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Abstract—Signal detector is a key element in a multiple-input
multiple-output (MIMO) wireless communication receiver. It has
been well demonstrated that nonlinear tree search MIMO detec-
tors can achieve near-optimum detection performance, neverthe-
less their efficient high-speed VLSI implementations are not trivial.
For example, the hardware design of hard- or soft- output detectors
for a 4 4 MIMO system with 64 quadrature amplitude modula-
tion (QAM) still remains missing in the open literature. As an at-
tempt to tackle this challenge, this paper presents an implementa-
tion-oriented breadth-first tree search MIMO detector design solu-
tion. The key is to appropriately modify the conventional breadth-
first tree search detection algorithm in order to largely improve
the suitability for efficient hardware implementation, while main-
taining good detection performance. To demonstrate the effective-
ness of the proposed design solution, using 0.13- m CMOS stan-
dard cell and memory libraries, we designed a soft-output signal
detector for 4 4 MIMO with 64-QAM. With the silicon area of
about 31 mm2, the detector can achieve above 100 Mb/s and re-
alize the performance very close to that of the sphere decoding al-
gorithm.

Index Terms—Detection, multiple-input multiple-output
(MIMO) systems, maximum likelihood (ML), spatial multi-
plexing, VLSI.

I. INTRODUCTION

DUE TO ITS potential of dramatically increasing the wire-
less communication spectral efficiency, multiple-input

multiple-output (MIMO) technology is being seriously con-
sidered for a wide use in future high data rate wireless
communication systems such as the fourth-generation (4G)
mobile radio systems, fixed/mobile broadband wireless sys-
tems, and wireless local area networks [1], [2]. As the cost of
the increased transmission rate, the computational complexity
of MIMO signal detection grows dramatically with the number
of transmit antennas and the modulation constellation size.
How to design reduced-complexity signal detectors without
significantly jeopardizing the detection performance is a key
issue for the practical deployment of wireless MIMO commu-
nication systems.

MIMO signal detectors can be either hard-output (i.e., only
provides the hard estimation of each bit) or soft-output (i.e., pro-
vides a posteriori probability (APP) information about each bit).
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In practice, most wireless communication systems use error cor-
recting codes (ECC) demanding soft input for decoding, such as
convolutional codes, Turbo codes, and low-density parity-check
(LDPC) codes. Therefore, soft-output MIMO signal detection
is highly desirable. The computational complexities of max-
imum-likelihood (ML) hard-output detection and maximum a
posteriori (MAP) soft-output detection grow exponentially with
the transmission rate measured in terms of bits per channel use.
The computational complexity of soft-output MAP detection is
significantly higher than that of hard-output ML detection. With
the help of continuous scaling down of CMOS technology, it
may be feasible to implement ML/MAP detectors for MIMO
systems with relatively low transmission rate such as 4 4
MIMO with quadrature phase shift keying (QPSK) or 2 2
MIMO with 16 quadrature amplitude modulation (QAM) [3].
Nevertheless, the direct implementation of such optimum de-
tections will become impractical when the bits per channel use
increase beyond eight [4], and techniques to reduce computa-
tional complexity become necessary under these circumstances.

One family of reduced-complexity detectors is linear detec-
tors based on the principles of zero-forcing (ZF) or minimum
mean-square error (MMSE). Although they can greatly reduce
the computational complexity, they suffer from significant
performance degradation. The successive interference can-
cellation (SIC) detectors such as the VBLAST architecture
[5] are prone to decision error propagation and can only pro-
vide modestly better performance. Recently, lattice reduction
(LR) aided MMSE or SIC detectors were proposed [6], [7]
and showed a great potential to improve the performance of
linear detectors. However, most prior work only considered
hard-output LR aided detection and effective soft-output LR
aided detector design largely remains an open question [8]. To
achieve the performance closer or even equivalent to the op-
timum detection, researchers have developed several nonlinear
detectors that realize hard- or soft- output detection through
nonexhaustive tree search based on a set of additive metrics,
where the goal of hard-output detection is to find one tree leaf
with the best metric and the goal of soft-output detection is to
find a list of tree leaves to calculate the APP information of
each bit. Because of their computation-intensive nature, those
nonlinear MIMO detectors should be implemented in the form
of application specific integrated circuits (ASIC) in order to
meet the throughput and power consumption constraints in
real-life wireless communication systems.

