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Defect and Transient Fault-Tolerant System Design
for Hybrid CMOS/Nanodevice Digital Memories
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Abstract—Targeting on the future fault-prone hybrid CMOS/
nanodevice digital memories, this paper presents two fault-
tolerance design approaches that integrally address the tolerance
for defects and transient faults. These two approaches share sev-
eral key features, including the use of a group of Bose–Chaudhuri–
Hocquenghem (BCH) codes for both defect tolerance and tran-
sient fault tolerance, and integration of BCH code selection and
dynamic logical-to-physical address mapping. The first approach
is straightforward and easy to implement but suffers from a rapid
drop of achievable storage capacity as defect densities and/or
transient fault rates increase, while the second approach can
achieve much higher storage capacity under high defect densities
and/or transient fault rates at the cost of higher implementation
complexity and longer memory access latency. Based on extensive
computer simulations and BCH decoder circuit design, we have
demonstrated the effectiveness of the presented approaches under
a wide range of defect densities and transient fault rates, while
taking into account of the fault-tolerance storage overhead and
BCH decoder implementation cost in CMOS domain.

Index Terms—Bose–Chaudhuri–Hocquenghem (BCH) codes,
complementary metal–oxide–semiconductor (CMOS), defect/fault
tolerance, error correcting code (ECC), hybrid digital memory,
nanodevice, very large scale integration (VLSI) implementation.

I. INTRODUCTION

THE PAST FEW years experienced spectacular advances
in the fabrication and manipulation of molecular and other

nanoscale devices [1]–[7]. Although these new devices show
significant future promise to sustain Moore’s Law beyond the
CMOS scaling limit, there is a growing consensus [8], [9] that,
at least in the short term, they cannot completely replace CMOS
technology. As a result, there is a substantial demand to explore
the opportunities for CMOS and molecular/nanotechnologies
to enhance and complement each other. This naturally leads
to a paradigm of hybrid CMOS/nanodevice nanoelectronics
[10]–[16], where an array of nanowire crossbars, with wires
connected by simple nanodevices at each crosspoint, sits on
the top of a CMOS circuit. The crosspoint nanodevices are
responsible for the bulk of information processing and/or
storage, while the CMOS circuit may perform testing and
fault tolerance, global interconnect, and some other critical
functions. It is almost evident that, compared with the current
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CMOS technology, any emerging nanodevices will have (much)
worse reliability characteristics (such as the probabilities of
permanent defects and transient faults). Hence, fault tolerance1

have been well recognized as one of the biggest challenges in
the emerging hybrid nanoelectronic era [9].

This work concerns the fault-tolerant system design for hy-
brid nanoelectronic digital memories. Conventionally, defects
and transient faults in CMOS digital memories are treated
separately, i.e., defects are compensated by using spare rows,
columns, and/or words to repair (i.e., replace) the defective
ones, while transient faults are compensated by error correcting
codes (ECC) such as Hamming and Bose–Chaudhuri–Hoc-
quenghem (BCH) codes. In order to realize satisfactory defect
tolerance efficiency, the repair-only approach requires very
low defect densities that can be readily met by current CMOS
technologies. Nevertheless, the much higher defect densities
of nanodevices make the repair-only approach not sufficient,
which naturally demands extending the use of ECC for both
defect tolerance and transient fault tolerance. Because of the
dual role of ECC, defect tolerance and transient fault tolerance
should be addressed integrally. More importantly, realization of
fault tolerance in hybrid nanoelectronic memory will incur area,
energy, and operational latency overhead in CMOS domain,
e.g., the overhead incurred by the implementation of ECC
decoder and reliable storage of certain nanodevice memory
configuration information in CMOS memory. Such overhead in
CMOS domain must be taken into account when investigating
and evaluating hybrid nanoelectronic digital memory fault-tol-
erant system design solutions.

Defect tolerance in hybrid nanoelectronic digital memory
have been addressed in [17]–[19]. In [17], the authors analyzed
the effectiveness of integrating Hamming code with spare
row/column repair for defect tolerance. The ECC-only defect
tolerance has been used to estimate the hybrid nanoelectronic
memory storage capacity in [18]. In [19], the authors inves-
tigated the effectiveness of Hamming and BCH codes for
hybrid nanoelectronic memory defect tolerance while taking
into account of the overhead in CMOS domain. Nevertheless,
integration of defect tolerance and transient fault tolerance has
never been addressed in prior work.

