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Abstract—Limited search trellis decoding algorithms have great
potentials of realizing low power due to their largely reduced
computational complexity compared with the widely used Viterbi
algorithm. However, because of the lack of operational parallelism
and regularity in their original formulations, the limited search
decoding algorithms have been traditionally ruled out for applica-
tions demanding very high throughput. We believe that, through
appropriate algorithm and hardware architecture co-design,
certain limited search trellis decoding algorithms can become
serious competitors to the Viterbi algorithm for high-throughout
applications. Focusing on the well-known -algorithm, this paper
presents techniques at the algorithm and VLSI architecture levels
to design fully parallel -algorithm limited search trellis decoders.
We first develop a modified -algorithm, called SPEC- , to im-
prove the algorithmic parallelism. Then, based on the conventional
state-parallel register exchange Viterbi decoder, we develop a par-
allel SPEC- decoder architecture that can effectively transform
the reduced computational complexity at the algorithm level to
the reduced switching activities in the hardware. We demonstrate
the effectiveness of the SPEC- design solution in the context of
convolutional code decoding. Compared with state-parallel reg-
ister exchange Viterbi decoders, the SPEC- convolutional code
decoders can achieve almost the same throughput and decoding
performance, while realizing up to 56% power savings. For the
first time, this work provides an approach to exploit the low power
potential of the -algorithm in very high throughput applications.

Index Terms—Limited search trellis decoder, low power, par-
allel architecture, SPEC- , -algorithm, Viterbi algorithm (VA),
VLSI.

I. INTRODUCTION

T RELLIS decoding is pervasive in digital communication
systems for error correction and signal detection. The

well-known Viterbi algorithm (VA) [1] performs a breadth-first
exhaustive search to realize maximum-likelihood (ML) trellis
decoding. Because of its highly regular/parallel computation
and data storage/retrieval operations, VA is well suited for
high-throughput VLSI implementations and hence is being
widely used in real-world applications. However, the use of
exhaustive search makes the Viterbi decoder essentially not
power efficient, particularly for applications demanding large
trellises. To reduce the power consumption, we can use either
reduced state sequence detection (RSSD) [2] or limited search
trellis decoding [3]. RSSD applies the VA to a reduced trellis
obtained by merging several states in the original trellis into one
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super state. For significant power reduction, RSSD typically
suffers from large performance degradation, and how to reduce
the trellis is nontrivial. In contrast, limited search trellis de-
coding algorithms perform limited (or nonexhaustive) search,
as suggested by the name, on the original trellis. They have
much less computational complexities than the VA, yet still
achieve ML or near-ML performance. Intuitively, the largely
reduced computational complexity may lead to great potentials
of realizing low power.

Nevertheless, the real-world application of limited search
trellis decoders pales in comparison to that of Viterbi decoder.
This is mainly due to their lack of operational regularity and
parallelism, which makes high-throughput hardware implemen-
tation problematic. Hardware decoder design has been studied
for several limited search algorithms including Fano algorithm
[4], stack algorithm [5], -algorithm [6], and -algorithm [7].
Since the Fano and stack algorithms are essentially path-serial,
i.e., process only one path at one time, they are not suited for
high-throughput applications but they can realize very low
power consumption [8]. Most prior work [9]–[14] on these two
algorithms focused on the data storage/retrieval structure design
for moderate decoding speed-up. Belonging to the family of
breadth-first search algorithms that also includes the VA, -
and - algorithms perform nonexhaustive breadth-first search,
where the number of survivor paths at each decoding depth
is typically much less than the total number of trellis states,
leading to much less computational complexities. Although

- and - algorithms have greater potentials for parallel trellis
decoding, all the previous work only targeted on the path-serial
implementations of these two algorithms. Simons [15]–[17]
developed sorting-based and nonsorting-based path-serial -
and - algorithms decoders. Chan et al. [18] developed a path-
serial -algorithm decoder that is similar to the state-serial
Viterbi Decoder but has longer critical path. We note that the
drawback of irregular data storage/retrieval in - and -
algorithms is completely concealed by the path-serial decoding
process and thus is not an issue in path-serial decoders. The
superior power efficiency of the -algorithm has been recently
demonstrated [19].

