error protection does not well match to the unequal error rate
among different pages, e.g., upper pages are subject to higher
bit error rates than lower pages due to the nature of intracell
bit mapping [1]. Therefore, with the same coding redundancy,
upper pages cannot survive as many P/E cycling as lower pages,
as illustrated in Fig. 2, and overall P/E cycling endurance
is limited by that of upper pages. This clearly results in a
suboptimal use of coding redundancy.

III. PROPOSED DESIGN SOLUTION

To reduce the redundancy usage suboptimality, we should al-
locate different amounts of coding redundancy to lower and up-
per pages so that the error correction strength can better match
to their unequal bit error characteristics. This is referred to as
unequal error correction, which clearly can achieve a higher P/E
cycling endurance than conventional equal error correction. In
MLC NAND Flash memory, assume that each wordline drives
N +R memory cells, aiming to accommodate 2N -bit user data
and 2R-bit coding redundancy, and let rnorm = N/(N +R).
In current practice, all the pages are protected by the same
rate-rnorm code. To realize unequal error correction, we should
allocate more coding redundancy for protecting upper pages
and meanwhile accordingly reduce the coding redundancy for
protecting lower pages.

In spite of its simple concept, a straightforward realization
of unequal error correction can largely degrade memory read
latency. In the most straightforward manner, we use a stronger
rate-ru code to protect upper pages and a weaker rate-rl code
to protect lower pages, where ru < rnorm < rl and rnorm =
(ru + rl)/2. Since all the pages have the same size, a certain
portion of the coding redundancy of rate-ru codewords has to
be stored in lower pages. As a result, we have to fetch both
lower and upper pages whenever we need to read user data from

Fig. 3. Illustration of the proposed design solution. (a) Encoding and storage
diagram. (b) Decoding flow diagram.

an upper page. Our measurements with sub-22-nm MLC Flash
memory show that memory sensing latency is 41 and 55 μs for
lower and upper pages, respectively. If we use the aforemen-
tioned straightforward realization, it will take a total sensing
latency of 96 μs to read user data stored in an upper page.

To address this read latency issue, we propose a partially
concatenated coding design strategy that employs concatenated
coding to protect user data stored in upper pages. This can
be illustrated in Fig. 3(a). Since ECC decoder implementation
complexity tends to be proportional to the codeword length,
current design practice always partitions the user data to be
stored in each page into few equal-sized segments (e.g., 1 or
2 kB) in order to maintain a reasonable ECC decoder imple-
mentation cost. Let k and Ns denote the number of segments
and the number of user data bits in each segment, respectively.
For user data to be stored in a lower page, each Ns-bit segment
is encoded with the rate-rl code, and all the k rate-rl codewords
are stored in one lower page. Since rl > rnorm, there are ur-bit
unoccupied space in the lower page, where

ur = k ·Ns ·
rl − rnorm
rl · rnorm

. (1)

356 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 61, NO. 5, MAY 2014

For user data to be stored in an upper page, each Ns-bit
segment is first encoded with the rate-rnorm code, and all the
k rate-rnorm codewords can exactly fit into one upper page.
Meanwhile, we take Ns/k bits from each Ns-bit segment to
form a new Ns-bit segment, encode this new segment with a
rate-rcon code, and store its coding redundancy into the lower
page. Since its coding redundancy should be equal to ur defined
in (1), we have

rcon =
rl · rnorm

rl · rnorm + k · (rl − rnorm)
. (2)

Compared with the aforementioned straightforward realiza-
tion, this proposed design approach can very effectively reduce
the read latency penalty. To read user data being stored in
upper pages, we always first read and decode the rate-rnorm
codewords from upper pages, and only if the rate-rnorm code
decoding fails, we read the extra coding redundancy from lower
pages. The overall flow diagram is shown in Fig. 3(b). To
read user data stored in lower pages, we carry out normal
hard-decision memory sensing and rate-rl code decoding, and
a decoding failure will invoke failure handling operation at
a long memory sensing latency, e.g., Flash memory read-
retry or fine-grained soft-decision memory sensing (if the ECC
supports soft-decision decoding). To read user data stored in
upper pages, we first carry out normal hard-decision memory
sensing and rate-rnorm code decoding. In case of decoding
failure, the concatenated decoding will be invoked, i.e., we
will read the coding redundancy of the rate-rcon stored in the
lower page and carry out rate-rcon code decoding and then rate-
rnorm code decoding (there could be a few iterations). If it
still fails, the failure handling operation will be invoked. Due
to the use of stronger concatenated coding for the upper page
and, meanwhile, weaker code for the lower page, the endurance
gap between upper and lower pages will accordingly reduce.
This can lead to the improved overall P/E cycling endurance, as
illustrated in Fig. 2.