This paper presents two hybrid nanoelectronic digital
memory fault-tolerant system design approaches using strong
BCH codes, and evaluates the BCH coding system imple-
mentation overhead in CMOS domain based on practical IC
design. We understand that, at this early stage of nanoelec-
tronics when relatively few preliminary experimental data

1For the purpose of brevity, we will use the term fault tolerance for both per-
manent defect tolerance and transient fault tolerance.
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under laboratory environments have been ever reported, there
is a large uncertainty of the defect and transient fault statistical
characteristics (such as their probabilities and temporal/spatial
variations) in the future real-life hybrid CMOS/nanodevice
digital memories. Therefore, instead of attempting to provide
a definite and complete fault-tolerant system design solution,
this work mainly concerns the feasibility and effectiveness of
realizing memory fault tolerance under as-worse-as-possible
scenarios. In particular, we are interested in the fault-tolerant
strategies with two features: 1) they should handle as high as
possible of the defect probabilities and transient fault rates and
2) they can automatically adapt to the variations of the defect
statistics in digital memories (i.e., the on-chip fault-tolerant
system can automatically provide just enough defect tolerance
capability for a wide range of defect densities due to possible
temporal/spatial variations of the defect probabilities).2

The presented two design approaches integrally consider
defect tolerance and transient fault tolerance and share the
following two features: 1) a group of BCH codes is used for
both defect tolerance and transient fault tolerance and 2) for
the storage of each user data block with an unique memory
logical address, its BCH encoding and mapping to the physical
nanodevice memory cells are integrally determined. The first
approach, referred to as two-level hierarchical fault tolerance, is
relatively straightforward and easy to implement; nevertheless
the achievable storage capacity quickly drops as the defect den-
sity and/or transient fault rate increase. The second approach,
referred to as three-level hierarchical fault tolerance, can realize
a much slower drop on the achievable storage capacity as defect
density and/or transient fault rate increase, while it suffers
from higher implementation complexity and longer operational
latency.

To further evaluate the overhead in CMOS domain of the pro-
posed fault-tolerant design approaches, we designed the corre-
sponding BCH decoders using 0.13 m CMOS standard cell
libraries. The Synopsys electronic design automation (EDA)
tools are used throughout the entire design hierarchy down to
place and route. Based on the postlayout results at 0.13 m
CMOS technology, we projected the BCH decoder implemen-
tation metrics, including silicon area, decoding latency, and de-
coding energy consumption, at future 32 nm CMOS technology
based on a simple scaling rule. The results show that the BCH
implementation overhead in CMOS domain will not be signifi-
cant even though for very strong BCH codes.

II. BINARY BCH CODES AND DECODER IMPLEMENTATION

A. Background

Because of their strong random error correction capability,
binary BCH codes [20] are among the best ECC candidates for
realizing fault tolerance in hybrid nanoelectronic digital memo-
ries where the faults (both defects and transient faults) are most
likely random and statistically independent. Binary BCH code
construction and encoding/decoding are based on binary Galois

2Notice that we do not consider the effect of the variation of transient fault
rates since it would be very difficult, if not impossible, to trace and predict the
transient fault statistics on-the-fly and the worst case transient fault rates must
be always used in practice.

TABLE I
BCH CODE GROUP CONFIGURATIONS

fields. A binary Galois field with degree of is represented as
GF 2 . For any and , there exists a primitive
binary BCH code over GF 2 , denoted as , that has the
code length and information bit length
and can correct up to (or slightly more than) errors. For most
values of , requires more redundant bits than

. A primitive -error-correcting BCH code can
be shortened (i.e., eliminate a certain number, say , of infor-
mation bits) to construct a -error-correcting
BCH code with less information bits and code length but the
same redundancy.

