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Abstract—This paper presents a joint source coding, channel
coding, and flash memory channelization design framework to
obtain optimized tradeoffs among energy consumption, bit rate,
and end-to-end distortion (i.e., optimal E-R-D tradeoff space)
for embedded and mobile devices with limited power source and
abundant flash memory storage capacity. The optimal E-R-D
tradeoff space enables embedded and mobile devices to cohesively
optimize the source coding and data storage system operations
subject to run-time power source, storage capacity, and/or distor-
tion constraints. By treating flash memory as a communication
channel, this work differs from classical joint source-channel
coding from two perspectives: i) Classical joint source-channel
coding aims to obtain an optimized R-D (bit rate and distortion)
tradeoff space, while we aim to obtain an optimized E-R-D tradeoff
space; ii) Flash memory can be configured (or channelized) over
an energy consumption versus raw bit error rate tradeoff spec-
trum, and channelization is an integral part of the joint design.
With the focus on video coding, this paper presents theoretical
investigations and specific approaches for both scenarios where
channel can and cannot contribute to end-to-end distortion. Based
on detailed power estimation and representative video sequences,
we quantitatively demonstrate the application of the proposed
design approaches for obtaining optimized E-R-D tradeoff space.

Index Terms—Energy consumption, H.264/AVC, joint source-
channel coding, NAND flash memory, video coding.

I. INTRODUCTION

C ONTINUOUS technology scaling has enabled various
embedded and mobile devices to incorporate an increas-

ingly larger capacity of NAND flash memory as local data
storage. However, just like hard disk drives in personal com-
puters, it is not uncommon that a noticeable percentage of flash
memory storage capacity is often left unused in embedded and
mobile devices. This simple observation motivates us to inves-
tigate the possibility of exploiting the abundant flash memory
storage capacity to enable certain system design innovations.
Modern embedded and mobile devices typically contain sev-
eral sensors, and may frequently compress/decompress and
store/retrieve various sensor data, which can be energy hungry.
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In addition, it is also not uncommon that embedded and mobile
devices strive to sense, compress, and store as much data as
possible subject to a limited (and dying) battery power source.
Due to the inherent tradeoff between data compression energy
consumption and compression efficiency, the abundant NAND
flash memory storage capacity makes it possible to intention-
ally apply less sophisticated and lower power data compression
algorithms at the penalty of compression efficiency in order to
reduce system energy consumption. Nevertheless, worse com-
pression efficiency directly results in a larger data volume and
hence higher data storage/retrieval energy consumption. This
clearly demands a system optimization by jointly considering
data compression and data storage.
Motivated by the above discussions, we presents design

framework to jointly optimize data compression and NAND
flash memory data storage in embedded and mobile devices.
In this work, we treat NAND flash memory as a commu-
nication channel, and the system model consists of source
encoding/decoding (in particular, video encoding/decoding),
channel encoding/decoding, and the communication channel
(i.e., NAND flash memory). We are interested in joint system
optimization in terms of energy consumption, bit rate (or
compression efficiency), and end-to-end source distortion.
Such a joint design framework is conceptually similar to joint
source-channel coding, which is a very classical research topic
in communication theory and has been extensively studied. We
note that the problem being addressed in this work fundamen-
tally differs from classical joint source-channel coding since
classical joint source-channel coding aims to obtain an optimal
R-D (bit rate and distortion) tradeoff space [1]–[6], while we
are interested in optimal E-R-D (energy, bit rate, and distor-
tion) tradeoff space by explicitly incorporating system energy
consumption. Few prior work merged energy consumption
and R-D analysis together in wireless video systems. In [7],
[8], dynamic voltage scaling (DVS) and complexity-scalable
hardware implementation of video compression were modeled
to explore E-R-D design space in a wireless video sensor
network. Marijan et al. [9] proposed an E-R-D model for image
sensor subsystem and incorporates it in power allocation for
wireless video sensors. In this work flash memory channel is
explicitly configured (or channelized) in terms of memory write
and error correction coding (ECC) energy consumption versus
raw bit error rate tradeoff, and channelization is an integral part
of the joint design, while classical joint source-channel coding
assumes an uncontrollable communication channel.
By explicitly incorporating system energy consumption as an

optimization metric, we should be able to gracefully explore
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Fig. 1. Threshold voltage shift process under incremental step pulse program-
ming. The threshold voltage is boosted by in each program-and-verify
cycle and becomes higher than target value after five cycles.

