
1060 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

Low-Power State-Parallel Relaxed
Adaptive Viterbi Decoder

Fei Sun, Student Member, IEEE, and Tong Zhang, Member, IEEE

Abstract—Although it possesses reduced computational com-
plexity and great power saving potential, conventional adaptive
Viterbi algorithm implementations contain a global best survivor
path metric search operation that prevents it from being directly
implemented in a high-throughput state-parallel decoder. This
limitation also incurs power and silicon area overhead. This paper
presents a modified adaptive Viterbi algorithm, referred to as the
relaxed adaptive Viterbi algorithm, that completely eliminates the
global best survivor path metric search operation. A state-parallel
decoder VLSI architecture has been developed to implement the
relaxed adaptive Viterbi algorithm. Using convolutional code
decoding as a test vehicle, we demonstrate that state-parallel
relaxed adaptive Viterbi decoders, versus Viterbi counterparts,
can achieve significant power savings and modest silicon area re-
duction, while maintaining almost the same decoding performance
and very high throughput.

Index Terms—Adaptive Viterbi algorithm, low power, -algo-
rithm, very large-scale integration (VLSI) architecture.

I. INTRODUCTION

THE adaptive Viterbi algorithm [1], which combines the
Viterbi algorithm with the principle of -algorithm [2], has

a computational complexity which adapts to run-time channel
conditions. This approach has a great potential of realizing sig-
nificant power savings [3]. In contrast to the Viterbi algorithm,
in the adaptive Viterbi algorithm, the winner path at each trellis
state does not necessarily become a survivor path, i.e., only
those whose path metrics are better than a global nonsurvivor
purge limit will be fed to the next decoding depth as survivors.
The nonsurvivor purge limit is determined by the overall best
winner path at each decoding depth and varies from one de-
coding depth to the next. Due to its serial nature, the search-for-
the-best-winner operation tends to have a much longer latency
than the other operations within the recursive decoding loop. For
a VLSI implementation of the adaptive Viterbi algorithm, the
long latency due to such a search operation may be concealed
by using state-serial decoder architectures [4], [5] or partially
state-parallel decoder architecture [6] at the cost of achievable
decoding throughput. The authors of [7], [8] developed a con-
figurable state-parallel adaptive Viterbi decoder that can effec-
tively support a large trellis structure but is subject to a relatively
long recursive decoding datapath delay. As a result, the achiev-
able throughput demonstrated for adaptive Viterbi decoders in

Manuscript received November 28, 2005; revised May 1, 2006, and
September 1, 2006. This work was supported by the National Science Foun-
dation under Grant ECS-0522457. This paper was recommended by Associate
Editor Z. Wang.

The authors are with the Department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:
sunf@rpi.edu; tzhang@ecse.rpi.edu)

Digital Object Identifier 10.1109/TCSI.2007.890617

the open literature [i.e., up to few megabits per second (Mbps)]
is far less than that of a state-parallel Viterbi decoder1 that can
readily achieve a throughput of several hundred Mbps. This
leaves an open problem of leveraging the power-saving poten-
tial of the adaptive Viterbi algorithm in applications demanding
very high decoding throughput, e.g., several hundred Mbps.

As an attempt to tackle this challenge, the authors [9] re-
cently proposed a modified adaptive Viterbi algorithm and a
state-parallel decoder architecture. The key feature of the ar-
chitecture is the movement of the search-for-the-best-winner
operation to the outside of the main recursive decoding loop.
Therefore, a state-parallel decoder may achieve a throughput
comparable to that of its state-parallel Viterbi counterpart. How-
ever, the search-for-the-best-winner operation still incurs no-
ticeable power and silicon area overhead. This will inevitably
degrade the power saving efficiency, particularly for small and
moderate trellises such as 64-state and 128-state. For example,
as shown in [9], for the decoding of a 64-state convolutional
code, the state-parallel modified adaptive Viterbi decoder may
even consume more power than its Viterbi counterpart at rela-
tively low signal-to-noise ratio (SNR). Moreover, the synthesis
results presented in [9] show that the decoders may occupy