Depending on how to carry out the non-exhaustive tree search,
nonlinear detectors fall into three categories, i.e., depth-first
search, metric-first search, and breadth-first search. VLSI design
of depth-first detectors using sphere decoding algorithm [9], [10]
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and breadth-first detectors using the well-known -algorithm
[11] have both attracted many recent attentions [4], [12]–[15].
For 4 4 MIMO transmission with 16-QAM, hard-output
depth-first detectors [13] achieve much higher throughput
(under high signal to noise ratio (SNR)) than their breadth-first
counterparts [12], [14]. A soft-output depth-first detector for 4
4 MIMO with 16-QAM was described in [4], and a soft-output
breadth-first detector for 4 4 MIMO with 16-QAM was pre-
sented in [15]. In general, the average computational complexity
of depth-first hard-output detection is lower than its breadth-first
counterpart due to its ability to adaptively tighten the search
radius constraint. For soft-output detection, it is not trivial to
adaptively change the search radius for both depth-first search
and breadth-first search, while the breadth-first search has the
advantage that it can naturally generate an ordered candidates list
for APP calculation. To the best of our knowledge, VLSI design
of nonlinear tree search detectors that can support 64-QAM for
moderate-size MIMO (such as 4 4) remains missing in the
open literature.

As an attempt to fill this gap, this paper presents a breadth-first
hard- and soft-output detector design solution that can support
64-QAM for 4 4 MIMO transmission. Following the con-
vention in the existing literature on MIMO signal detection, we
refer the breadth-first detector based on the principle of -al-
gorithm as -best detector [12], [14]. As discussed later, the
direct realization of a -best detector in hardware requires im-
plementing a sorting operation. Since sorting is essentially a se-
rial operation and may involve a large amount of data move-
ment, it will become a throughput bottleneck and result in a
significant power consumption overhead. To tackle this chal-
lenge, instead of directly following the principle of -algo-
rithm as in the conventional -best detectors [12], [14], we
propose to modify the original algorithm by replacing the strict
sorting with a distributed and approximate sorting. Such algo-
rithm-level modification can significantly simplify the hardware
implementation, leading to so-called relaxed -best detectors.
Moreover, we developed an algorithm-level method based on
the PSK enumeration technique [10], [13] to further reduce the
computational complexities, particularly for higher order modu-
lations. The corresponding VLSI architectures are further devel-
oped. To demonstrate the proposed design solution, we designed
a soft-output relaxed -best detector for 4 4 MIMO with
64-QAM using Synopsys tools with 0.13- m CMOS standard
cell and memory libraries. With the silicon area of about 31 mm
and power consumption of 1.2 W, the detector can achieve above
100 Mb/s throughput. Concatenated with a rate-1/2 length-2304
low-density parity-code (LDPC) code, the soft-output detector
can achieve the performance very close to that of using orig-
inal -best and sphere decoding algorithms. To the best of our
knowledge, this is the first soft-output nonlinear tree-search de-
tector design solution capable of supporting 4 4 MIMO with
64-QAM ever reported in the open literature.

The remainder of this paper is organized as follows. Section II
reviews the background of MIMO signal detection. Section III
describes the proposed relaxed -best detection algorithm and
its VLSI architecture. The implementation results and perfor-
mance analysis for 4 4 MIMO with 64-QAM are presented
in Section IV, and conclusions are drawn in Section V.

Fig. 1. Coded MIMO system model.

II. BACKGROUND

A. System Model

This paper considers the MIMO system with spatial multi-
plexing signaling (i.e., the signals transmitted from individual
antennas are independent of each other), as illustrated in Fig. 1.
Let and represent the number of transmit and receive
antennas, respectively. Assume that the transmitted symbol is
taken from a -QAM constellation with . At once,
the transmitter maps one binary vector to an
symbol vector . The transmission of each vector over flat-
fading MIMO channels can be modelled as ,
where is an signal vector received by a MIMO de-
tector, is an channel matrix, and is a noise vector
whose entries are independent complex Gaussian random vari-
ables with mean zero and variance .