To the best of our knowledge, no limited search trellis
decoder can achieve the throughput comparable to a state-
parallel Viterbi decoder. In this paper, we propose an algorithm/
architecture co-design solution to implement parallel a limited
search trellis decoder that can realize significant power savings
over its state-parallel Viterbi decoder counterpart for appli-
cations with large trellises, while achieving almost the same
throughput and decoding performance. The underlying design
methodology is the parallelism/regularity-driven algorithm/
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Fig. 1. Parallelism/regularity-driven algorithm/architecture co-design diagram (the dashed arrow represents the possible iterations between Algorithm Design and
Architecture Development).

Fig. 2. Parallel decoder architecture framework.

architecture co-design as illustrated in Fig. 1. The first step in
the co-design is to derive the principal decoder architecture
framework. We note that a state-parallel Viterbi decoder has the
abstract architecture framework as illustrated in Fig. 2, which
has excellent operational parallelism/regularity. This motivates
us to use this parallel architecture framework as the starting
point of the co-design. Clearly, this architecture framework
demands that the limited search algorithm explore trellis in
a state-parallel breadth-first fashion. As breadth-first limited
search algorithms, the - and - algorithms directly provide
the groundwork for the algorithm design. To this end, there are
two issues to be tackled, including the following.

1) Decoding Speed-Up: The main decoding data-paths of
the conventional breadth-first limited search algorithms
contain serial operations that prevent the decoder from
achieving high throughput. Algorithm-level modifica-
tion is required to eliminate such throughput bottleneck.

2) Realization of Power Saving: When a limited search al-
gorithm is implemented on a parallel decoder, the largely
reduced computational complexity at the algorithm level
itself does not guarantee the realization of significant
power saving. Appropriate architecture design should be
developed to transform the reduced computational com-
plexity to the reduced switching activities in the hard-
ware for power saving.

This work chooses the -algorithm as the basis for the
algorithm design in the above algorithm/architecture co-design
approach. First, we develop a modified -algorithm, called
SPEC- , that fits to the state-parallel decoder architecture
framework and eliminates the decoding throughput bottleneck
in the original -algorithm. Then we develop a parallel SPEC-
decoder architecture by modifying the conventional state-par-
allel register exchange (RE) Viterbi decoder architecture. The
parallel SPEC- decoder design involves a theme of trading
silicon area for power savings: While it occupies larger silicon
area than a state-parallel RE Viterbi decoder, it consumes less
power because of the significantly reduced switching activities.
The theme of trading area for power savings is well justified
by the trend that power consumption other than the number of
transistors is becoming the real limiter as CMOS technology
continuously scales down.

To demonstrate the effectiveness of the proposed design so-
lution, we designed parallel SPEC- and corresponding state-
parallel RE Viterbi decoders for rate-1/2 convolutional codes

with 64, 128, and 256 states. The SYNOPSYS tool sets are used
for synthesis and power estimation with 0.18 CMOS tech-
nology. Compared with the state-parallel RE Viterbi decoders,
the SPEC- decoders can realize almost the same throughput
and decoding performance. The power savings of the SPEC-
decoders quickly increase as the number of states increases (e.g.,
almost no power savings at 64-state scenario but up to 56%
power savings at 256-state scenario). Hence this design solu-
tion is more suitable to the applications demanding large trel-
lises (such as CDMA IS-95 that uses a 256-state convolutional
code). As the cost of power savings, the SPEC- decoders oc-
cupy about 12% larger silicon area.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the background including the Viterbi
Decoder and the original -algorithm. The proposed SPEC-
algorithm and the parallel decoder architecture are presented
in Sections III and IV, respectively. The design examples of
SPEC- and RE Viterbi convolutional code decoders are
presented in Section V, and the conclusions are drawn in
Section VI.