The previously presented design strategy has two advantages:
1) It can improve the Flash memory P/E cycling endurance
at minimal memory sensing latency overhead. The memory
sensing latency overhead naturally adapts to the memory wear-
out. 2) All the codes (i.e., the rate-rl, rate-rnorm, and rate-rcon
codes) have the same amount of user data, which can minimize
the ECC decoder implementation cost [2]. For its practical
realization, one key issue is choosing appropriate code rates rl
and rcon so that the data storage integrity of the user data stored
in lower and upper pages is as close as possible. We note that
rl and rcon are dependent on each other, as shown in (2). This
should be addressed by extensive simulations over a wide range
of possible code rate values. As shown in Fig. 2, the optimal rl
and rcon should be able to minimize the endurance gap between
the lower and upper pages.

IV. EXPERIMENT RESULTS

A. Simulation Environments

To quantitatively evaluate the effectiveness of this design
strategy, we carried out simulations from both the coding
and storage system perspectives. Due to their superior error
correction capability and recent success in hard disk drives,

low-density parity-check (LDPC) codes have attracted much
attention [3]–[7] and are seriously considered as the choice of
ECC for solid-state drives (SSDs). Hence, we choose LDPC
codes and primarily focus on quasi-cyclic LDPC codes in
our evaluation. To quantify the relationship between the P/E
cycling and the memory raw bit error rate, we carried out mea-
surements commercial sub-22-nm MLC NAND Flash memory
chips, where each page stores 9 kB, including 8-kB user data
and 1-kB coding redundancy. Hence, the code rate rnorm is 8/9.
A total of 2048 pages (hence 18 MB) randomly chosen from
several chips are used to carry out raw bit error rate versus P/E
cycling measurements.

We further evaluate the impact of extra memory sensing
latency overhead on the storage system performance through
trace-based simulations using the SSD module [8] in DiskSim
[9]. We set that the SSD has eight channels, and each channel
connects to eight Flash chips. Each Flash chip contains two dies
that share an 8-bit IO bus and a number of common control
signals, and each die contains four planes, each plane contains
2048 blocks, and each block contains 64 pages.

B. Coding Simulation Results

Based on the measured bit error rate under different P/E
cycling, we carried out LDPC decoding simulations to deter-
mine the code rates rl and rcon. Recall that rnorm is 8/9. We
consider two scenarios where each codeword protects 1- or
2-kB user data. All the decoding is done with a min-sum decod-
ing algorithm with maximal five iterations and hard-decision
memory sensing [2]. For the concatenated code decoding, the
rate-rnorm code decoding and the rate-rcon code decoding can
iterate in order to improve the decoding performance. Based on
the simulation results, we observe that rl of 10/11 appears to
be the best choice. According to (2), given rl = 10/11, rcon
is 5/6 and 10/11 for 1- and 2-kB cases, respectively. Fig. 4
shows the representative simulation results. Fig. 4(a) and (b)
shows the simulation results when concatenated coding uses
rl = 10/11 for 1- and 2-kB cases. As shown in the figures,
conventional design practice (i.e., both lower and upper pages
use the same rate-8/9 code) results in a significant gap between
the achievable P/E cycling endurance of lower and upper pages.

As shown in Fig. 4(a) and (b), once we use rate-10/11
code for lower pages (i.e., set rl as 10/11) and meanwhile
use a concatenated coding with rcon = 5/6 (1 kB case) and
rcon = 10/11 (2 kB case) for upper pages, lower and upper
pages can achieve almost the same P/E cycling endurance
(i.e., the endurance gap between the lower and upper pages
is almost eliminated). At the same decoding failure rate, the
improved P/E cycling numbers are about 20% for both of the
1- and 2-kB cases. In addition, the simulation results clearly
show that a longer codeword length (i.e., 2 kB user data per
codeword in this study) can noticeably improve the overall P/E
cycling endurance than a shorter codeword length (i.e., 1 kB
user data per codeword in this study). This is because ECC
with a longer codeword length tends to have a stronger error
correction strength. Nevertheless, a longer codeword length
results in a higher decoder implementation cost. This directly
leads to a performance versus implementation cost tradeoff,
and we will present the decoder implementation cost results
in Section IV-C.