Although BCH code encoding is very simple and only
involves a Galois field polynomial multiplication, BCH code
decoding is much more complex and computation intensive.
While different BCH code decoding algorithms may lead to
(slightly) different decoding computational complexity and
hardware implementation results, for a binary BCH
code under GF 2 , the product of the decoder silicon area and
decoding latency is approximately proportional to .
Moreover, a group of binary BCH codes under the same
GF 2 can share the same hardware encoder and decoder
that are designed to accommodate the maximum code length,
maximum information bit length, and maximum number of
correctable errors among all the codes within the group. For a
detailed discussion on BCH codes and their encoding/decoding,
readers are referred to [20] and [21].

B. Code Construction and Decoder Implementation

In nanodevice memory, due to the high defect probabilities
and their possibly large temporal/spatial variations, different
physical memory portions may have (largely) different number
of defective memory cells hence demand (largely) different
error correcting capability. Therefore, other than using a single
BCH code, we propose to use a group of BCH codes with
different error correcting capability (i.e., different coding re-
dundancy). In order to share the same hardware encoder and
decoder, all the BCH codes in the group should be constructed
under the same binary Galois field.

In this work, to demonstrate and evaluate the proposed fault-
tolerance design approaches, we constructed four BCH code
groups as listed in Table I, where represents the max-
imum code length, represents the maximum number of
correctable errors, and represents the number of redun-
dant bits required for correcting errors. Each code group
contains 8 BCH codes whose s roughly uniformly distribute
between 0 and .

To evaluate the BCH decoding implementation overhead in
CMOS domain, we designed one ASIC (application-specific in-
tegrated circuit) BCH decoder for each BCH code group listed
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Fig. 1. Binary BCH code decoder structure.

TABLE II
BCH DECODER ASIC DESIGN POSTLAYOUT RESULTS (0.13 �M CMOS)

TABLE III
ESTIMATED DECODER IMPLEMENTATION METRICS AT

32 NM TECHNOLOGY NODE

above. A binary BCH code decoder consists of three computa-
tional blocks and one first-in first-out (FIFO) buffer, as shown
in Fig. 1. While the implementations of syndrome computa-
tion and Chien search blocks are straightforward, the realization
of error locator calculation is nontrivial and several algorithms
[21] have been proposed in this regard. In this work, we use the
inversion-free Berlekamp–Massey algorithm [22] to realize the
error locator calculation. To minimize the decoder silicon area,
the BCH decoders are fully serial, i.e., it receives 1-bit input and
generates 1-bit output per clock cycle.

These four BCH decoders are designed using 0.13 m CMOS
standard cell library with 4 metal layers and a power supply of
1.2 V. Synopsys tools are used throughout the design hierarchy
down to place and route. Table II shows the postlayout design re-
sults, where the decoding latency and energy consumption per
codeword are obtained by assuming the codes with and

are being used. If a BCH code with less code length and/or
correctable errors is being used, the decoding latency and/or en-
ergy consumption will accordingly reduce. Furthermore, since
the hybrid digital memory may become a viable option at the
end-of-CMOS-roadmap, we estimate the decoder implemen-
tation metrics at the future 32 nm CMOS node, as listed in
Table III, based on the projected data presented in the Interna-
tional Technology Roadmap for Semiconductors (ITRS) [23]:
the silicon area will be scaled down by approximately 16, the
logic datapath propagation delay will scale down by approx-
imately 10, and the decoding energy consumption will scale
down by approximately 7.

III. PROPOSED FAULT-TOLERANT DESIGN APPROACHES

In this work, we assume the following fault model for nanode-
vice memory. In terms of defects, we only consider static defects

of nanowires and nanodevice memory cells. We assume a defec-
tive nanowire (irrelevant to defect type) will make all the con-
nected nanodevice memory cells unfunctional. A memory cell
may be subject to open or short defects. Since a short memory
cell defect will short two orthogonal nanowires, we consider
such short memory cell defects as nanowire defects. An open
memory cell defect does not affect the operation of any other
memory cells and any nanowires. We assume these static defects
are random and statistically independent, which are character-
ized by two defect probabilities, including: 1) bit defect prob-
ability that represents the probability of the open memory
cell defect and 2) nanowire defect probability that repre-
sents the probability of nanowire defect. In a broad sense, tran-
sient faults refer to all the memory operational errors that are not
induced by the above static defects (e.g., the pattern-sensitive
defects are considered as transient faults). We also assume that
transient faults are random and statistically independent, which
is characterized by a transient fault rate .