B. MIMO Signal Detection

Following the principle of ML detection, the task of the hard-
output detector is to solve

(1)

where contains all the possible transmitted symbol vec-
tors. The task of the soft-output detector is to compute the log-
likelihood value of each bit, which is defined as

, where denotes the -th
bit of the binary vector . Through standard simplification [10],
[16], can be approximated as

where (2)

In a straightforward manner, hard- and soft- output MIMO de-
tection can be realized by exhaustively examining all the
possible symbol vectors according to (1) and (2), which never-
theless leads to computational complexity prohibitive for prac-
tical applications when and/or is large.

As discussed in the literature (e.g., see [10], [16]), we may use
the following approach to reduce the computational complexity
at the cost of potential performance degradation: Using standard
matrix decompositions such as Cholesky decomposition, we can
obtain , where is a lower triangular
matrix and denotes the complex conjugate transpose. Let

, we have

(3)



330 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 3, MARCH 2007

Fig. 2. An N -depth W -ary tree.

Since the second term in (3) is independent of and the matrix
is lower triangular, we can rewrite (1) and in (2) as

(4)

and

(5)

Hence, we obtain additive metrics with the metric increments
and that depend only on for . This can be lever-

aged to design detectors based on an -depth -ary tree as il-
lustrated in Fig. 2, where each node has child nodes labelled
with , respectively, corresponding to the possible
QAM points. The -th depth of this tree corresponds to the -th
transmit antenna. The objective of the hard-output detector is to
non-exhaustively search through this tree and find a tree leaf1

that is the solution of (1). The objective of the soft-output de-
tector is to non-exhaustively search through this tree and find a
list of tree leaves, based on which the -values can be evaluated
according to (2). The detector can search the tree in a depth-first,
metric-first, or breadth-first manner.

C. Breadth-First Search -Best Detector

This work concerns the design of breadth-first tree search de-
tectors. Broadly speaking, breadth-first tree search algorithms
extend all the survivor paths at each tree depth at once, purge
some paths according to certain criterion, and then continue
on to the next tree depth. Various breadth-first algorithms,
including the well-known -algorithm and -algorithm,
primarily differ on the purging rules, and interested readers
may refer to [17] for a detailed discussion. As mentioned
earlier, following the convention in the literature on MIMO
signal detection, we refer the breadth-first detector based on
the principle of -algorithm as the -best detector. Since
the term in (5) can be omitted in the tree search, we
redefine the metric increment for soft-output detection as

, which becomes equivalent to the metric
increment for hard-output detection. Therefore, we simply
denote the metric increment as and define the metric of a

1Notice that each tree leaf determines one distinct path through the tree, cor-
responding to one distinct qN � 1 bit vector.

depth- path as . A -best detector performs
the following operations at depth :

1) Path Extension: Given the modulation size of , extend
each survivor path from the previous depth with the
modulation points, i.e., calculate for
each modulation point.

2) Radius Check: Delete the extended paths whose metrics are
larger than a predefined value . Here is equivalent to the
radius in sphere decoding algorithm.

3) Path Search: Let denote the number of the remaining
extended paths. If , then sort the extended paths
in ascending order based on the path metric and select the
first (i.e., best) paths as survivors of present depth, oth-
erwise all the extended paths are survivors.

Hard- and soft- output -best detectors only differ at how to
generate the output using the survivors obtained after reaching
the tree leaves: 1) hard-output detector finds the best one among
all the survivors and outputs the hard decision of each bit based
on this final survivor; 2) soft-output detector keeps all the sur-
vivors as a list of candidates, based on which the -values are
calculated according to (2). In general, to ensure near-optimum
performance, a soft-output detector typically requires a (much)
larger value of than that of its hard-output counterpart. More-
over, in soft-output detection, if all the candidates agree on one
bit position (i.e., they all contain a 1 (or 1) at the same po-
sition), we cannot directly calculate the -value for this bit. To
solve this problem, we may use the difference between the best
and worst metrics among all the candidates as the soft informa-
tion of those bits or assign a predefined -value.

III. RELAXED -BEST DETECTOR DESIGN

For the VLSI implementation of a -best detector, the Path
Extension (and hence Radius Check) can be, in theory, imple-
mented in fully parallel, i.e., at each depth all the survivors are
extended in parallel. Because of the complex computation in-
volved in the path extension and the throughput bottleneck in-
curred by the Path Search (as discussed later), the fully parallel
implementation is impractical and/or unnecessary. This paper
only considers the partially parallel detector that maps a certain
number of path extension operations onto the same hardware
processing unit in a time-division multiplexed fashion.