II. BACKGROUND

A. Viterbi Decoder Basics

Since the parallel SPEC- decoder hardware architecture is
obtained by modifying the state-parallel RE Viterbi decoder, a
brief review of Viterbi decoder is necessary. A Viterbi decoder
mainly contains three functional blocks: 1) branch metric unit
(BMU) that calculates all the branch metrics; 2) add-compare-
select (ACS) units that update the accumulative survivor path
metrics; and 3) survivor memory unit (SMU) that stores the sur-
vivor paths and generate the decoder output. For a trellis with
states, a state-parallel decoder implements all the ACS units
that operate in parallel.

As extensively discussed in the literature (e.g., [20]–[22]),
SMU can be designed in two different styles, i.e., register
exchange (RE) and trace back (TB), targeting on different
power/area vs. throughput trade-offs. In general, RE can easily
support very high decoding throughput but occupies larger
silicon area and consumes more power; TB requires less sil-
icon area and power but cannot support very high decoding
throughput. In an RE Viterbi decoder, the decoder output is
obtained by simple register shift operation and the critical path
lies in the ACS recursion. On the other hand, in a TB Viterbi
decoder, certain number of memory accesses are required to
obtain each decoder output, which may make the trace back
being the critical path. To support higher speed, TB will re-
quire complex memory structure design and may incur certain
decoding performance degradation. An RE Viterbi decoder can
generate output in two possible approaches: 1) output the last
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Fig. 3. Data-flow diagram of the T -algorithm.

(oldest) symbol of the survivor path led by a fixed trellis state or
2) apply a majority vote on the last symbols of all the survivor
paths. To realize the same decoding performance, the latter
approach requires a shorter decision length (i.e., the length of
register exchange array) at the cost of implementing majority
vote. Which one can achieve better silicon area and/or power
consumption performance will depend on the trellis structure
and specific hardware implementation styles.

B. Original -Algorithm

The -algorithm belongs to the family of breadth-first
decoding algorithms. Broadly speaking, breadth-first decoding
algorithms extend all the survivor paths at each trellis depth
at once, purge some paths according to certain criterion, and
then continue on to the next trellis depth. Various breadth-first
algorithms primarily differ on the purging rules. Readers are
referred to [3], [6] for more details. In the -algorithm, at each
decoding depth, all the paths whose cumulative path metric
falls outside of a retention band will be purged. Its operations at
each depth are outlined as follows with the data-flow diagram
shown in Fig. 3.

1) Branch Metric Computation and Path Extension: Given
input data at depth , compute the branch metrics
and extend the survivor paths from the previous depth to
obtain the contender paths at the present depth.

2) Best Metric Search: Find the contender path having the
best (minimum) path metric, denoted as , and release
its oldest path symbol as the decoder output.

3) Path Purge: Purge the contender path whose metric
satisfies , where is a pre-specified
positive threshold.

The -algorithm can achieve near-ML decoding performance
with the average number of survivors much less than the total
number of trellis states [7]. Hence it has great potentials of real-
izing low power. However, it is a challenge to implement a par-
allel high-throughput -algorithm VLSI decoder mainly due to
the following two reasons.

• Algorithm-inherent path-parallel decoding throughput
bottleneck: As remarked in Fig. 3, although we can
perform the Path Extension and Path Purge in parallel
among all the paths with a short delay of only few ad-
ditions and comparisons, the Best Metric Search incurs
a relatively large delay due to the serial essence of
a search operation, which prevents the decoder from
achieving high throughput;

• Irregular data storage/retrieval: To enable parallel de-
coding, the decoder should be able to read and update
all the survivor path data in parallel. However, the set

of survivor paths varies from each decoding depth to
the next. This makes the parallel path data access dy-
namic and irregular, whereas VLSI implementations al-
ways favor static and regular parallel data access such as
that of a state-parallel Viterbi decoder. The irregular par-
allel data storage/retrieval may significantly degrade the
throughput and increase power consumption of a parallel
decoder.