Let represent the number of user bits per block in the
memory. Given the BCH code group , each BCH code
is shortened (if necessary) so that the codewords contain ex-
actly information bits. Let represent the maximum number
of errors that can be corrected by each BCH code , we have

.
Given the BCH code group and memory defect map, a fault-

tolerant system should determine: 1) which BCH code should
be used for protecting each -bit user data block and 2) how to
physically map each BCH coded data block onto the nanodevice
memory cells. Intuitively, these two issues should be addressed
jointly in order to obtain the best fault-tolerance efficiency. This
section presents two different design approaches that address
these two issues jointly, where the first approach is simple and
works well under relatively low and modest bit defect probabil-
ities and/or transient fault rates, while the second one is more
complex but provide much stronger fault tolerance as bit defect
probabilities and/or transient fault rates become very high.

A. Approach I: Two-Level Hierarchical Fault Tolerance

The basic idea of this design approach can be described as
follows: we partition each nanodevice memory cell array into a
certain number of memory cell segments; each segment contains
consecutive memory cells and can store one BCH codeword that
provide just enough coding redundancy to compensate all the
defects in present segment and ensure a target block error rate
under a given transient fault rate. Hence, each physical memory
segment corresponds to one unique logical memory address.
Notice that the tail of one segment is not necessarily adjacent
to the head of the next segment (i.e., there might be some un-
used memory cells in between). The information of each seg-
ment location and the associated BCH code configuration (i.e.,
which BCH code out of the code group is being used for present
segment) are stored in CMOS memory. Whenever we access
one logical memory address in the nanodevice memory, we need
first read from the CMOS memory to get the physical location
and BCH coding information, then perform the corresponding
operations. Therefore, we call this approach a two-level hierar-
chical fault-tolerance design and, in the following, we present a
procedure to implement this design approach.
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Two-Level Hierarchical Design Procedure

Input: the number of user bits per block , BCH code group
, nanodevice memory cell array defect map, transient fault

rate , and target block error rate .

Procedure: We first exclude all the defective nanowires from
the nanodevice memory physical address space.3 Then we
initialize two memory cell pointers and
that point to the first memory cell, and start the following
iterative process to locate each memory cell segment and
determine the associated BCH code. This iterative process will
terminate when either pointer reaches the end of the memory
cell array.
Step 1) Move forward over the next memory

cells. Initialize two variables and ,
where represents the maximum number of errors
that can be corrected by currently selected BCH
code and represents the length of current segment.

Step 2) Count the number of defective memory cells,
denoted as , between and .
Calculate the transient fault correcting capability
required to meet the target block error rate, i.e., find
the minimum value of that satisfies

(1)

Step 3) If , i.e., the currently selected
BCH code can provide enough coding redundancy
to compensate all the defects within the present
segment and achieve the target block error rate,
then one segment has been successfully located.
We store the physical address of and the
designation of the currently selected BCH code into
CMOS memory, set ,
and go to Step 1.

Step 4) If (recall that is the
maximum number of errors that can be corrected
by any BCH codes in the code group ), then select
a BCH code from that can correct
errors with the least coding redundancy. Let
represent the number of redundant bits of the
selected BCH code, move forward to
make , set as the maximum number of
correctable errors of the currently selected BCH
code, and go to Step 2.

Step 5) If (i.e., none of the BCH codes
in can correct all the defects within the present
segment and ensure the target block error rate), then
change the location of current segment by moving

forward over the first next defective
memory cell, and go to Step 1.

3We note that how to exclude the defective nanowires from the physical
address space heavily depends on the design of the interface between
nanodevice memory cell array and CMOS circuits. In this work, we assume it
is readily feasible and do not consider its overhead.