% more silicon area than their Viterbi counterparts.
To solve the above drawbacks of the design solution presented

in [9], in this work, we developed a new approach to modify the
adaptive Viterbi algorithm. We refer the developed algorithm
as the relaxed adaptive Viterbi algorithm. As the key difference
from the design solution in [9], the relaxed adaptive Viterbi algo-
rithm completely eliminates the search-for-the-best-winner op-
eration, and hence can realize much better power savings and sil-
icon area reduction. We further developed the VLSI architecture
of a state-parallel relaxed adaptive Viterbi decoder. Compared
with its state-parallel Viterbi counterpart, a state-parallel relaxed
adaptive Viterbi decoder can realize significant power savings
and modest silicon area reduction, while maintaining almost
the same decoding performance and throughput. Using 0.13- m
CMOS standard cell and static random access memory (SRAM)
libraries and Synopsys tools for synthesis, layout, and post-
layout power estimation, we designed relaxed adaptive Viterbi
decoders for rate-1/2 convolutional codes with 64, 128, and 256
states, respectively. Compared to their Viterbi counterparts, the
relaxed adaptive Viterbi decoders realize up to 7% silicon area
reduction, 73% of power savings on the decoding computa-
tion,2 and 81% and 48% of overall decoder power savings if

1For an N -state trellis, a state-parallel Viterbi decoder implements N add-
compare-select (ACS) units that operate in parallel.

2The total power consumption of a convolutional code decoder contains two
parts, including (1) power consumed by decoding computation including ACS
computation, branch metric computation, etc., and (2) power consumed by de-
coder output generation that is carried out by a survivor memory unit.

1549-8328/$25.00 © 2007 IEEE

SUN AND ZHANG: LOW-POWER STATE-PARALLEL RELAXED ADAPTIVE VITERBI DECODER 1061

Fig. 1. Recursive data flow diagrams of (a) original adaptive Viterbi algorithm and (b) proposed relaxed adaptive Viterbi algorithm.

the register-exchange and TB approaches are used to implement
the survivor memory unit, respectively. These rate-1/2 code de-
coders operate at 200 MHz and achieve 200 Mbps decoding
throughput.

The remainder of this paper is organized as follows.
Sections II and III present the proposed relaxed adaptive Viterbi
algorithm and the corresponding VLSI architecture. Design ex-
amples of state-parallel relaxed adaptive Viterbi convolutional
code decoders are presented in Section IV, and the conclusions
are drawn in Section V.

II. RELAXED ADAPTIVE VITERBI ALGORITHM

A. Algorithm Formulation

Fig. 1(a) shows the recursive data flow diagram of an adap-
tive Viterbi algorithm, which adds two functional blocks, in-
cluding the best winner search and nonsurvivor purge [2], into
the original Viterbi algorithm. At the th decoding depth, after
all the ACS units determine their own local winners, the best
winner search block finds the one having the best (minimum)
path metric among all the winners, denoted as , and the
nonsurvivor purge block deletes the local winners whose metric

and feeds the others as survivors to the next de-
coding depth, where is a fixed positive number. The value of

is the nonsurvivor purge limit. Notice that the essential
goal of the search-for-the-best-winner operation in the adaptive
Viterbi algorithm is to determine the nonsurvivor purge limit
at each decoding depth, which may change from one depth to
the next. The value of determines the width of the survivor
path retention window (i.e., the region between the nonsurvivor
purge limit and the best winner path metric). Due to the serial
nature of the search operation, the best winner search block in-
evitably incurs a large delay in the recursive decoding datapath,
which makes the adaptive Viterbi algorithm not suitable for a
state-parallel decoder structure.

In this work, we developed a method to eliminate the
search-for-the-best-winner operation and hence enable the
high-throughput state-parallel adaptive Viterbi decoder im-
plementation. The basic idea is to dynamically normalize the
branch metrics in such a way that the metric of the overall best
winner, i.e., , is almost always very close to , which
means the nonsurvivor purge limit, i.e., , is almost
always very close to zero. As a relaxation, we simply fix the
nonsurvivor purge limit as zero at each decoding depth. This
directly eliminates the search-for-the-best-winner operation
in the recursive decoding datapath, and the resulted algorithm
is referred to as the relaxed adaptive Viterbi algorithm. The
branch metric dynamic normalization is realized by the three
shaded functional blocks as shown in Fig. 1(b), which are
described as follows.