III. PROPOSED SPEC- ALGORITHM

Under the parallel decoder architecture framework as shown
in Fig. 2, we developed a modified -algorithm, called SPEC-
algorithm, that has two features. 1) It eliminates the algorithm-
level throughput bottleneck due to the search-the-best-metric
operation in the original -algorithm. The basic idea is best
metric speculation with lagged correction: instead of searching
the exact best metric at each decoding depth, we speculate the
best metric based on the current input and perform an off-the-
main-recursion search to correct the speculation error with a
certain delay. Therefore, we can move the serial search oper-
ation out from the main recursive decoding data-path and com-
pletely exploit the parallelism of the branch extension and path
purge to speed up the decoding. 2) It works on the trellis struc-
ture of the signals while the original -algorithm works on the
tree structure of the signals (i.e., in the original -algorithm
each state may lead multiple survivor paths while in the SPEC-
each state can lead at most one survivor path). Fig. 4 shows the
data-flow diagram of the SPEC- algorithm. After the Path Ex-
tension, all the contender paths extended by the same trellis state
go through a Compare & Select block that selects the winner and
discard the other contender paths. The winner paths will be fur-
ther processed by the Path Purge block that will select the final
survivor paths based on the speculated best path metric. Given
a decoder design parameter that is a positive integer, the Best
Metric Speculation block speculates the best path metric
as follows:

• if , then , where
is the best branch metric given the input data.

We note that the computation of depends on
the corresponding trellis coding scheme. In the context
of convolutional code decoding, we may directly obtain

from the branch that matches the hard decision
of the input ;

• if , then ,
where is provided by the Best Metric Search block to
compensate for the accumulated speculation error.

It is clear that we are very optimistic on the metric spec-
ulation, i.e., we always expect that the path with the best
metric extends along the branch with the minimum branch
metric. Clearly, this will introduce certain speculation error
at each decoding depth, which will monotonically increase
while continuing along the trellis. To prevent the accumulated
speculation error from ever increasing, the SPEC- algorithm
regularly adjusts the depth- speculated best path metric, for
each , based on the depth- accumu-
lated speculation error provided by the Best Metric Search
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Fig. 4. Data-flow diagram of SPEC-T algorithm.

Fig. 5. Different threshold T values with v = 7 (rate-1/2 and 128-state). (a) BER versus SNR. (b) Average number of survivor paths versus SNR.

block. The depth- accumulated speculation error is

, where s are the metrics

of the survivors at the th depth. The Best Metric Search
block finishes the search operation once every depths. Hence
the parameter is called the speed mismatch factor between the
main parallel recursive decoding data-path and the Best Metric
Search block. We note that, when , SPEC- algorithm
reduces to the modified -algorithm presented in [18].

By moving the serial search operation out from the main re-
cursive decoding data-path, we can fully exploit the parallelism
of the branch extension and path purge to speed up the decoding.
To generate the decoding output, the SPEC- algorithm can use
two possible approaches that are similar to that of an RE Viterbi
decoder: 1) output the last (oldest) symbol of one survivor path
that is randomly chosen from the survivor paths at each depth or
2) apply a majority vote on the last symbols of all the survivor
paths at each depth.

The decoding performance of the SPEC- algorithm heavily
depends on the threshold and speed mismatch factor .
Meanwhile, both and will also affect the average number of
survivor paths that directly determines the switching activities
and hence power efficiency. In practice, the minimum value

of is determined by the specific implementations, e.g., the
hardware design examples described in Section V have the
minimum value of (128 and 256 states). To illustrates
their effect on the trade-off between the decoding performance
and average number of survivor paths, let us consider the
decoding of a rate-1/2 128-state convolutional code with the
generator of (247, 371). We assume the signals are modulated
by binary phase-shift keying (BPSK) and transmitted over an
additive white Gaussian noise (AWGN) channel, and normalize
the transmission power of each codeword bit normalized as 1 in
the simulation. Fig. 5 shows the fixed point simulation results
when we fix and change the value of , and Fig. 6 shows
the simulation results when we fix and change the value
of . For the purpose of comparison, we also show the results
when ideal Viterbi algorithm (i.e., floating-point precision and
infinite decision length) being used.