the design space of all the components in terms of energy con-
sumption. We can combine channel coding and flash memory
as a storage subsystem, and jointly adjust the flash memory
channelization and error correction capability of channel coding
to gracefully explore the storage subsystem energy consump-
tion. However, with the focus on video coding in this work, it
is not immediately clear how to explore the video coding de-
sign space by considering energy consumption. In this work,
we first discuss how we can dynamically adjust the energy con-
sumption versus bit rate tradeoff in video encoding through con-
figuring interframe versus intraframe prediction. We propose
a strategy that selectively switches prediction mode of mac-
roblocks during run-time. Then, we further elaborate on ob-
taining optimal E-R-D tradeoff space for two different scenarios
on whether errors are allowed in data storage. We further car-
ried out simulations to demonstrate the proposed joint design
framework. Using Synopsys tool set and 65 nm CMOS stan-
dard cell and SRAM libraries, we performed ASIC (application
specific integrated circuit) design to estimate video coding and
channel coding energy consumption. Based on open literature
in device community, we developed a NAND flash memory en-
ergy consumption estimation tool. Based on these energy con-
sumption estimation capabilities, we use representative video
sequences [10] to quantitatively demonstrate the achievable op-
timal E-R-D tradeoff space under the two different scenarios
(i.e., error-free and error-prone flash memory channel), which
makes it possible to realize overall system optimization subject
to run-time constraints on energy consumption, bit rate, and/or
end-to-end distortion.

II. NAND FLASH MEMORY: BASICS AND MODELING

Each NAND flash memory cell is a floating gate transistor
whose threshold voltage can be programmed by injecting
certain amount of charges into the floating gate. To achieve
tight threshold voltage distribution, incremental step pulse
programming (ISPP) technique is widely employed [11], [12],
i.e., memory cells are recursively programmed using a pro-
gram-and-verify approach with a stair case program voltage
. Let denote the program voltage increment, memory

cell threshold voltage can be boosted by up to during
each program-and-verify cycle, as illustrated in Fig. 1.
There is a tradeoff between memory cell raw storage reli-

ability and programming energy consumption: If we reduce
the program voltage step increment , we can tighten
each threshold voltage distribution window, leading to a larger
storage noise margin between two adjacent storage levels and
hence higher raw storage reliability. Meanwhile, with a smaller

Fig. 2. Simulation results that reveals the impact of program voltage increment
on the memory cell raw BER versus programming energy consumption

tradeoff.

, we have to carry out more program-and-verify cycles,
leading to more bit-line charging/discharging and hence higher
energy consumption. Therefore, there is a storage reliability
versus memory write energy consumption tradeoff that can be
readily adjusted by a single parameter . To enable quan-
titative evaluations, we use the NAND flash memory device
model presented in [13] to estimate memory cell storage raw
bit error rate (BER) under different . We enhanced the
NAND flash memory energy model presented in [14] in order
to quantitatively reveal the impact of on programming
energy consumption. In multi-bit per cell NAND flash memory,
each verify phase consecutively examines the threshold voltage
of all the memory cells against several reference voltages. As a
result, bit-lines are charged and discharged several times during
each verify phase [15]. All these factors have been incorpo-
rated into this flash memory energy consumption model, and
the energy estimation results have been verified against those
presented in [14].
Based upon the flash memory device model and memory en-

ergy consumption model, we carried out simulations to quan-
titatively demonstrate the memory cell raw BER versus pro-
gramming energy consumption tradeoff that can be configured
by the program step voltage . As shown in Fig. 2, when
we increase , programming energy reduces linearly and
memory cell raw BER increases exponentially.