From Section II, we have that each metric increment at
depth- can be calculated as , where

, and . is common
to each received vector and can be precomputed. is common
to all the paths extended from the same survivor, while de-
pends on the modulation point to which the survivor is extended.
Therefore, to extend one survivor, we need to calculate only one

but multiple and hence multiple . In a straight-
forward manner, we can obtain a generic data flow at each depth,
as shown in Fig. 3. Each PC block calculates of one survivor
path, and the PS blocks associated with the PC block calculate
the metrics, i.e., , of all the paths extended
from the same survivor path and delete those that fail the radius
check. Due to the computational complexity mismatch between
PC and PS blocks, several PS blocks can share one PC block.
The total number of PC blocks and PS blocks can be much less
than the value of . The outputs of all the PS blocks, i.e., the
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Fig. 3. Generic data flow at each depth of a partially parallelK-best detector.

extended paths that pass the radius check, are sent to a search
block that selects the best extended paths as survivors.

However, such straightforward design has two critical draw-
backs that prevent it from achieving high throughput with rea-
sonable silicon area and power consumption, particularly for
high order modulation such as 64-QAM.

1) The detector explicitly examines the extension of each sur-
vivor with all the modulation points. Due to the complex
computation involved in each path extension, this will
incur a large computational complexity overhead.

2) Due to its serial nature, the sorting at each depth will incur a
large delay and hence become an essential throughput bot-
tleneck. This fails to match the inherent parallelism within
the path extension and radius check. Although there exists
an algorithm, as pointed out in [11], which can select the
best out of numbers more efficiently without using
strict sorting, that algorithm is still serial in nature. More-
over, from hardware implementation point of view, sorting
schemes like the bubble sorting appear to be the most effec-
tive way to realize the search-the-best- -paths operation.
Besides the long latency, sorting will also incur large sil-
icon overhead and a large amount of data movement, which
will directly lead to high power consumption.

A. Improved PSK Enumeration

How to tackle the first issue above has been addressed in the
context of depth-first tree search detection [10], [13] using a
technique called PSK enumeration. Its basic idea is described
as follows: For QAM modulation, all the modulation points lo-
cate on several circles concentric with the origin, e.g., there are
1, 3, and 9 concentric circles in QPSK, 16-QAM, and 64-QAM,
respectively. All the points on the same circle that satisfy the
radius check are always adjacent and, hence, form a single ad-
missible region along the circle. By identifying the boundary of
such an admissible region on each circle, we do not need to ex-
plicitly examine the points outside the admissible region. This
will lead to a significant saving of computational complexity.
To identify the admissible region on one circle, we first locate
the point that can minimize among all the modulation
points on the same circle. As proposed in [13], this can be real-
ized by observing the location of the in a partitioned space as
illustrated in Fig. 4(a). Let’s consider the circle I. Without loss
of generality, we assume is a positive real number (recall that

). Given the position of , the point that minimizes
on the circle I should be the point 1 since falls into

the region between line and line . After identi-
fying the closest point on each circle, the rest of the points on the
same circle can be examined in a zigzag fashion, as illustrated

in Fig. 4(b), so that the corresponding extended path metric will
increase monotonically. Once the first point that fails the radius
check is reached, the boundary of admissible points is automat-
ically detected and the enumeration can be terminated.

Notice that the original PSK enumeration method explicitly
examines all the concentric circles. In the following, we present
a modified PSK enumeration method that does not necessarily
explicitly examine all the concentric circles, which may lead
to further computational complexity reduction, particularly for
high order modulations such as 64-QAM. Denote the circles that
contain modulation points satisfying the radius check as valid
circles. It is clear that not all the concentric circles may be valid
circles, hence it is desirable to only examine those valid circles
instead of all the circles. From the discussion on PSK enumer-
ation in [10], it can be readily derived that all the valid circles
fall into a continuous region. We can identify the boundary of
the valid circle region as follows: For a modulation point to sur-
vive the radius check, the metric increment at depth- must sat-
isfy , which can be reformulated
as . We can easily find
the circle closest to the point on each side, as shown in
Fig. 4(c). Extending from these two circles with the distance of

on both inward and outward directions,
we obtain the boundary of the valid circle region. Any circle that
falls outside does not contain any modulation points that may
satisfy the radius check, hence can be simply excluded from ex-
plicit PSK enumeration. Since we can precompute each
once after the MIMO channel matrix is estimated, the compu-
tation here involves multiplication instead of division.