• Threshold Check: It checks whether at least one survivor
has a metric less than , where is a positive number
that is much less than . If yes, it outputs a zero, otherwise,
it outputs .

• Best Branch Metric Search: At the th decoding depth, it
simply finds the best (minimum) branch metric, denoted
as , among the all the present branch metrics.

• Branch Metric Normalization: At each depth, given the
input , which is either zero or , from the Threshold
Check and the input from the Best Branch Metric
Search, it subtracts from all the branch met-
rics and feeds these normalized branch metrics to the suc-
ceeding ACS operations.

If at least one survivor has a metric less than (i.e., the
metric of the best survivor is very close to since is much
less than), the normalized branch metrics will be nonnega-
tive with the minimum value of zero, and the path metrics will
monotonically increase. If none of the survivors has a metric
less than (i.e., the metric of the best survivor is not very
close to), we bias the branch metric normalization by to

1062 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

Fig. 2. Simulated BER and average number of survivors as a function of T and r.

push the path metrics toward . With appropriate selection of
, we can dynamically adjust the best metric almost always very

close to .

B. Decoding Performance

All the existing variants of adaptive Viterbi algorithms (in-
cluding the one presented above) may lose the correct path [i.e.,
the maximum likelihood (ML) path] during the decoding due
to their nature of nonexhaustive trellis search. This inevitably
results in decoding performance degradation compared with
Viterbi algorithm. As discussed in [1], in order to quickly
recover the correct path once it has been lost, the width of the
survivor path retention window (i.e., the value of in conven-
tional adaptive Viterbi algorithms) has to be large enough and
the maximum allowable number of survivors, denoted as ,
should be equal to the total number of trellis states (i.e., ,
where is the constraint length of the convolutional code).
Thus, the conventional adaptive Viterbi decoder reduces power
by choosing an appropriate that will meet the performance
constraints of the system while allowing up to survivors
to be kept at each decoding depth [1], [3].

In the above presented relaxed adaptive Viterbi algorithm, the
width of the survivor path retention window is no longer a fixed
value but is almost always very close to due to the dynamic
branch metric normalization with the parameter . Furthermore,
similar to [1], in the relaxed adaptive Viterbi algorithm
equals to the total number of trellis states. Thus, the performance
of the relaxed adaptive Viterbi algorithm solely depends on
and . Similar to the conventional adaptive Viterbi algorithms
[1], [7], [3], we apply computer simulations to evaluate the ef-
fect of and on the soft-decision decoding performance as
illustrated in the following example.

Example 2.1: Consider a rate-1/2 convolutional code with
constraint length (i.e., the corresponding trellis has 64
states). Assuming the convolutional code is modulated by bi-
nary phase shift keying (BPSK) and transmitted over an addi-

TABLE I
EMPIRICALLY SELECTED VALUES OF T AND r

tive white Gaussian noise (AWGN) channel, Fig. 2 shows the
fixed-point simulations on the bit-error rate (BER) and average
number of survivors at the SNR of 3.5 dB for various values
of and (where the finite word-length of soft input and path
metrics are 3 and 6 bits, respectively). Under the same SNR, the
ideal Viterbi decoding (i.e., floating point precision and infinite
decision length) has a BER of . Fig. 2 shows that the
decoding performance with and is very close
to that of ideal Viterbi decoder. Considering the average number
of survivor paths that determines the power saving potential, one
may choose and as the final parameters in this
case.

To further demonstrate the decoding performance and av-
erage number of survivors of the proposed relaxed adaptive
Viterbi algorithm, we carried out computer simulations on var-
ious convolutional codes described as follows: We considered
three different code rates, including 1/4, 1/2, and 2/3, and three
different constraint lengths , including 7, 8, and 9 (the corre-
sponding trellises have 64, 128, and 256 states, respectively). In
the simulation, the relaxed adaptive Viterbi algorithm generates
the output as follows: it first traces back depths to determine a
merged state from which it then traces back depths to generate

output symbols. The parameters of are for
for , and for , respec-

tively. In the fixed-point simulation, we use 3-bit soft input and
6-bit path metric, and the parameters of are listed Table I.