IV. PARALLEL SPEC- DECODER ARCHITECTURE

This section presents a parallel SPEC- decoder hardware
architecture obtained by modifying an RE Viterbi decoder. The
main motivations of using RE Viterbi decoder as a design basis
are: 1) a very high throughput decoding can be easily achieve
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Fig. 6. Different mismatch factor v with T = 26 (rate-1/2 and 128-state). (a) BER versus SNR. (b) Average number of survivor paths versus SNR.

Fig. 7. Parallel SPEC-T decoder structure block diagram.

and 2) the use of register exchange structure makes it easy to
leverage the reduced number of survivors to reduce the power
consumption of the SMU.

A. Architecture Overview

The block diagram of the proposed parallel SPEC- decoder
is shown in Fig. 7. The shaded blocks are extra functional
blocks added into the conventional state-parallel RE Viterbi
decoder. The essential difference between the Viterbi decoder
and SPEC- decoder is that, in a Viterbi decoder, at each
decoding depth, each trellis state generates one survivor path
that participates the computation of the next decoding depth
and invokes the corresponding register exchange operation; in
a SPEC- decoder, not all (usually only a small portion) of
trellis states generates survivor paths. All the functional blocks
are outlined as follows.

Branch Metric Unit (BMU): The BMU calculates the Eu-
clidean distance between the input data and each distinct branch
symbol of the trellis. In certain circumstances such as convolu-
tional code decoding, the calculation can be largely simplified
in order to reduce the silicon area and/or improve the speed,
where the calculated branch metric is no longer the absolute
Euclidean distance but will not (largely) affect the decoding
performance [23].

Metric Speculation Unit (MSU): The task of MSU is to pro-
vide the speculated best (minimum) path metric. Denote the
best branch metric at the th decoding depth as , the
threshold value as , and the input from the path metric search
unit as . According to the above SPEC- algorithm, we have:
if , MSU directly outputs ; if

, MSU outputs . Notice that we use
instead of in the above SPEC- algorithm.

This can eliminate the compare-with- operation in the modi-
fied ACS units (as described later) and hence improve the de-
coding throughput because the decoder’s critical path lies in the
modified ACS units. In the context of convolutional code de-
coding, the best branch metric is the metric of the branch corre-
sponding to the hard decision of the soft input.

Metric Normalization Unit (MNU): It normalizes the branch
metrics by subtracting the output of the metric speculation unit
from each branch metric. Then the normalized branch metrics
are feed to the modified ACS units. The reason for introducing
the normalization is explained as follows: Let denote the
output of the metric speculation unit. According to the above
SPEC- algorithm, should be distributed to each trellis state
and compared with the local winner, i.e., it will involve the cal-
culation of , where and denote the local
winner metric and branch metric, respectively. This may lead to
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Fig. 8. The modified ACS unit in SPEC-T decoder.

significant global interconnection overhead and increase the la-
tency of each modified ACS unit. By pre-computing
as normalized branch metric, it eliminates such global intercon-
nection overhead and reduce the latency of modified ACS unit.
As a result of such normalization, the metrics of the survivors
are always negative.

Modified ACS (MACS) Units Array: For a trellis with
states, this decoder contains MACS units for parallel path
extension, compare & select, and path purge. Detailed descrip-
tion of MACS is given in Section IV-B.

Register Exchange Array (REA): It has the structure similar
to that in an RE Viterbi decoder, except that it applies clock
gating to disable the registers that do not store survivors.

Majority Vote Unit (MVU): This SPEC- decoder adopts the
majority vote approach to generate the decoder output. The ma-
jority vote unit architecture is described in Section IV-C.