Suppose each nanodevice memory cell array contains
memory cells and the code group contains different
BCH codes. For each segment, we need to store up to

bits in CMOS memory, where (
bits represent the physical address of the segment head and

bits designates which BCH code is being used for
present segment. If the value of is big (e.g., for a 512
512 nanodevice memory array, we have K, hence

-bit location data have to be stored in CMOS
memory for each segment), it may lead to a large storage over-
head in CMOS domain. In this regard, we can modify the above
procedure by setting an alignment constraint on the physical
address of , i.e., we require its physical address be a
multiple of a constant value (e.g., 64), which will reduce the
CMOS storage overhead by bits per segment.

Denote the average number of user bits stored in each nan-
odevice memory cell array and the average number of associ-
ated configuration bits stored in CMOS memory as and

, respectively. To take into account of the storage over-
head in CMOS domain, we define the net storage capacity as

, where the factor represents the
ratio between the effective cell area of a CMOS memory cell
and a nanodevice memory cell. To demonstrate the effectiveness
of this design approach, we carried out simulations under the
following configurations: each nanodevice memory cell array is
512 512; the physical address of each segment is aligned to be
a multiple of 64; nanowire defect probability ; target
block error rate ; and the factor .
We considered three different numbers of user bits per block ,
including 512, 1024, and 2048.

Fig. 2 shows the simulation results on the average storage
capacity per 512 512 nanodevice memory cell array, including
the user bits stored in nanodevice memory cells, configuration
bits stored in CMOS memory, and net storage capacity assuming

. In each figure the solid and dashed curves correspond
to the transient fault rates of and , respectively. For the
purpose of comparison, each figure also includes a set of dotted
curves corresponding to zero transient fault rates. Given the
nanowire defect probability of 0.3, on average each nanodevice
memory cell array provide
memory cells after excluding the defective nanowires. Further-
more, we use Fig. 3 to highlight the performance difference when
using BCH codes under different Galois fields. In each figure,
the dashed curves correspond to the results of BCH codes on
GF 2 . Clearly, using BCH code group under larger Galois
fields can tolerate a wider defect rate range due to the stronger
error correcting capability, which comes with the cost of higher
BCH decoder implementation complexity. Although a system
designed based on this approach works well over the range of
relatively low and modest bit defect probabilities and/or transient
fault rates, the fault-tolerance efficiency rapidly drops as we fur-
ther increase the bit defect probability and/or transient fault rate.

Besides the above comparison on fault-tolerance effective-
ness, we further carried out the comparison in terms of BCH de-
coding latency per codeword and energy consumption per user
bit. This is based on the estimated BCH decoder implementation
metrics at the 32 nm CMOS technology node presented in Sec-
tion II-B. Since different BCH codes within the same code group
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Fig. 2. Simulation results on the average storage capacity per 512� 512 nanodevice memory cell array using the two-level hierarchical fault-tolerance approach.
The dotted, solid, and dashed curves correspond to the transient fault rates of 0, 1= , and 5= , respectively. Under the nanowire defect probability of p = 0:3,
on average each 512� 512 nanodevice memory cell array contains 1.3�10 cells after excluding the defective nanowires. (a) 512-b (BCH on GF(2 )). (b) 512-b
(BCH on GF(2 )). (c) 1024-b (BCH on GF(2 )). (d) 1024-b (BCH on GF(2 )). (e) 2048-b (BCH on GF(2 )). (f) 2048-b (BCH on GF(2 )).

Fig. 3. Approach I: Storage capacity comparisons of using BCH code group on different Galois fields with the transient fault rate of 1= . In each figure, the dashed
curves represent the simulation results of the group code on GF(2 ). (a) 512-b (BCH on GF(2 ) and GF(2 )). (b) 1024-b (BCH on GF(2 ) and GF(2 )).
(c) 2048-b (BCH on GF(2 ) and GF(2 )).

have different decoding energy consumption and decoding la-
tency, we obtained the statistics on the use of different BCH
codes for each scenario considered above. Since we use fully
serial BCH decoders, the decoding latency is proportional to the

BCH code length and the decoding energy consumption is pro-
portional to the product of code length and the number of cor-
rectable errors. Figs. 4 and 5 show the comparison among var-
ious scenarios on the decoding energy per user bit and decoding
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Fig. 4. Approach I: Decoding energy per user bit for the scenarios of 512-bit, 1024-bit, and 2048-bit user data per codeword. The dotted, solid, and dashed curves
correspond to the transient fault rates of 0, 1= , and 5= , respectively. (a) 512-b. (b) 1024-b. (c) 2048-b.