Assuming these convolutional codes are modulated by BPSK
and transmitted over an AWGN channel (Fig. 3) shows the simu-
lated BER and average number of survivors of the relaxed adap-

SUN AND ZHANG: LOW-POWER STATE-PARALLEL RELAXED ADAPTIVE VITERBI DECODER 1063

Fig. 3. Simulated BER and average number of survivors for various code rates and constraint lengths. The solid and dashed curves in (a), (c), and (e) correspond
to the relaxed adaptive Viterbi and ideal Viterbi decoders, respectively. (a)K = 7. (b)K = 7. (c)K = 8. (d)K = 8. (e)K = 9. (a)K = 9.

Fig. 4. Structure of a state-parallel relaxed adaptive Viterbi decoder.

tive Viterbi decoders. In each case, we also show the perfor-
mance of ideal Viterbi algorithm, where ideal means the use of
floating point precision and infinite decision length.

III. STATE-PARALLEL RELAXED ADAPTIVE

VITERBI DECODER DESIGN

The relaxed adaptive Viterbi algorithm can be directly
mapped onto a state-parallel decoder with the structure as
shown in Fig. 4, which is very similar to that of a state-parallel
Viterbi decoder. Similar to a conventional Viterbi decoder, the
branch metric unit calculates the Euclidean distance between

the input data and each distinct branch symbol of the trellis.
In certain circumstances such as convolutional code decoding,
the calculation can be largely simplified in order to reduce the
silicon area and/or improve the speed, where the calculated
branch metric is no longer the absolute Euclidean distance,
This simplification will not (largely) affect the decoding
performance [10].

The best branch metric search block simply finds the best
(minimum) branch metric among the all the present branch met-
rics. Since it is located outside the recursive datapath, it can be
directly pipelined if necessary. The Threshold Check function

1064 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

Fig. 5. Architecture of a modified ACS unit.

Fig. 6. Example Compare and Select block (note that the compare-with-0 block
generates a 1 ifM is negative).

in the relaxed Viterbi algorithm is implemented as follows: the
compare-with- is realized by each individual modi-
fied ACS unit, and the pass/fail decisions from all the modified
ACS units AND together to determine whether a zero or should
be sent to the normalization unit, as illustrated in Fig. 4. In the
following, we will elaborate the architectures of the other two
functional blocks: modified ACS unit and survivor memory unit.

A. Modified ACS

For a trellis with states, a state-parallel relaxed adaptive
Viterbi decoder contains modified ACS units that operate in
parallel. When the decoder starts, it initializes the path metric
of the starting state as and the path metrics of all the other
states as 0. As discussed in Section II, we fix the nonsurvivor
purge limit to zero so that only winners with negative path met-
rics can become survivors. Suppose each trellis state has two
incoming/outgoing branches, the modified ACS unit has a struc-
ture as shown in Fig. 5.

It receives two pairs of , where
each is a normalized branch metric sent from the branch
metric normalization unit, each is a winner path metric
fed back from one modified ACS unit, and each 1-bit in-
dicates whether this incoming winner is a survivor or not. Each
modified ACS unit has four outputs, including: 1) winner path
metric ; 2) validity bit (means that a survivor
is generated from the present trellis state); 3) decision bits
to indicate which incoming path is the winner and 4) threshold
check result (means that the corresponding winner
path is a survivor and its metric is less than).

Since only one incoming path becomes the winner, the Com-
pare and Select block selects the best one from the path metrics
(i.e., as shown in Fig. 5) obtained from survivors. Fig. 6
shows the architecture of a Compare and Select block, which
can be explained as follows.

• If both incoming paths are survivors (i.e.,
), then, similar to the conventional Viterbi decoder, the

output of the comparator will select the best path metric as
the output winner metric . The output will be 1 if the
winner metric is negative, otherwise it will be 0.