Path Metric Search Unit (PMSU): It searches the best (min-
imum) path metrics among all the survivors. Given the decoder
speed mismatch factor , PMSU finishes the search once every

decoding depths. We use a partially parallel structure to im-
plement PMSU as described in Section IV-D.

B. Modified ACS Unit

Suppose each trellis state has incoming branches, a modified
ACS unit has a structure as shown in Fig. 8. The shaded blocks are
those added to the conventional ACS unit. The compare- with-0
block, which simply observes the sign bit of the input, will make
0 pass the 2-to-1 multiplexer if its input is nonnegative. When the
decoder starts, it initializes the path metric of the starting state
as ( is the pre-specified positive threshold) and the path
metrics of all the other states as 0. During the decoding, the
metrics of the survivors are always negative.

As illustrated in Fig. 8, it has three outputs.

i) Path metric SM: If the metric of the winner obtained by
normal ACS operation is negative, the winner will be
considered as a survivor and its metric will go through
the 2-to-1 multiplexer as ; otherwise, is set to
0, which represents that no survivor is led by this trellis
state.

ii) Decision symbol Dec: Generated edtoolstvlsiby the
-input comparator, is sent to the register exchange

array as the decision output from present trellis state.
iii) Enable bit En: If the winner is a survivor, is 1, oth-

erwise, is 0. It is sent to the register exchange array
to turn-on/off the clock gating in the register exchange
array.

Fig. 9. Multistage one-dimensional majority vote unit block diagram.

Each input normalized branch metric enters a 2-to-1
multiplexer. If the associated input path metric is negative,
i.e., this incoming path is a survivor, then the normalized branch
metric will go through the multiplexer and be added to the path
metric; otherwise, the multiplexer will output 0. This input mul-
tiplexing can reduce the switching activity: as long as the input
path keeps as a nonsurvivor path (i.e., its metric is kept as 0) in
successive decoding depths, there is no switching activity in the
adder. Almost the same latency as a normal ACS unit can be re-
alized since the delay of the extra multiplexing is insignificant
compared with the core ACS operation.

C. Majority Vote Unit

The decoder output is determined by majority vote. Suppose
the trellis has states and the decoded symbol associated with
each branch has bits (i.e., each trellis state has incoming
branches), the majority vote unit (MVU) receives -bit sym-
bols from the register exchange array. Notice that each symbol
may come from a survivor or a nonsurvivor, which can be de-
termined by the associated enable bit . Clearly, we only need
to count the symbols from survivors.

The MVU contains identical one-dimensional MVUs, each
one performs the majority vote on one bit out of the bits. Fig. 9
shows the structure of one-dimensional MVU. The input to each
one-dimensional MVU are 2-bit symbols, where each 2-bit
symbol contains the enable bit and 1 decision bit . As
illustrated in Fig. 9, we first convert each 2-bit symbol to an
integer : if (i.e., the corresponding path is not a
survivor), the integer is set to 0; if and ,

is set to ; if and , is set to 1. For
a complete majority vote, we need to add all the s together.
If the sum is positive, the output bit should be 1, otherwise the
output bit is set to 0.

However, for a large trellis, such direct addition may lead
to significant area/power overhead. We propose to implement
each one-dimensional MVU in a multistage fashion as shown in
Fig. 9. In a -stage implementation, the number of trellis states

is factored as , and the th stage contains
a group of -input-1-output adder arrays. Before being sent to
the next stage, the output of each adder array goes through a
clipper that clips positive number to 1 and nonpositive number
to . Compared with a complete (or 1-stage) majority vote,
such multistage majority vote has the same number of adders
but the wordlength of the adders are largely reduced. This may
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Fig. 10. Block diagram of the path metric search unit.

lead to certain power reduction at the cost of potential perfor-
mance degradation. The performance degradation is negligible
according to the design examples described in Section V. Finally
we note that the entire MVU can be readily pipelined to support
high decoding throughput.