B. Distributed and Approximate Sorting

To tackle the second issue above, we propose to modify the
-best detector by replacing the original strict sorting with a

memory based distributed and approximate sorting, as illus-
trated in Fig. 5, where each PS block has its own sorter. Let

denote the detector parallelism factor, i.e., the total number of
PS blocks that operate in parallel. Therefore, survivor paths
can be extended in parallel and all the extended paths from the
same survivor path are processed by the same sorter. All the

sorters perform approximate sorting in parallel and indepen-
dently from each other. The basic idea of approximate sorting
can be described as sorting with a coarse granularity: Given the
fixed radius constraint , we divide the entire range of the path
metric (i.e., [0, ]) into a certain number of regions and group
the paths whose path metrics fall into the same region. The paths
in the same group are not sorted at all. Such approximate sorting
only involves the comparison with fixed threshold values, which
can be directly implemented in parallel.

Intuitively, we can use a single-port memory to realize the
approximate sorting as follows: We uniformly partition the
memory address space into consecutive segments. Since all
the incoming paths have the metric better (i.e., less) than the
radius that is used in the radius check, we choose
threshold values , and assign
the range to segment for . A path is
simply stored into the memory segment if its metric falls
into the range . Each segment has one counter to hold
the address of the next available memory location. Clearly, the
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Fig. 4. Improved PSK enumeration.

Fig. 5. Structure of the distributed and approximate sorting.

data stored within the same memory segment are no sorted at
all. For the practical implementation of an approximate sorter,
we need to solve the following two problems.

1) What should we do if one memory segment becomes full?
Our simulation shows that if we simply throw away the
subsequent incoming paths once the memory segment
becomes full, there will be a significant performance
degradation. In order to solve this problem, we pro-
pose to make the threshold range associated with each
memory segment configurable, as illustrated in Fig. 6.
Let represent the configurable threshold range
associated with segment . We use registers to hold the
values of (notice that always equals to
0). Initially, we set for . Once one
segment becomes full, we will hand over its range to its
next (with higher value of index) segment. For example,
before segment becomes full, we have . Once

becomes full, by using a push-button switch as shown
in Fig. 6, we set , i.e., we overwrite the register
holding with the value of . Any further write to
this segment is prevented since . Meanwhile,
the lower bound of the threshold range of the next segment

will automatically extend from (i.e., the previous
value of ) to , so that the segment now has the
threshold range of . In this way, the range of
is handed over to . In case that was full before

becomes full, i.e., held the threshold range of
, the range of now becomes and

is reopened to allow paths with better metrics to overwrite
the paths already stored in .

2) How to determine the threshold values ? In
this work, we first calculate the radius , as
proposed in [10] for sphere decoding, where is a prede-
fined constant parameter and is the noise standard devia-
tion. We have and calculate the other threshold
values as for .

Fig. 6. Realization of the approximate sorting.

From the hardware implementation standpoint, this memory
based distributed and approximate sorting has the following
main advantages: 1) the computational complexity is much less
than the strict sorting, leading to a great potential of higher
throughput and significant power savings; 2) there is no data
movement at all, which will help to further reduce the power
consumption; 3) the distributed structure well matches the
parallelism in the path extension and hence helps to realize
high throughput.

It is clear that the choices of parallelism factor , the sorting
granularity factor , and the total memory size directly affect
the tradeoffs among the detection performance, throughput, and
silicon area: A lower value of will achieve better detection
performance but reduces the achievable detection throughput. A
larger size of memory will improve the detection performance
at the cost of higher silicon area. A larger value of may also
improve the detection performance, given that the total memory
size is big enough. In practice, we have to rely on extensive
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Fig. 7. Structure diagrams of (a) overall detector and (b) each recursive detector core.

simulations to choose the values of , , and the total memory
size subject to the desirable trade-offs. As demonstrated in
Section IV, with reasonable memory resource, relaxed -best
detectors using the distributed and approximate sorting can
achieve the performance very close to the detector using sphere
decoding algorithm with the same value of radius.