LI et al.: REALIZING UNEQUAL ERROR CORRECTION FOR NAND FLASH MEMORY 357

Fig. 4. Representative simulation results. (a) Concatenated coding with rl = 10/11 (1 kB). (b) Concatenated coding with rl = 10/11 (2 kB).

TABLE I
SILICON COST OF THE LDPC DECODERS AT 65-nm TECHNOLOGY

C. Silicon Cost Analysis

As pointed out earlier, this proposed design involves a
tradeoff between the performance and LDPC code decoder
implementation cost. Hence, we further carried out LDPC code
decoder application specified integrated circuit design. We use
the Synopsys synthesis tool set and 65-nm technology library.
The decoder uses layered min-sum decoding algorithm with a
partially parallel architecture [2], and we designed decoders
for 1- and 2-kB cases. For a fair comparison between the
1- and 2-kB cases, both decoders have the same decoding
computational parallelism in order to achieve the same 1-GB/s
decoding throughput under five decoding iterations. The results
of the synthesized decoders are summarized in Table I. With
the same decoding throughput, both decoders have almost the
same equivalent gate counts for their logic circuits. However,
the memory consumption of the 2-kB decoder nearly doubles
compared with that of the 1-kB decoder. As pointed out in
[10], the LDPC code decoder silicon area tends to be dominated
by memory. Using a memory compiler at a 65-nm technology
node, we estimate that the memory occupies about 0.74 and
1.41 mm2 for 1- and 2-kB decoders, respectively. In compari-
son, the logic circuits in the decoders occupy about 0.31 mm2.

Compared with current practice (i.e., both upper and lower
pages use rate-8/9 LDPC code), the proposed scheme will
result in decoder power consumption overhead. For lower page
read, due to the use of a higher code rate in the lower page
(e.g., code rate of 10/11 in this study) than the conventional
practice (i.e., code rate of 8/9 in this study), LDPC code
decoding will take more decoding iterations, leading to higher
decoding power consumption. In addition, as the P/E cycle
number increases so that conventional practice fails to work,
the concatenated code decoding will start to be invoked and will
be more frequently with further P/E cycling. This will lead to
even higher power consumption. Since the power consumption
is strongly dependent on P/E cycling, we carried out further

TABLE II
POWER CONSUMPTION (mW) ESTIMATION OF THE ECC DECODING

simulations and power estimations to obtain the average power
consumption at different P/E cycling. Table II summarizes the
power consumption of the conventional design practice and the
proposed strategy.

D. Impact on System Read Respond Time

When using this proposed design strategy, once the rate-rnorm
code decoding fails for upper page data access, we must read
the coding redundancy for the rate-rcon code stored in lower
pages, leading to extra memory read latency for upper pages.
Let τ

(u)
norm and τ

(u)
prop denote the upper page read latency of

conventional practice and the proposed design strategy, we have

τ (u)norm = τ
(u)
sensing + τ

(u)
trans + τdec

where τ
(u)
sensing is the upper page sensing time, τ

(u)
trans is the

Flash-to-controller data transfer time for upper page data, and
τdec is the rate-rnorm code decoding time, i.e.,

τ (u)prop = τ (u)norm + P
(u)
dec_fail
·
(
τ
(l)
sensing + τ

(l)
trans + niter-num · τdec-con

)

where P (u)
dec_fail is the upper page rate-rnorm code decoding fail-

ure probability, τ (l)sensing is the lower page sensing time, τ (l)trans

is the Flash-to-controller data transfer time for the redundancy
data of the rate-rcon code stored in lower page, niter-num is
the average number of concatenated code decoding iterations,
and τdec-con is the latency of one concatenated code decoding
iteration (i.e., the summation of rate-rnorm code decoding la-
tency and the rate-rcon code decoding latency). Accordingly,
based on the above measurement and simulation results, we can
estimate the extra read latency overhead as η=(τ

(u)
prop−τ

(u)
norm)/

τ
(u)
norm when accessing one individual upper page under different

P/E cycles, as shown in Table III for both 1- and 2-kB cases.

358 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 61, NO. 5, MAY 2014

TABLE III
UPPER PAGE READ LATENCY OVERHEAD

Fig. 5. Simulated SSD read respond time normalized with the ideal scenario
under the P/E cycling of 1800.