III. JOINT CODING AND CHANNELIZATION FOR

SYSTEM OPTIMIZATION

As flash memory technology scales down, NAND flash
memory is subject to increasingly worse raw storage reliability
and hence demands channel coding [16]. We are interested in
the optimization of the entire datapath, as illustrated in Fig. 3,
subject to run-time constraints of power source, available
storage capacity, and/or end-to-end distortion. Different from
conventional communication system, the characteristics of
NAND flash memory channel can be configured, e.g., the
adjustable tradeoff between memory cell raw BER and pro-
gramming energy consumption. This channel configuration
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Fig. 3. Illustration of an embedded system with video processing and flash
memory storage, where the channelization is enabled by tuning NAND flash
memory operational parameter .

process is called memory channelization. Although we can re-
duce NAND flash memory energy consumption by increasing
program increment , it meanwhile results in higher
memory raw BER and demands stronger channel coding,
which leads to higher channel coding energy consumption.
Similarly, if we reduce source coding energy consumption by
intentionally degrading source compression efficiency, more
energy will be consumed by the channel coding and flash
memory. This clearly suggests that we should jointly consider
source coding, channel coding, and flash memory channeliza-
tion.
In this work, we are particularly interested in video pro-

cessing in embedded systems. Once a video stream has been
compressed (or encoded) and stored in NAND flash memory,
the video may be decoded (and displayed) several times. Hence,
we model the energy consumption of the entire datapath as

(1)

where and ( and ) denote the en-
ergy consumption of source (channel) encoding and decoding,

and denote the energy consumption of flash memory
programming and read, and is the number of video
playback. Let denote the end-to-end video distortion con-
sisting of distortions induced by both video encoding quanti-
zation errors and channel decoding failures. Let denote the
video coding bit rate in terms of bit per pixel. The three system
performance metrics (i.e., energy consumption , bit rate ,
and end-to-end distortion ) are correlated. The objective of
joint source-channel coding and channelization is to obtain the
optimal E-R-D tradeoff space, as illustrated in Fig. 4, which re-
veals the minimum possible value of one metric for any combi-
nation of the other two metrics.
In order to develop the optimal E-R-D tradeoff space, we

should be able to explore the design space of all the components
in the system by explicitly taking into account energy consump-
tion, bit rate, and distortion. We can combine channel coding
and flash memory as a storage subsystem, and jointly adjust the
flash memory program increment and error correction
capability of channel coding to gracefully explore the storage
subsystem design space. However, it is not immediately clear
how to address the video coding design space tradeoff in an en-
ergy-centric manner. In the following, we first discuss how we
can dynamically adjust the tradeoff space in video encoding in
Section IV, then further elaborate on the joint coding and chan-
nelization strategy in Section V.

Fig. 4. Illustration of optimal E-R-D tradeoff space. The curves in the plot from
top to bottom represent energy consumption from low to high.

IV. EXPLORING E-R-D TRADEOFF IN VIDEO ENCODING

Video encoding aims to remove both spatial and temporal
redundancy in video sequences. In current design practice, input
video frames are partitioned into macroblocks (MBs), and the
encoder processes each frame in units of MBs and constructs a
prediction for each MB based on the previously encoded data.
A MB predicted from one or more MBs in previously encoded
frames is referred as an interframe predicted MB, while a MB
predicted fromMBs in current frame is referred as an intraframe
predicted MB. The residue is then transformed, quantized, and
entropy coded.
Interframe prediction and intraframe prediction tend to result

in largely different tradeoff between energy consumption and
bit rate: Due to the abundant temporal redundancy in video se-
quences, interframe prediction can achieve (much) higher com-
pression efficiency than intraframe prediction. Inter-frame pre-
diction is realized by motion estimation that carries out exhaus-
tive or non-exhaustive search within a sufficiently large region
in previously encoded frame(s). As the most demanding func-
tion in video encoding, motion estimation consumes a signif-
icant amount of computation and memory access energy con-
sumption. In comparison, intraframe prediction is carried out
by searching a very small region around the present MB in the
same frame, leading to much less computation and memory ac-
cess energy consumption. Therefore, we can dynamically adjust
the energy consumption versus bit rate tradeoff by simply tuning
the interframe versus intraframe prediction ratio.
We first propose an analytical model to estimate the R-D

(rate-distortion) performance with respect to the rate of
switching interpredicted MBs to intrapredicted MBs, i.e.,
intrarefresh rate denoted by . Let us assume the transform
coefficients have a Gaussian distribution with zero mean:

(2)

We employ the square error distortion

(3)
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where is quantized value of . According to Shannon’s source
coding theorem [17], given a source coding distortion , the
minimum rate needed to represent a symbol is

(4)

For the same image data, transform coefficients after intra pre-
diction have a larger variance than inter prediction, i.e.,
. Denote R-D functions as and for inter and

intra prediction, respectively. We optimize the R-D tradeoff on
the frame basis and denote the distortion of a frame with inter
prediction and intra prediction as and , respectively.
Then the overall frame distortion is