Fig. 5. Approach I: Decoding latency per codeword for the scenarios of 512-bit, 1024-bit, and 2048-bit user data per codeword. The dotted, solid, and dashed
curves correspond to the transient fault rates of 0, 1= , and 5= , respectively. (a) 512-b. (b) 1024-b. (c) 2048-b.

latency per codeword, respectively. In each figure, the dotted,
solid, and dashed curves correspond to the transient fault rates
of 0, and , respectively.

As mentioned in the above, multiple BCH codes (eight BCH
codes per group in this work), which share the same encoding
and decoding circuit, have been used for error correction.
Although the use of multiple BCH codes may potentially im-
prove the effective storage capacity in the nano domain, it will
incur storage overhead in CMOS domain, leading to a design
tradeoff. To demonstrate such tradeoff with the assumption of

, Fig. 6 shows the comparison of using multiple BCH
codes against using a single BCH code with . For of
1024 and 2048, using multiple BCH codes can improve the
net storage capacity at relatively small defect rates, however
the advantage diminishes as the defect rate increases. This is
mainly because the use of BCH code with will tend to
dominate at high defect rates, which makes the savings in the
nano domain by using multiple codes reduces relatively to the
storage overhead incurred in CMOS domain. For of 512,
using multiple codes turns out not to be a good choice due to
small block length that will result in relatively higher storage
overhead in CMOS domain.

B. Approach II: Three-Level Hierarchical Fault Tolerance

In the above two-level hierarchical design approach, we al-
ways attempt to locate a continuous memory cell segment to
store each coded data block. Hence, with high bit defect proba-
bilities, the total number of defective memory cells within a seg-
ment may accumulate very quickly and exceed the maximum
error correcting capability. This will become more serious as
the transient fault rate increases. Therefore, as shown in Fig. 2,
the effectiveness of this design approach rapidly degrades as
the bit defect probability and/or transient fault rate increases.
In order to achieve a better storage capacity at high defect prob-
abilities and/or transient fault rates, this section presents another
approach called three-level hierarchial fault-tolerance design.
The basic idea is that, other than using a continuous memory
cell segment to store each coded data block, we selectively skip
(or exclude) some small sectors that contain too many defec-
tive memory cells within each segment. For example, suppose
we use a BCH code group on GF 2 . As pointed out in Sec-
tion II, for most values of , increasing by 1 (i.e., to compensate
one more error) requires 11 more redundant bits. Hence, for a
sector of 64 memory cells in which there are 6 defective memory
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Fig. 6. Approach I: Net storage capacity comparisons between multiple-codes and single-code schemes with the transient fault rate of 1= . (a) 512-b (BCH on
GF(2 )). (b) 1024-b (BCH on GF(2 )). (c) 2048-b (BCH on GF(2 )).

cells, it would be better to exclude this sector from the memory
segment.

Therefore, we propose to partition the available nanodevice
memory cells into a certain number of equal-sized sectors, each
one is called indivisible memory unit. When we dynamically de-
termine the BCH code selection and logical-to-physical address
mapping, we have the flexibility to determine whether or not to
use each indivisible memory unit for data storage. Therefore,
each memory segment that stores one BCH coded data block no
longer contains a consecutive region of memory cells. It is intu-
itively justifiable that, by selectively excluding those indivisible
memory units that contain too many defective cells, we may im-
prove the fault-tolerance efficiency. However, in support of this
approach, we have to store certain configuration information,
including: 1) the location and length of each memory segment;
2) the designation of the selected BCH code; and 3) whether or
not each indivisible memory unit that falls into the region cov-
ered by the segment is used for data storage. If we directly store
these information in CMOS memory, it will incur a significant
CMOS storage overhead. For example, if the number of user
bits per block is 2048 and each indivisible memory unit con-
tains 64 consecutive memory cells, we have to store more than

bits per block for representing whether each in-
divisible memory unit is excluded or not.