The upper page read latency overhead will translate into
the storage system read response time degradation in practical
workload. We carried out further simulations to quantitatively
evaluate the impact on storage system read response time. In
particular, we carried out trace-driven simulations using the
SSD module [8] in DiskSim [9] to evaluate the impact on
system read response time. We use two different workload
traces, including the popular WebSearch trace and a Synthetic
workload in which over 90% of requests are read requests [8].
Since the probability of invoking concatenated code decoding
varies with the P/E cycling, we carried out the trace-driven
simulations under the P/E cycling of 1800, which corresponds
to the decoding failure rate of 4% and 1% for 1- and 2-kB cases,
respectively. We set the hard-decision memory sensing latency
as 41 and 55 μs for lower and upper pages, respectively. Fig. 5
shows the simulation results. To facilitate the comparison, the
simulated read response time is normalized to the ideal scenario
when the concatenated code decoding is never invoked (i.e.,
the rate-rnorm code decoding never fails). For the purpose of
comparison, we also show the normalized read response time
when unequal error correction is realized in the straightforward
manner, i.e., we directly use a rate-7/8 LDPC code and a rate-
10/11 LDPC code to protect user data being stored in upper
and lower pages, respectively, and we have to fetch both lower
and upper pages whenever we need to read user data stored in
an upper page. The results show that, when using the proposed
design strategy, the read response time overhead is very small
(i.e., less than 7%) for both traces. Nevertheless, when using
the straightforward realization of unequal error correction, the
system read response time significantly degrades, i.e., 27% for
the WebSearch trace and up to 48% for the Synthetic trace.

Based on the aforementioned results, we conclude that,
compared with the 1-kB LDPC code, using the 2-kB LDPC
code in the proposed solution can improve the achievable P/E
cycling endurance by 10% and reduce the SSD read response
time overhead about by 7% (for the synthetic trace) at the
cost of 64% larger silicon area. Compared with conventional
design practice, this proposed solution can improve the P/E
cycling endurance by 20% and incurs less than 26.9% power
consumption overhead and less than 7% system read response
time overhead.

V. CONCLUSION

This brief presents a simple yet effective design strategy that
can enable solid-state data storage uses unequal error correction
to improve P/E cycling endurance at minimal read latency
overhead. The key is to employ a concatenated coding that
appropriately sets the coding rates of component codes so that
the probability of extra page read in unequal error correction
can be minimized. In addition, by forcing all the component
codes to have the same codeword length, this design strategy
ensures a minimal impact on ECC decoder implementation
cost. We carried out evaluations from both the coding and
storage system perspectives, and the results show that this
design strategy can improve the P/E cycling endurance by 20%
and only incur less than 7% increase of storage system read
response time at the end of Flash memory lifetime with the P/E
cycling of around 1800.

REFERENCES

[1] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. R. Nevill, “Bit error rate in NAND Flash
memories,” in Proc. IEEE Int. Rel. Phys. Symp., 2008, pp. 9–19.

[2] H. Zhong, W. Xu, N. Xie, and T. Zhang, “Area-efficient min-sum de-
coder design for high-rate quasi-cyclic low-density parity-check codes in
magnetic recording,” IEEE Trans. Magn., vol. 43, no. 12, pp. 4117–4122,
Dec. 2007.

[3] J. Yang, “Novel ECC architecture enhances storage system reliability,” in
Proc. Flash Memory Summit, Aug. 2012.

[4] X. Hu, “LDPC codes for Flash channel,” in Proc. Flash Memory Summit,
Aug. 2012.

[5] E. Yeo, “An LDPC-enabled Flash controller in 40 nm CMOS,” in Proc.
Flash Memory Summit, Aug. 2012.

[6] R. Motwani and C. Ong, “Robust decoder architecture for multi-
level Flash memory storage channels,” in Proc. IICNC, Feb. 2012,
pp. 492–496.

[7] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi, “Over-10x-extended-
lifetime 76%-reduced-error solid-state drives SSDs with error-prediction
LDPC architecture and error-recovery scheme,” in Proc. IEEE ISSCC,
Feb. 2012, pp. 424–426.

[8] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc. USENIX
Annu. Tech. Conf., Jun. 2008, pp. 57–70.

[9] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The DiskSim
simulation environment version 4.0 reference manual,” Carnegie Mellon
University Parallel Data Lab, Pittsburgh, PA, USA, Tech. Rep. CMU-
PDL-08-101, May 2008.

[10] Z. Wang, Z. Cui, and J. Sha, “VLSI design for low-density parity-check
code decoding,” IEEE Circuits Syst. Mag., vol. 11, no. 1, pp. 52–69,
2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