(5)

and we have the bit rate of the frame

(6)

Given the source coding distortion constraint , we would like
to minimize the rate to obtain the optimal R-D tradeoff space,
i.e.,

(7)

In the following, we show that the rate, which results in the same
distortion for both interpredicted and intrapredicted MBs,
gives the optimal solution to (7). The Lagrangian formulation
of the minimization problem is given by

(8)

By taking the partial derivative of and respectively, we
have

Therefore, we have that

(9)

provides the optimal solution to (7). In other words, in order to
minimize bit rate subject to a distortion constraint, we should
carefully set the quantization parameters for both modes so that
both inter and intra prediction have the same maximum allow-
able distortion. Total rate for the given distortion can be cal-
culated as

(10)

Fig. 5. Computation complexity of motion estimation decreases as increases.
Switching MBs with large estimation costs reduces the complexity substan-
tially.

Let and denote the average energy consumption
of interframe and intraframe prediction, respectively. Given the
parameter , we can estimate the total encoding energy con-
sumption as

(11)

Clearly, we can explore the video encoding E-R-D tradeoff
space by configuring the ratio between interframe and in-
traframe prediction (i.e., the parameter ). If fast motion
estimation algorithms are used, interframe prediction for
different MBs will incur different motion estimation computa-
tional complexity and hence energy consumption. So we should
apply intraframe prediction to those MBs that demand high
motion estimation energy consumption. If the motion vector
of a MB corresponds to a relatively large sum of absolute
difference (SAD), its motion estimation tends to search more
possible candidate points. Hence, we can simply use the SAD
associated with the motion vector as the motion estimation
cost metric. Fig. 5 demonstrates the motion estimation com-
plexity reduction with different MBs selection schemes. The
complexity is the number of search points per frame when the
motion estimation uses the hexagon search [18]. In the large
cost MBs first (LCMF) scheme, the motion estimation costs
of all MBs are sorted in a descending order, the first portion
of all the MBs are processed by intraframe prediction and the
rest are processed by interframe prediction (i.e., motion esti-
mation); in the small cost MBs first (SCMF) scheme, the last
portion of all the MBs are processed by intraframe prediction;
in the random scheme, a random portion of all the MBs are
processed by intraframe prediction.
However, it is not practical to know the motion estimation

costs of all the MBs in a frame during run time unless they
have been processed by interframe prediction. In practice we
cannot select the MBs strictly based on their motion estimation
cost, and instead we propose the following simple solution: In
every group of pictures (GOP), the first frame is processed by
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intraframe prediction, and the second frame are processed by in-
terframe prediction. This provides the initial motion estimation
cost statistics for all the MBs, based on which the modes of all
the MBs in the successive frames are decided, and the resulting
costs are used to update the motion estimation cost statistics.
This strategy was used in our quantitative evaluations presented
in Section VI.

V. JOINT SOURCE-CHANNEL CODING AND FLASH
MEMORY CHANNELIZATION

In this section, we discuss the joint source-channel coding
and flash memory channelization that aims to obtain the optimal
E-R-D tradeoff space for the entire system. The source coding
energy consists of encoding energy given by (11), and de-
coding energy given by

(12)

where and are energy of inter and intra decoding,
respectively, and is the number of video playbacks. Since
the exact value of is unknown a priori, the system can only
rely on an estimation from either the operating systems (based
on prior user’s activity patterns) or directly from the user input.
Combining (11) and (12), we can express the total video coding
system energy consumption as

(13)

where

(14)

Essentially, represents the video coding system energy con-
sumption if all the MBs are coded in inter mode, and
represents the energy saving of inter-to-intra mode switching.
Once the video sequence and computing platform are given, the
values of and are fixed. Hence, the video
coding system energy consumption is the function of , i.e.,

.
Let and denote the average energy consump-

tion for ECC encoding and decoding one bit, respectively, and
and denote the average energy consumption for

writing/reading one bit to/from flash memory, respectively. Let
and represent the length of compressed video bitstream

if all the MBs are processed by interframe and intraframe
prediction, respectively. Let denote the ECC code rate. We
can estimate the total channel energy consumption (including
both ECC coding and flash memory access) as

(15)

where

(16)