• If only one incoming path is a survivor (i.e., XOR

(Exclusive-OR)), then the output of the com-
parator will be ignored and the path metric obtained from
the survivor will go through the multiplexer and become
the output winner metric . Again, the output will be 1
if the winner metric is negative, otherwise it will be 0.

• If neither incoming path is a survivor (i.e.,
), then the output will be 0. In this scenario, the winner

path metric can be set to be either , or any other
arbitrary value (in our design, according the architecture in
Fig. 6, the winner path metric will be equal to), which
will not affect the succeeding decoding.

As shown in Fig. 5, we apply clock-gating on the winner path
metric output , i.e., if the current winner path is not a sur-
vivor (i.e.,), then we keep the output unchanged
in order to reduce the switching activity in the subsequent de-
coding recursion.

B. Survivor Memory Unit

As extensively discussed in the literature (e.g., [11]–[14]), the
survivor memory unit can be designed in two different styles,
register exchange (RE) and trace-back (TB), targeting different
trade-offs among power, silicon area, and throughput. In gen-
eral, RE can easily support very high decoding throughput
but occupies larger silicon area and tends to consume more
power, while TB requires less silicon area and power but may
not readily support very high decoding throughput. In the
following, we will discuss how to design the survivor memory
unit of a state-parallel relaxed adaptive Viterbi decoder based
on either an RE or TB design style.

RE-Based Design: Assuming each trellis state only has two
incoming/outgoing branches, Fig. 7 shows the structure of an
RE-based design solution by introducing clock-gating into the
RE array followed by majority vote unit. The validity bits from
the modified ACS units array directly control the clock-gating
for power reduction. Since the average number of survivors can
be much less than the total number of trellis states in adaptive
Viterbi decoding, this may lead to significant power savings.
The decoder output is determined by a majority vote unit that
only counts decision symbols from survivors. In this work, we
use the multistage majority vote unit design approach proposed
in [9]. The length of the register exchange array is called deci-
sion length .

TB-Based Design: To support high throughput in a state-par-
allel decoder, the TB-based survivor memory unit must provide
large enough memory access bandwidth. One natural approach
to increase the access bandwidth is to use a bank of memories
that can be accessed concurrently, e.g., the -pointer even and
odd schemes presented in [13]. As the cost of access bandwidth
increases, the required SRAM resource increases accordingly.
These techniques can be equally applied to the relaxed adap-
tive Viterbi decoder with only one subtle difference: In the con-
ventional Viterbi decoder, we can start the TB from any arbi-
trary trellis state; while for the relaxed adaptive Viterbi decoder,
since not all the trellis states lead to survivors, we need to en-
sure that TB always starts from a state leading to a survivor in
the present decoding depth. Suppose the trellis has states, we
may use an -to- priority encoder with the input of

SUN AND ZHANG: LOW-POWER STATE-PARALLEL RELAXED ADAPTIVE VITERBI DECODER 1065

Fig. 7. Structure of RE-based design.

validity bits. The output of the encoder will always point to
a state leading to a survivor, from which we may start the TB.
For a TB-based design to generate the decoder output, it first
traces back decision length depths to determine a merged state
from which it then traces back steps to generate output
symbols. To realize a high throughput, the value of is typi-
cally not small, e.g., it may equal to or [15], [16]. In this
work, for the ASIC design of TB-based decoders as described
in Section IV, we used a 3-pointer even scheme to design the
TB-based survivor memory unit and set .

C. Discussion

For the above proposed state-parallel relaxed adaptive Viterbi
decoder, we argue that, compared with its state-parallel Viterbi
decoder counterpart, it can achieve:

Significant Power Saving: The power saving is gained from
both decoding computation and decoder output generation.

1) The power saving on decoding computation is realized by
clock-gating the metric output of nonsurvivors, as shown
in Fig. 5, which leads to largely reduced switching ac-
tivity and hence power consumption in subsequent ACS
computations due to the significantly reduced number of
survivors.