D. Path Metric Search Unit

The path metric search unit finds the best (minimum) path
metric for the speculation error correction. To reduce the area/
power overhead, we realize this search operation in a time-
division multiplexed fashion, as illustrated in Fig. 10. Given
the input metrics from the MACS units array, we partition
them into groups , each group contains

metrics. Each clock cycle, one group of metrics is
pumped into the pipelined -input-1-output search function
block that consists of compare-select (CS) elements organized
in a binary-tree structure. Because most of the input paths
are nonsurvivors and have zero metrics, the switching activity
in this search unit may can be insignificant.

E. A Final Remark

We note that the above parallel SPEC- decoder may enter
a catastrophic dead lock: If no survivor is generated at certain
decoding depth, all the path metrics will be 0. According to the
design of MACS, in all the succeeding decoding depths, all the
MACS will keep the output path metric as 0 no matter how the
branch metrics change because all the input branch metrics will
not go through the input 2-to-1 multiplexers. Although if the
threshold value of is selected appropriately, such catastrophic
dead lock can be very unusual (in fact, it never happens in the
simulation of our SPEC- convolutional code decoder design
as described in Section V), we still need to completely prevent
such catastrophic dead lock. To this end, we propose the fol-
lowing solution: First, we select a small group of trellis states

, where and is the total number of
trellis states. Each trellis state connects with through a
branch and connects with . Then we modify the MACS
unit of each trellis state as follows: we remove the output
2-to-1 multiplexer and the associated compare-with-0 block,
and fix the output enable bit En as 1; we also remove the input
2-to-1 multiplexer that receives the path metric from state
( if ). In this way, we can guarantee that the catastrophic
dead lock will never happen because the selected trellis states
always lead survivor paths at each decoding depth. Since the
value of is chosen to be very small, the increased power con-
sumption due to such modification is negligible.

V. DESIGN EXAMPLES

In this work, we use convolution code decoding as a test
vehicle to demonstrate the effectiveness of the proposed par-
allel SPEC- trellis decoder for the applications requiring large
trellis structures. We consider the rate-1/2 convolutional codes
with the constraint lengths of 9, 8, and 7 (corresponding to
the trellises with 256, 128, and 64 states, respectively). The gen-
erators are (561, 753) for , (247, 371) for , and
(133, 171) for . For comparison, we also designed the
RE Viterbi decoder counterparts, where we considered two dif-
ferent schemes for generating the decoder output, i.e., 1) use a
multi-stage majority vote like that in the SPEC- decoders and
2) select the oldest symbol of the survivor path led by a fixed
trellis state, and the corresponding RE Viterbi decoders are de-
noted as MV RE Viterbi decoder and FS RE Viterbi decoder,
respectively.

Design parameters of these decoders are outlined as follows:
the soft input is 3-bit; the path metrics of SPEC- decoders
and RE Viterbi decoders are 6-bits and 8-bits, respectively (no-
tice that the normalization in SPEC- decoder helps to reduce
the word-length of path metrics). The decision lengths (i.e., the
length of the register exchange array) of the SPEC- and RE
Viterbi decoders are ,

(MV RE Viterbi), and
(FS RE Viterbi), re-

spectively. We note that the decision lengths of MV and FS RE
Viterbi decoders are selected as the minimum values that ensure
the same decoding performance with small degradation from the
ideal Viterbi decoding (i.e., floating point precision and infinite
decision length). The decision lengths of the SPEC- decoders
are simply set equal to those of the MV RE decoders.

In all the SPEC- and MV RE Viterbi decoders, 2-stage
majority vote units are used, where the factorization of
is (i.e., the 1st stage contains 32
8-input-1-output adder arrays and the 2nd stage contains 1
32-input-1-output adder array), (i.e.,
the 1st stage contains 16 8-input-1-output adder arrays and
the second stage contains 1 16-input-1-output adder array),
and (i.e., the 1st stage contains 8
8-input-1-output adder arrays and the second stage contains 1
8-input-1-output adder array). In the SPEC- decoders, the path
metric search units partition the input data into 2 groups that
share a -input-1-output
search function block. The speed mismatch factor in the
SPEC- decoders is . With
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Fig. 11. Simulation results of: (a) BER versus SNR and (b) average number of survivor paths versus SNR.