We can further rewrite (15) as

(17)

where

(18)

Essentially, represents the channel energy consumption if
the bitstream is generated when interframe prediction is used
to all the MBs, and represents the energy cost because
of the longer bitstream length caused by inter-to-intra predic-
tion switching. Once we choose the ECC being used (e.g., BCH
code or RS code), we assume that and are fixed.
As discussed in Section II, the parameter determines the
tradeoff between flash memory programming energy consump-
tion and memory raw bit error rate. In addition, the allow-
able channel distortion sets a constraint on the allowable
memory raw bit error rate, and memory raw bit error rate deter-
mines ECC code rate . Therefore, and together deter-
mine and . The parameters and are proportional to the
R-D functions and , and hence are also func-
tions of the video coding distortion . Therefore, the channel
energy consumption is a function of , and ,
i.e., .
As proven in [6], the distortions caused by video coding and

channel are uncorrelated, and the total end-to-end distortion
is simply the summation of video coding distortion and channel
distortion, i.e., . Based upon the above discus-
sions, we have

(19)

which can be used to jointly explore the space of the parame-
ters , and to find the optimal E-R-D tradeoff
space. In this section, we will discuss two possible scenarios:
i) Channel does not contribute to the end-to-end distortion, i.e.,
ECC coding is strong enough to ensure a completely error-free
channel and hence and ii) Motivated by extensive
studies on unequal error protection and error concealment for
video bitstream transmission (e.g., see [19]–[26]), we also con-
sider the scenario where distortion comes from both video en-
coding and channel, i.e., .

A. Scenario I: Error-Free Channel

Since the ECC can ensure a completely error-free flash-based
data storage, we have and , i.e., the end-to-end
distortion is only incurred by video encoding. As a result, both
defined in (16) and ECC code rate are only dependent on

the parameter . Define

(20)

and we have is a function of and is a function of
and . Therefore, we can rewrite (19) as

(21)
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Fig. 6. Calculated with a given distortion when we vary the
video replay number .

Since is independent on other parameters, we can
search for the optimal E-R-D tradeoff space in two separate
steps:
1) We first search the space of the parameter in order
to minimize ;

2) Based upon the minimized , we then search the space
of the parameter for the optimal E-R-D tradeoff.

The first step can be simply accomplished through exhaustive
search. For each given , we can use the flash memory en-
ergy consumption model to estimate the corresponding memory
write energy and then estimate the value of . Meanwhile,
we can estimate the corresponding memory raw bit error rate,
which will further determine ECC code rate . In this way, for
each given , we can obtained the corresponding . By
exhaustively exploring the practically allowable region of the
parameter , we can find the minimal possible . Once
we fix , we can rewrite (21) as

(22)

where and . We note that
and are defined in (14), and and are defined in (18). It
essentially reveals the relation among system energy consump-
tion , video distortion , and bit rate , which can be directly
used to obtain the optimal E-R-D tradeoff space. Furthermore,
we note that , and according to (6), for a given coding
distortion, a smaller results in a lower bit rate. Given a distor-
tion , if , i.e., video encoding energy saving due to
inter-to-intra prediction switch is not sufficient to offset channel
coding and memory energy overhead due to increased bit rate,
we should set , which can minimize both energy con-
sumption and bit rate . On the other hand, if ,
there is a tradeoff between energy consumption and bit rate
, i.e., a smaller results in lower bit rate but higher en-

ergy consumption . Fig. 6 shows the calculated with a
given distortion for several different video sequences when we
vary the video playback number . The video sequences with
large are more likely to have a negative , e.g.,
the Mobile sequence as shown in Fig. 6.

B. Scenario II: Error-Prone Channel

In this subsection, we consider the scenario that channel also
incurs distortion (i.e., ) due to weak ECC code. Mo-
tivated by the fact that human beings are perceptually insensi-
tive to minor errors in video frames and different portions in
video data stream have largely different importance regarding
the quality of reconstructed video frames, unequal error protec-
tion for video stream transmission has been well studied (e.g.,
see [19]–[23]) and has been leveraged in prior research on joint
source-channel coding. Following prior work, we apply a strong
ECC to frame header, prediction mode, and motion vector data
to ensure their error-free storage, and apply a weak ECC to the
remainder texture data at the cost of relatively high error rate.
When a corrupted codeword cannot be properly decoded by the
weak ECC, it will be discarded and the video decoder will skip
all the bits being contained in this codeword. During video de-
coding, if an inter coded MB is skipped, the texture information
is lost but the mode and motion vector information are retained.
Hence, we can simply substitute this lost MB with the motion
compensated block from the reference frame. If an intra coded
MB is skipped, it can be simply substituted by the MB at the
same location in the previous frame.
Inter-frame prediction offers increased coding efficiency over