2) The power saving on decoder output generation depends
on the survivor memory unit implementation style: a) If we
use the RE style, we can simply clock-gate the registers as-
sociated with nonsurvivors to reduce the switching activity
and hence the power consumption and b) If we use the
TB style, the power saving will largely depend on how the
SRAM is implemented. We note that bit-line charging/dis-
charging in memory write operations tends to dominate
the power consumption of SRAM [17]. Therefore, if the
memory can be specially customized so that, in the write
operation, one can determine which bit(s) in one word are
written into memory cells and force the bit-lines associ-
ated with the other bits into read mode, a certain amount
of power can be saved by only writing the decision bits
from survivors. If such a specially customized memory is
not available, however, no power saving can be realized in
the decoder output generation.

Modest silicon area reduction: Contrary to the first impres-
sion that the relaxed adaptive Viterbi decoder must occupy
larger area due to the extra functional blocks, relaxed adaptive
Viterbi decoders may have modestly reduced silicon area
because the branch metric normalization can help to reduce the
finite word-length of the path metrics.

TABLE II
DESIGN PARAMETERS

Moreover, as demonstrated in Section IV, the state-parallel
relaxed adaptive Viterbi decoders can achieve almost the same
decoding performance (with appropriate selection of and)
and decoding throughput, compared with their state-parallel
Viterbi counterparts. The reason for the latter can be briefly
explained as follows:

1) The reduced finite word-length of path metrics can com-
pensate for the latency overhead incurred by the slightly
more complex operation in the ACS computation;

2) The threshold check operation will not incur a speed bot-
tleneck because the involved operation is very simple and
it can be directly pipelined if necessary (in the design ex-
amples described later, the overall decoder critical path al-
ways lies in ACS computation).

Finally, we note that, due to their similar architectures, the
circuit-level design/optimization techniques developed for
state-parallel Viterbi decoders could also be applied to state-
parallel relaxed adaptive Viterbi decoders.

IV. DESIGN EXAMPLES

For the purpose of demonstration, we designed state-parallel
relaxed adaptive Viterbi decoders for rate-1/2 convolutional
codes with constraint lengths K of 7, 8, and 9 (corresponding
to the trellises with 64, 128, and 256 states, respectively).
The code generators are (133, 171) for , (247, 371)
for , and (561, 753) for . We considered both
RE-based and TB-based design approaches for the survivor
memory unit, where the TB-based approach uses the 3-pointer
even scheme presented in [13].

For comparison, we also designed state-parallel Viterbi coun-
terparts. We note that an RE Viterbi decoder can generate output
in two possible approaches: 1) output the last (oldest) symbol of
the survivor path led by a fixed trellis state or 2) apply a majority

1066 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

Fig. 8. Simulated BER and average number of survivors for rate-1/2 convolutional codes with various constraint lengths.

vote on the last symbols of all the survivors. To realize the same
decoding performance, the latter approach requires a shorter
decision length at the cost of implementing a majority vote. As
discussed in [18], the majority vote can be slightly more power-
efficient. Therefore, the RE Viterbi decoders use the same mul-
tistage majority vote as in the relaxed adaptive Viterbi decoders.
The decoder design parameters are outlined in Table II.

The parameter , called decision length, presents the length
of the register-exchange array in RE decoders and the number of
TB depths for searching the merged trellis state in TB decoders.
In TB decoders, another parameter represents the number of
symbols output by each TB. Moreover, we note that the branch
metric normalization in relaxed adaptive Viterbi decoders helps
to reduce the finite word-length of the path metrics.

Assuming these convolutional codes are modulated by BPSK
and transmitted over an AWGN channel, Fig. 8 shows the fixed-
point simulations of BER and average number of survivors of
the relaxed adaptive Viterbi decoders. In each case, we also
show the performance of ideal Viterbi decoding (i.e., floating
point precision and infinite decision length). The relaxed adap-
tive Viterbi decoders can achieve almost the same decoding per-
formance as their Viterbi counterparts, while incurring a lower
number of survivors.