TABLE I
SYNTHESIS AND POWER ESTIMATION RESULTS OF STATE-PARALLEL RE VITERBI DECODERS

the transmission power of each codeword bit normalized as 1,
the threshold is set as .

Assuming the signals are modulated by BPSK and trans-
mitted over an AWGN channel, Fig. 11 shows the simulated bit
error rate (BER) and average number of survivor paths of these
four decoders. It clearly shows that the SPEC- decoders can
achieve almost the same decoding performance as their Viterbi
counterparts with much less number of survivor paths. The
SYNOPSYS tool sets are used for synthesis (Design Analyzer)
and power estimation (Power Compiler) with 0.18- m CMOS
technology and 1.5-V power supply. The critical paths of all
the decoders lie in the ACS or MACS units. According to the
synthesis results, the RE Viterbi and SPEC- decoders can
achieve the throughput of 244 and 222 Mbps, respectively.
We note that the techniques ever developed to speed up the
Viterbi decoder such as lookahead (e.g., see [24], [25]) can be
applied to further improve the throughput of the RE Viterbi
and SPEC- decoders in the same way. The estimated silicon
area and power consumption (when decoders run at 200 Mbps)
of all the decoders are listed in the Tables I–IV. Notice that
the power consumption of RE Viterbi decoders almost keeps

the same under different signal-to-noise ratios (SNRs), but the
power consumption of SPEC- decoders varies under different
SNRs. We sample the power consumption of SPEC- decoders
at three different SNRs: 3, 3.5, and 4 dB, respectively. The
tables clearly show that the developed SPEC- decoders can
effectively leverage the reduced algorithm-level computational
complexity to reduce the power consumption of both register
exchange array and ACS units, at the cost of larger (12% in
this work) silicon area. The results clearly show that the power
saving will decrease as the constraint length decreases. The
main reason is that the ratio between the average numbers of
survivor paths of SPEC- and Viterbi decoders quickly in-
creases as constraint length decreases, leading to less reduction
of computational complexity and hence less (or even no) power
saving. Therefore, the proposed SPEC- decoders are more
suitable to the applications demanding large trellises.

Finally, for a quick reference to the readers, Table V shows a
comparison of the proposed design solution with several latest
existing work on Viterbi decoder implementations. Since the
ASIC design of Viterbi decoder for convolutional code decoding
has been an active research area for a long time and there are
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TABLE II
SYNTHESIS AND POWER ESTIMATION RESULTS OF SPEC-T DECODER (K = 9)

TABLE III
SYNTHESIS AND POWER ESTIMATION RESULTS OF SPEC-T DECODER (K = 8)

TABLE IV
SYNTHESIS AND POWER ESTIMATION RESULTS OF SPEC-T DECODER (K = 7)

TABLE V
COMPARISON WITH SOME EXISTING WORK

a large amount of existing work, this by no means suggests a
comprehensive comparison.

VI. CONCLUSIONS

This paper presents techniques at the algorithm and VLSI
architecture levels to realize parallel limited search decoder
VLSI implementation. Based on the well-known -algorithm,
we developed a SPEC- algorithm that inherently provides
great potential of parallel high-throughput implementation. At

the architecture level, we develop a parallel SPEC- decoder
architecture based on the conventional state-parallel register
exchange Viterbi decoder architecture. Using the convolutional
code decoding as a test vehicle, we demonstrated significant
power savings of this proposed SPEC- decoder compared
with the Viterbi decoder. This work provides an unique oppor-
tunity to exploit the attributes of the -algorithm to reduce the
trellis decoder power consumption while achieving almost the
same throughput and decoding performance with a state-par-
allel Viterbi decoder. It is our hope that this work will inspire
the rethinking of the potential of the limited search trellis de-
coding in the real-world applications and motivate more future
research work in this area.
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