intraframe prediction but is susceptible to error propagation,
which can be alleviated by performing intrarefresh [6], [27],
[28]. Therefore, in addition to realizing the encoder complexity
scalability, inter-to-intra switching can also trade compression
efficiency for error resilience. As a result, the channel distor-
tion depends on both pixel error rate due to error correction
failure of weak ECC and intrarefresh rate , i.e., channel distor-
tion is a function of and . Moreover, determines
the raw flash memory bit error rate, which together with de-
termines ECC code rate . Hence as defined in (20) is a
function of and . Therefore, we can obtain the optimal
E-R-D tradeoff space based upon

(23)

To reduce the computational complexity, we can derive the op-
timal E-R-D trade space in two separate steps:
1) Given a pixel error rate , we first search the space of the
parameter in order to minimize .

2) Based upon the minimized , we then search the space
of the parameter for overall system optimization.

Similarly, the first step can be simply accomplished through
exhaustive search. Nevertheless, the second step becomes much
more complicated than the scenario of error-free channel. Un-
equal error protection reduces the total flash memory access en-
ergy at the expense of nonzero channel distortion. Part of the
flash memory access energy saving can be allocated to enable
video encoder carry out more interframe prediction, which can
reduce source distortion without rate penalty. Such correlations
among channel distortion, source distortion, energy consump-
tion, and bit rate make have a much more complicated impact
on the E-R-D tradeoff space.
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It can be proven (please refer to the Appendix for the proof)
that the asymptotic average channel distortion can be expressed
as

(24)

where is a constant describing the motion randomness of
the video sequence, as defined in [6]. If and

are used to denote the original value, reconstructed
value without and with channel error of the th pixel in the th
frame, respectively, then

(25)

and are defined as

(26)

It should be noted that is the variance of residue after mo-
tion prediction in frame . While represents the MSE
between reconstructed frames and , which effectively
is the variance of residue if all the motion vectors are forced to
point to collocated MBs. Hence, is essentially upper
bounded by . As we increase , the first term and
second term in (34) will increase and decrease, respectively. In
addition, asymptotically, the average channel distortion caused
by channel error is proportional to the frame differences and
residue variance. For a specific video frame, the larger the quan-
tization step is, the smaller the residue variance is. Fig. 7 shows
that the asymptotic average channel distortion may increase or
decrease with , depending on quantized residue variance. For
video sequences with relatively small , decreasing
leads to smaller and thus relaxes , and accordingly bit
rate can be reduced. For video sequences with relatively large

, decreasing results in larger and thus demands
a lower , which will further increase the bit rate. Due to its
strong dependence on video sequence characteristics, the op-
timal can only be found by extensive simulations over repre-
sentative video sequences.

VI. CASE STUDIES

This section presents case studies to evaluate the above pro-
posed joint source-channel and channelization framework for
obtaining the optimal E-R-D tradeoff space.

A. Flash Memory Channelization

Table I lists the NAND flash memory configurations being
used in this study. We consider two programming schemes: 1
bit/cell and 2 bits/cell. Programming 1 bit information into one
cell can be very fast and energy efficient, since a larger
can be used compared with 2 bits/cell. Table II lists NAND
flash memory programming energy and raw BER under dif-
ferent for both 1 bit/cell and 2 bits/cell programming
schemes. For each programming scheme, by increasing ,

Fig. 7. The asymptotic average channel distortion may increase or decrease
with , based on residue variance values.