To tackle such storage overhead issue, we propose to store
these configuration information in nanodevice memory, and
since the length of these configuration information will be
much less than the coded user data block, we may use the above
two-level hierarchical fault-tolerance approach to protect these
configuration information. This leads to a so-called three-level
hierarchical fault-tolerance as illustrated in Fig. 7.

In this way, we can largely reduce the storage overhead in
CMOS domain. Nevertheless, as the cost, this three-level hierar-
chical approach requires extra operations that result in memory
access energy and latency overhead: to read/write one user data
block, we have to first read and decode the first level configura-
tion data from the nanodevice memory to recover the memory
segment configuration information, based on which we may
read/write the intended user data block. Furthermore, this ap-

Fig. 7. Storage hierarchy in the three-level hierarchical fault-tolerance system.

proach may require nonvolatile storage of the first level config-
uration data in nanodevice memory. This should not be a serious
issue since most proposed/demonstrated nanodevice memory
storage elements are nonvolatile in nature. In the following, we
present a procedure to implement such three-level hierarchical
fault-tolerance design approach.

Three-Level Hierarchical Design Procedure

Input: the number of user bits per block , indivisible
memory unit length , BCH code group and the degree
of the underlying Galois field GF 2 , nanodevice memory
cell array defect map, transient fault rate , and target block
error rate .

Procedure: We first exclude all the defective nanowires from
the nanodevice memory physical address space. Then we
partition the available nanodevice memory space into arrays of

-cell indivisible memory units. We mark all the indivisible
memory units that contain more than defective memory
cells as unusable memory units and all the others as usable
units. The memory cells falling into usable indivisible memory
units are called usable memory cells. We initialize two memory
cell pointers, and , that point to the first
memory cell, and start the following iterative process until
either pointer reaches the end of the memory cell array.
Step 1) Move forward so that there are usable

memory cells between and .
Initialize two variables and , where
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Fig. 8. Simulation results on the average storage capacity per 512� 512 nanodevice memory cell array using the three-level hierarchical fault-tolerance approach.
The dotted, solid, and dashed curves correspond to the transient fault rates of 0, 1= , and 5= , respectively. Notice that the net storage capacity is negative for
l = 512 while we assume d = 25. Again, on average each 512 � 512 nanodevice memory cell array contains 1.3 � 10 cells after excluding the defective
nanowires. (a) 512-b (BCH on GF(2 )). (b) 512-b (BCH on GF(2 )). (c) 1024-b (BCH on GF(2 )). (d) 1024-b (BCH on GF(2 )). (e) 2048-b (BCH on
GF(2 )). (f) 2048-b (BCH on GF(2 )).

represents the maximum number of errors that
can be corrected by currently selected BCH code
and represents the number of usable memory cells
within current segment.

Step 2) Count the number of defective memory cells,
denoted as , between and .
Calculate the transient fault correcting capability
required to meet the target block error rate, i.e.,
find the minimum value of that satisfies the
inequality (1) in Section III-A.

Step 3) If (i.e., one segment has been
successfully located), then go to Step 6 to process
the storage of the first level configuration data in
nanodevice memory.

Step 4) If , then select a BCH code
from that can correct errors with
the least coding redundancy. Let represent the
number of redundant bits of the selected BCH code,
move forward so that there are
usable cells between and , set

as the maximum number of correctable errors of
the currently selected BCH code, and go to Step 2.

Step 5) If , then move
forward to the next usable unit, and go to Step 1.

Step 6) Let represent the number of indivisible memory
units (both usable and unusable units) within

and , we need an -bit vector
to represent whether each unit is usable (i.e.,
included in current segment) or unusable (i.e.,
excluded from current segment). Hence, the first
level configuration data to be stored in nanodevice
memory includes an -bit vector, the physical
location and length of current segment, and the
designation of the selected BCH code. Then we
apply the two-level fault-tolerance approach (as
described in Section III-A) to store these first level
configuration data, where we can use the same
BCH code group. Nevertheless, since the first level
configuration data do not have a constant length,
unlike the user data, we have to on-the-fly shorten
those BCH codes in the code group. Hence, we
need to store the information of how the selected
BCH code is shortened in CMOS memory. After we
encode and store the first level configuration data in a
segment of successive nanodevice memory cells and
store the corresponding second level configuration
data in CMOS memory, we move to the
next available usable unit and go to Step 1.
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Fig. 9. Storage capacity comparisons of Approach-I and Approach-II with the transient fault rate of 1= . In each figure the solid and dashed curves correspond
to Approach-I and Approach-II, respectively. (a) 512-b (BCH on GF(2 )). (b) 1024-b (BCH on GF(2 )). (c) 2048-b (BCH on GF(2 )).