C. Detector Hardware Structure Design

Using the above two design techniques, i.e., distributed and
approximate sorting and improved PSK enumeration, a relaxed

-best detector can be realized by integrating a certain number
identical recursive detector cores, dependent on the target de-
tection throughput. These identical cores operate in parallel and
independently on different received signal vectors, as illustrated
in Fig. 7(a). We note that the detector does not contain the pre-
computation blocks that perform channel matrix decomposi-
tion and calculate and .
Readers are referred to [18] for a detailed discussion on the
implementation issues of the matrix decomposition functional
block that computes the lower triangular matrix .

1) Structure of Individual Recursive Detector Core: The
structure of each recursive detector core is shown in Fig. 7(b),
which iterates times to finish the detection of one received
signal vector for a MIMO system with transmit antennas.
Each recursive detector core contains one PC block that is
shared by several PS blocks, where the PC block performs the
precalculation for the extension of each survivor path and each
PS block carries out the path extension using the improved PSK
enumeration method. Each PS block has its own approximate
sorter.

During the path extension, for those good survivors that are
close to the transmitted symbol vectors, their accumulated path
metrics are small, which will lead to a bigger admissible region
(or more modulation points to be explicitly examined) at present
stage. It will take the PS block longer time to finish the path
extension. On the other hand, for those bad survivors that are
far away from the transmitted symbol vectors, less number of
modulation points need to be explicitly examined, hence, PS
block can finish the path extension more quickly. Therefore,
the communication between PC block and PS blocks should be
data-driven, as illustrated in Fig. 7: When one PS block is ready
to process a new survivor path, it sends the PC block a Req

signal. The PC block broadcasts the corresponding survivor path
data to all the PS blocks through a shared bus and sends an
Ack signal back to the PS block. After receiving the data from
the bus, the PS block de-asserts the Req signal. The recursive
detector core design is further described as follows.

Upon receiving one survivor path, each PC block performs
the following operations:

1) calculates the , as afore-
mentioned, which is shared among the succeeding path ex-
tensions;

2) identifies the boundary of the region containing all the valid
circles (i.e., provides the indices of the inner and outer cir-
cles), as discussed in Section III-A; and

3) determines the starting point and initial direction for the
zigzag search on each valid PSK circle.

Although the involved computation tends to be very complex,
the PC block can be deeply pipelined to realize a high data pro-
cessing throughput to feed those succeeding PS blocks.

Extending one survivor at a time, each PS block nonexhaus-
tively examines the modulation points for path extension using
the improved PSK enumeration method and sends the extended
paths to its own approximate sorter. Fig. 8 shows the structure
diagram of one PS block, which contains two main subblocks
including modulation point selection (MPS) and path extension
(PE). Each clock cycle, MPS selects and feeds one modula-
tion point to PE for path extension. When PE detects a mod-
ulation point out of admissible region (i.e., the extended path
metric is larger than the radius ), it will send a termina-
tion request to MPS so that MPS will not feed any other mod-
ulation points on the same circle to PE. Nevertheless, since PE
should be deeply pipelined in order to achieve high throughput,
if MPS keeps feeding the modulation points on the same circle
to PE, the PE pipeline will be filled with modulation points
out of admissible region when MPS receives the termination
request. This may largely degrade the PE pipeline utilization
efficiency and reduce the computation saving of PSK enumer-
ation. To solve this problem, we make MPS feed the modula-
tion points to PE alternatively among all the valid circles: As
shown in Fig. 8, MPS maintains three tables, including: 1) valid
circle table (VCT) that stores the indices of valid circles; 2) next
modulation point table (NMPT) that stores the next modulation
point to be extended on each valid circle; and 3) zigzag search
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Fig. 8. Structure diagram of a PS block.

Fig. 9. Output generation design (a) metric table and (b) structure of output generator.

direction table (ZSDT) that stores the present zigzag search di-
rection on each valid circle. All these tables are initialized by the
data sent from the PC block. Each clock cycle, MPS feeds PE
with one modulation point on the valid circle pointed by a valid
circle pointer, updates the NMPT and ZSDT accordingly, and
then make the valid circle pointer point to the next valid circle
in VCT. If MPS receives a circle termination request from PE, it
simply removes the corresponding circle index from VCT. This
alternative modulation point fetching approach can largely im-
prove the PE pipeline utilization efficiency for high order mod-
ulations.