TABLE I
NAND FLASH MEMORY PARAMETERS USED IN SIMULATIONS

TABLE II
FLASH PROGRAMMING ENERGY AND RAW BER WITH DIFFERENT

we can reduce flash memory programming energy at the ex-
pense of increased raw BER. The read energy is 0.385 J per
page, which is independent on .
Following the current design practice, we use binary BCH

codes as ECC for NAND flash memory, whose construction and
encoding/decoding are based on binary Galois fields [29]. A bi-
nary Galois field with degree of is represented as .
For any and , there exists a primitive binary
BCH code over , which has the code length
and information bit length and can correct up
to errors. Under different raw BER, Table III lists the BCH
code structure and decoding energy consumption with a target
page error rate of (corresponding to error-free storage)
and 1% (corresponding to error-prone storage). The BCH de-
coding energy consumption is obtained by carrying out ASIC
design using 65 nm CMOS standard cell and SRAM libraries,
where Synopsys tools are used throughout the design hierarchy
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TABLE III
BCH CODE PARAMETERS AND DECODING ENERGY CONSUMPTION FOR DIFFERENT RAW BER

Fig. 8. Total flash access energy consumption (including flash memory write/read energy consumption and ECC decoding energy consumption) with (a) 1 bit/cell
and (b) 2 bits/cell programming schemes.

down to place and route. we designed the BCH code decoder ar-
chitecture based upon the well-known Berlekamp–Massey de-
coding algorithm [29]. We set the number of metal layers as 4 in
the place and route. Post-layout results verify that the decoders
can operate at 400 MHz with the power supply of 1.08 V, and
the footprint is 1.49 mm . BCH encoding is very simple (i.e.,
only collections of shift registers), and consumes less than 5%
of decoding energy. Hence, we do not explicitly take it into ac-
count in this study.
Fig. 8 shows the total flash memory access energy consump-

tion with respect to . Data are written to the flash memory
once, but may be read out multiple times (i.e., ).
The total flash memory access energy consumption includes
both flash memory write/read energy consumption and ECC
decoding energy consumption. The results demonstrate the
impact of the parameter . 1 bit/cell programming outper-
forms 2 bits/cell programming in terms of energy efficiency,
however, the capacity occupied by the same amount of data is
doubled by storing only one bit per cell.

B. Exploration of Optimal System E-R-D Trade-Off

In this work, we use H.264/AVC video compression stan-
dard [30] and carry out video sequences profiling using JVT

JM 15.1 [31] codec implementation. We evaluate the optimal
E-R-D tradeoff for sequences in CIF format (352 288 and
30 frames per second) [10]. These standard test sequences cover
a wide range of video motion complexity. We show the results
of Foreman and Football in this paper, and results of other video
sequences are similar based on our simulation. In each group of
frames, the first frame only uses intraframe prediction, followed
by five frames that may use either interframe or intraframe pre-
diction for each MB. Motion estimation uses hexagon search
and search range is , i.e., a 48 48 region.When forcing the
five frames within each group only use interframe prediction,
we estimate that real-time encoding of Foreman and Football
consumes 1.51 mW and 1.88 mW, respectively. The average en-
ergy consumption per frame is 50.3 and 62.7 J, respectively.
When forcing the five frames within each group only use in-
traframe prediction, we estimate that they consume almost the
same power of 0.5 mW, i.e., 16.7 J per frame. Decoding power
is estimated as 0.125 mW, i.e., 4.2 J per frame.
1) Error-Free Channel: Targeting at error-free channel, we

carry out E-R-D space exploration following the strategy pre-
sented in Section V-A. Fig. 9 shows the optimal E-R-D tradeoff
space for the four video sequences, where we set (i.e.,
the video is replayed once). Sufficiently strong BCH codes are
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Fig. 9. Estimated optimal E-R-D tradeoff space with error-free channel for (a) Foreman with 1 bit/cell, (b) Foreman with 2 bits/cell, (c) Football with 1 bit/cell,
and (d) Football with 2 bits/cell. is carefully selected by assuming the bitstream is read once, and strong ECC is used to ensure error-free flash data storage.

used to ensure the page error rate of for all the data stored
in NAND flash memory. The total system energy consumption
corresponding to curves from top to bottom are 33, 40, 53, 60,
and 66 J for each frame, respectively.
When the total energy source is low, the distortion becomes

flat because it cannot be pushed down beyond a certain value
due to limited energy resource. With a higher energy supply
source, the system achieves lower distortion and the curve be-
comes more steep, which means the video compression effi-
ciency is higher. This is because the encoder has more energy
resource and thus more computational capability to eliminate
the temporal and spatial redundancy in the input video data.
Since fast motion estimation algorithm is used, the sequence
Foreman with little motion only requires small amount of com-
putation to find the motion vectors, hence consumes less en-
ergy for inter encoding. While for Football with complex mo-
tions, it needs to search more points to find optimal motion vec-