Fig. 10. Approach II: Decoding energy per user bit for the scenarios of 512-bit, 1024-bit, and 2048-bit user data per codeword. The dotted, solid, and dashed
curves correspond to the transient fault rates of 0, 1= and 5= , respectively. (a) 512-b. (b) 1024-b. (c) 2048-b.

To demonstrate the effectiveness of this proposed approach, we
carried out simulations under the same configurations as used
in Section III-A: each nanodevice memory cell array is 512
512; nanowire defect probability ; target block error
rate ; the factor ; the same four
BCH code groups are used; and the same three values of user
data length (i.e., 512, 1024, and 2048) are considered. We set
the indivisible memory unit length as 32 for and 64
for and .

Fig. 8 shows the simulation results of the average storage ca-
pacity per 512 512 nanodevice memory cell array, including
the user bits stored in nanodevice memory cells, configuration
bits stored in CMOS memory, and net storage capacity assuming

. In each figure the dotted, solid, and dashed curves corre-
spond to the transient fault rates of 0, and , respectively.
We note that, for , the net storage capacity will be neg-
ative if we assume . Fig. 9 highlights the comparison
between the above two different approaches in terms of effec-
tive storage capacity, which leads to the following observations.

• At relatively low and modest bit defect probabilities and/or
transient fault rates, the two-level design approach can re-

alize slightly better storage capacity meanwhile have less
operational complexity and latency overhead.

• At relatively high bit defect probabilities and/or tran-
sient fault rates, the three-level hierarchical approach can
achieve much better storage capacities.

• The three-level hierarchial approach can maintain more
graceful (or smooth) storage capacity curves over wider
ranges of defect probability and hence can better adapt to
the potential defect statistics variations.

We also carried out the comparisons in terms of BCH
decoding energy consumption and latency for the three-level
hierarchical fault-tolerance approach. In this context, two BCH
decodings (to decode the first and second level configuration
data, respectively) should be performed in order to access one
user data block. Figs. 10 and 11 show the comparisons among
different scenarios on the decoding energy per user bit and
decoding latency per codeword, respectively.

IV. CONCLUSION

In this paper, we presented two fault-tolerance design
approaches that integrally address the defect tolerance and



350 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 6, NO. 3, MAY 2007

Fig. 11. Approach II: Decoding latency per codeword for the scenarios of 512-bit, 1024-bit, and 2048-bit user data per codeword. The dotted, solid, and dashed
curves correspond to the transient fault rates of 0, 1= , and 5= , respectively. (a) 512-b. (b) 1024-b. (c) 2048-b.

transient fault tolerance for hybrid CMOS/nanodevice digital
memories. To accommodate the high defect probabilities and
transient fault rates, the developed approaches have several
key features that have not been used in conventional digital
memories, including the use of a group of BCH codes for both
defect tolerance and transient fault tolerance, and integration of
BCH code selection and dynamic logical-to-physical address
mapping. These two fault-tolerance design approaches seek
different tradeoffs among the achievable storage capacity,
robustness to defect statistics variations, implementation com-
plexity, and operational latency and CMOS storage overhead.
Simulation results demonstrated that the developed approaches
can achieve good storage capacity, while taking into account
of the storage overhead in CMOS domain, under high defect
probabilities (above 1%) and transient fault rates (up to ),
and can readily adapt to large defect statistics variations. To
evaluate the BCH code coding system implementation over-
head, we designed the corresponding BCH decoders at 0.13 m
CMOS technology node. Based on the postlayout results, we
projected the BCH decoder implementation metrics including
silicon area, decoding latency, and energy consumption, at
future 32 nm CMOS technology. The results show that the
BCH implementation overhead in CMOS domain will not be
significant even though for very strong BCH codes.
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