The implementation of approximate sorter can be obtained in
a straightforward manner from the discussion in Section III-B.
Each approximate sorter contains two single-port memory
blocks that receive the data from the current depth and provide
the data to the next depth, alternatively. Controlled by the
survivor read controller as shown in Fig. 7(b), approximate
sorters send the survivors back to PC block as follows: We
start with fetching one path at a time from segment in each
single-port memory as survivor, alternatively among all the
single-port memories, until we have fetched paths or all the
paths stored in the segments have been fetched. If latter
happens, we move on to the segment , and so on.

2) Structure of Output Generator: For hard-output detection,
design of the output generator is straightforward, i.e., it simply
searches for the survivor path with the best metric and outputs
the hard decisions based on this best survivor. For soft-
output detection, we need to evaluate the -value of each bit
according to (2) based on all the last-depth survivors. In this
context, we propose to use a scheme described as follows.

We maintain a metric table, as illustrated in Fig. 9(a), for the
binary vector, where each cell contains the best path

metric, denoted by or , among the survivors that has
“ 1” or “ 1” on the corresponding bit position. Initially, the
table entries are set as undefined. The path metric of each in-
coming survivor will compare against (and replace if its metric
is better) one of the two metrics associated with each bit po-

sition. In order to process one survivor in one clock cycle, we
may use parallel comparators as shown in Fig. 9(b). After all
the last-depth survivors have been processed, the metrics in the
table are used to calculate the -values according to (2). How-
ever, it is possible that all the last-depth survivors agree on one
bit position, i.e., the corresponding or remains as
undefined, which means the -value cannot be directly calcu-
lated. To solve this problem, as shown in Fig. 9(b), we keep the
records of the best and worst metrics of the last-depth survivors,
denoted as and , respectively, and use as
the magnitude of the -value for those bits.

IV. PERFORMANCE EVALUATION AND VLSI IMPLEMENTATION

The signal detection performance of the proposed relaxed
-best detector is evaluated based on computer simulation with

the following configuration: We consider LDPC-coded MIMO-
OFDM system with 64-point FFT for 4 4 MIMO transmission
with 64-QAM. Out of the 64 subcarriers, 48 are data carriers
while the rest are used for pilots and virtual carriers, as defined
in the IEEE 802.11a standard. Each subcarrier MIMO channel
remains constant during transmission of a complete frame and
is flat fading, i.e., all the entries in the MIMO channel matrix are
independent random Gaussian variables. The LDPC code has a
code rate of 1/2 and code length of 2304, and the LDPC code
decoder performs up to 20 decoding iterations. There is no it-
eration between detector and decoder. For the definition of the
MIMO channel SNR, we follow the one proposed in [10]: Let

denote the channel code rate ( for uncoded systems),
SNR is defined as

where denotes the average symbol energy of the QAM con-
stellation. As pointed out earlier, the radius is calculated as
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Fig. 10. Simulated FER performance for 4 � 4 MIMO 64-QAM.

[10], where is a predefined constant parameter
and is the noise standard deviation.

For the purpose of comparison, we also carried out the simu-
lations for a soft-output sphere detector which exhaustively ex-
amines all the paths that satisfy the sphere radius check in order
to obtain the soft-output. The candidate list size is 128 and no
early termination technique is used (i.e., the detector continu-
ally searches for better candidates even if the candidate list is
full). The radius is calculated exactly the same as relaxed -best
detector described above. Fig. 10 shows the simulated frame
error rate (FER) of sphere detector and the proposed relaxed

-best detectors with various number, along with original
strict -best detectors to show the performance degradation due
to the distributed and relaxed sorting. For relaxed -best detec-
tors, we choose , and the total memory size is 2048
(i.e., totally 2048 paths can be stored in the memory). There are
totally 16 memory blocks, among which eight memory blocks
are used to store survivor paths from previous depth and the
other eight blocks are used to store extended survivor paths of
current depth. The size of each memory block is 128 and it is
further divided into 16 segments. As shown in Fig. 10, when
is larger than or equal to 48, the relaxed -best detection has
about 0.3 dB degradation compared with the strict -best de-
tection and both of them have detection performance very close
to the sphere detection. When is 32, both relaxed -best and
strict -best detectors suffer from big performance degrada-
tions. We note that the choice of ECC may have a big impact on
the overall performance, e.g., if a much more powerful LDPC
code (i.e., with much longer code length) is used, we may use
less value of to obtain the same performance.