TABLE IV
FRACTION OF RESIDUE DATA IN BITSTREAM WITH
DIFFERENT QUANTIZATION PARAMETERS (QPS)

tors. Therefore, improvement of distortion for Football is larger
than for Foreman, if the total energy resource is increased by
same amount, as shown in Fig. 9. Since storing bitstream with
1 bit/cell is more energy efficient, it achieves better R-D per-
formance with given energy constraint, compared to 2 bits/cell
programming scheme.
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Fig. 10. Rate-distortion tradeoff under three different design scenarios subject
to the energy constraint of 40 J per frame with (a) and (b) .

2) Error-Prone Channel: As pointed out earlier, following
the theme of unequal error protection, we categorize the video
bit stream into important data being protected by strong ECC
and unimportant data being protected by weak ECC. The
channel distortion and flash memory access energy consump-
tion largely depend on the fraction of unimportant data in the
entire bitstream, which is also impacted by quantization steps.
Table IV shows the fraction of unimportant texture information
data in bitstream with different quantization steps for the four
video sequences. The texture information includes residues of
both inter and intra coded MBs.
We carry out optimal E-R-D tradeoff space exploration fol-

lowing the strategy presented in Section V-B. Fig. 10 shows the
results for the video sequence Foreman with 2 bits/cell flash
programming. We consider the scenarios when the stored bit-
stream is read and played once (i.e., ) and five times
(i.e., ), respectively, and the overall system energy con-

Fig. 11. PSNR improvement versus system energy consumption constraint for
(a) Foreman (b) Football.

straint as 40 J per frame. For the purpose of comparison, we
also show the results when assuming an error-free channel. Re-
sults show that, by allowing channel distortion, we can achieve a
slightly better E-R-D tradeoff space than enforcing an error-free
channel. To further demonstrate the effectiveness of the pro-
posed joint coding and channelization approach, we also con-
sider a baseline scenario where we simply fix as 0.2 V
and apply a strong ECC to ensure error-free channel.
Fig. 11 shows the PSNR improvement versus system energy

consumption constraint for the two video sequences under the
three different design scenarios. We encode Foreman at a bit
rate of 384 kb/s, and Football at a bit rate of 512 kb/s, because
of their different motion and texture complexity. And 2 bits/
cell programming scheme is used. The results further illustrate
the potential advantages by allowing channel distortion, and the
effectiveness of joint coding and channelization optimization.

VII. CONCLUSION

Targeting at embedded and mobile devices with limited
power source and abundant flash memory storage capacity, this
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paper presents a joint source-channel coding and flash memory
channelization design framework for searching an optimal
system E-R-D tradeoff space. Based upon such an E-R-D
tradeoff space, embedded and mobile devices can optimally
configure its operations subject to run-time power source,
storage capacity, and/or source distortion constraints. Focusing
on video coding and leveraging inherent programming versus
reliability tradeoff of NAND flash memory, this work develops
specific joint coding and flash memory channelization de-
sign approaches covering both scenarios where flash memory
storage can and cannot contribute to end-to-end distortion. We
further carry out quantitative evaluations to demonstrate using
this joint design approach to obtain optimal system E-R-D
tradeoff space.

APPENDIX

For the th pixel in the th frame, let be the original
value, and and be the reconstructed value without
and with channel error, respectively. The expected channel dis-
tortion for an intra coded frame with a pixel error rate of is

(27)

The fourth identity in (27) is based on the assumption that the
frame difference and channel distortion are uncorrelated with
each other. If a pixel is predicted in inter mode, its reconstructed
value at decoder is , where pixel in frame

is the motion prediction of pixel in frame , and
is the residue. Then channel distortion for an inter coded frame
is

(28)

The overall channel distortion is given by

(29)

where

(30)

The distortion can be recursively calculated frame by frame and
trace back to distortion of the first frame as

(31)
Next we analyze the asymptotic behavior of channel distor-

tion. Let be the number of already coded frames. The average
channel distortion of all coded frames is

(32)

Since and are upper bounded by ,
we have

(33)

Then, we have

(34)

where and are average values of recon-
structed frame difference and residue variance over the whole
video sequence, respectively.
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