Furthermore, we carried out simulations to evaluate the im-
pact of different design parameters on the overall performance.
Fig. 11 shows the impact of parallelism factor on the perfor-
mance. We change the value of while keeping and the
total memory size to be 2048. Fig. 12 shows the impact of total
memory size on the performance. We change the total size of
memories while keeping and .

To evaluate the hardware implementation feasibility, we de-
signed one soft-output relaxed -best recursive detector core

Fig. 11. Impact of parallelism factor � on performance.

Fig. 12. Impact of total memory size on performance.

with the following configuration: , , and the
total memory size of 2048. The path metric is represented by
8 bits, and each entry in the matrix and vector is repre-
sented by 15 and 16 bits, respectively. The design entry is Ver-
ilog HDL description, which has been synthesized using Char-
tered 0.13- m standard cell and single-port SRAM libraries
with 8 metal layers. Synopsys tools were used throughout the
design hierarchy down to place and route. The post-layout simu-
lation results have been verified against fixed-point C testbench.
Fig. 13 shows the detector core layout, where the dark area in
the layout is occupied by memory macros. The implementa-
tion metrics are summarized in Table I based on the post-layout
power estimation and static timing analysis.

Due to the use of PSK enumeration method, the compu-
tational load and instantaneous throughput of the detector
dynamically vary and depend on run-time channel conditions.
Therefore, we carried out post-layout simulations to estimate
the average detection throughput under different SNRs. Table II
shows the estimated average detection throughput at four
different SNRs for 4 4 MIMO 64-QAM when .
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Fig. 13. Layout of one detector core.

TABLE I
IMPLEMENTATION METRICS OF THE DETECTOR CORE

TABLE II
AVERAGE THROUGHPUT OF THE DETECTOR CORE

TABLE III
AREA AND POWER CONSUMPTION PARTITION BY FUNCTION BLOCKS

The total area and power consumption can be partitioned by
function blocks, as shown in Table III. From the data listed
in the above tables, we may estimate that, in order to achieve
above 100 Mb/s detection throughput, the detector will occupy
about 31 mm and consume about 1.2 W at the 0.13- m CMOS
technology node.

To further evaluate the area and power savings gained by
using the proposed relaxed sorting approach, we also imple-
mented bubble sorters that perform strict sorting and are used in
the original strict -best detectors [12], [14]. Bubble sorter is
of particular interest because its regular dataflow is highly suit-
able for high-speed hardware implementations. In this work, we
implemented the bubble sorters for the strict -best detectors in
two different approaches: 1) Strict Design I: All the data asso-
ciated with each survivor path, i.e., the path symbols and path
metric, are directly feed into the bubble sorter for strict sorting;
2) Strict Design II: Only the path metrics are feed into the bubble
sorter for strict sorting, while the associated path symbols are
stored in memory. The path metric in the bubble sorter is linked
to its own path symbols in the memory through a memory ad-
dress tag. In general, the second approach may reduce the en-
ergy consumption because of the reduced data movement in the
bubble sorter. As shown in Fig. 10, the performance of a re-
laxed -best detector with is very close to that of a
strict -best detector with , thus, the bubble sorters
are designed for . To further improve the throughput of
the bubble sorter, we may introduce a sorting parallelism factor

, i.e., we implement identical bubble sorters, each one fol-
lows one PS block and their outputs are further compared to

TABLE IV
COMPARISON OF RELAXEDK-BEST AND STRICTK-BEST SORTERS

obtain the globally sorted paths. Table IV summarized the area,
power and throughput at 17.7 dB of different sorting realiza-
tions. In order to achieve the same throughput of relaxed -best
detector, both strict -best designs will incur much higher (i.e.,
2 3 times) area and power consumption overhead.

V. CONCLUSION

This paper for the first time presents a nonlinear tree
search MIMO signal detector design solution that can support
hardware implementations for 4 4 MIMO transmission
with 64-QAM. Belonging to the family of breadth-first tree
search detectors, this design solution applies appropriate
algorithm-level modifications to tackle the hardware imple-
mentation bottlenecks of the conventional breadth-first tree
search MIMO detection. To demonstrate its effectiveness, we
designed one soft-output detector for 4 4 MIMO transmis-
sion with 64-QAM at 0.13 CMOS technology node, which
can realize very good detection performance and achieve high
detection throughput with reasonable silicon area and power
consumption.
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