For the ASIC design of these decoders, we use 0.13- m
CMOS standard cell and SRAM libraries, and Synopsys tools
are used for synthesis (Design Compiler), layout (Astro), and
post-layout power estimation (Prime Power). We used the
worst-case libraries during synthesis and layout. We set the
target throughput as 200 Mbps (with the power supply of

1.08 V) and the results show that all the decoders can meet this
target with similar timing slacks. It should be noted that the
highest achievable throughput of the decoders with different
constraint lengths may be different in practice due to the poten-
tially different contribution of routing delay after customized
place and route optimization, especially in sub-100 nm tech-
nology where interconnect delay is becoming more significant.
In this work, we only rely on the Synopsys tool to conduct a
fully automatic place and route, which leads to similar speed
results for different constraint lengths. The post-layout silicon
area and power estimation (when the decoders run at 200 Mbps)
results are listed in Tables III–V for , 8, and 9, respec-
tively. They clearly show the effectiveness of the proposed
relaxed adaptive Viterbi decoders, where the power-saving
efficiency improves as the constraint length increases. Notice
that TB-based decoders occupy larger silicon area than their
RE-based counterparts mainly because the use of the 3-pointer
even scheme largely increases the total amount of memories
(almost by 3x) compared with the straightforward 1-pointer
scheme.

We note that, for and , the RE-based relaxed adap-
tive Viterbi decoders consume less power than their TB-based
counterpart. This is because the RE-based decoders can readily
leverage the reduced number of survivors to reduce the power
consumption in both ACS computation and RE array; while
for the TB-based decoders, since we are using a standard
SRAMs other than specially customized SRAMs as discussed
in Section III-B, power saving only comes from the ACS
computation.

SUN AND ZHANG: LOW-POWER STATE-PARALLEL RELAXED ADAPTIVE VITERBI DECODER 1067

TABLE III
POST-LAYOUT AREA AND POWER ESTIMATION FOR K = 7

TABLE IV
POST-LAYOUT AREA AND POWER ESTIMATION FOR K = 8

TABLE V
POST-LAYOUT AREA AND POWER ESTIMATION FOR K = 9

V. CONCLUSION

This paper presents techniques at the algorithm and VLSI ar-
chitecture levels to realize high-throughput state-parallel adap-
tive Viterbi decoding. We developed a relaxed adaptive Viterbi
algorithm that completely eliminates the global survivor path
metric search operation in the conventional adaptive Viterbi al-
gorithm, and hence is much more suitable for state-parallel de-
coder implementation. We further developed state-parallel re-
laxed adaptive Viterbi decoder architectures that can readily
transform the reduced computational complexity at the algo-
rithm level to reduced switching activities and hence power con-
sumption at the hardware level. Supported with detailed syn-
thesis, layout, and post-layout power estimation results, we suc-
cessfully demonstrated the effectiveness of the developed tech-
niques using convolutional code decoding as a test vehicle.

REFERENCES

[1] F. Chan and D. Haccoun, “Adaptive viterbi decoding of convolutional
codes over memoryless channels,” IEEE Trans. Commun., vol. 45, no.
11, pp. 1389–1400, Nov. 1997.

[2] S. J. Simmons, “Breadth-first trellis decoding with adaptive effort,”
IEEE Trans. Commun., vol. 38, no. 1, pp. 3–12, Jan. 1990.

[3] R. Henning and C. Chakrabarti, “An approach for adaptively approx-
imating the Viterbi algorithm to reduce power consumption while de-
coding convolutional codes,” IEEE Trans. Signal Process., vol. 52, no.
5, pp. 1443–1451, May 2004.

[4] P. A. Bengough and S. J. Simmons, “Sorting-based VLSI architectures
for the M-algorithm and T-algorithm trellis decoders,” IEEE Trans.
Commun., vol. 43, no. 2, pp. 514–522, Feb. 1995.

[5] M.-H. Chan, W.-T. Lee, M.-C. Lin, and L.-G. Chen, “IC design of an
adaptive Viterbi decoder,” IEEE Trans. Consum. Electron., vol. 42, no.
1, pp. 52–62, Feb. 1996.

[6] M. Guo, M. Ahmad, M. Swamy, and C. Wang, “FPGA design and
implementation of a low-power systolic array-based adaptive Viterbi
decoder,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 2, pp.
350–365, Feb. 2005.

1068 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

[7] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Goeckel, and W.
Burleson, “A reconfigurable, power-efficient adaptive Viterbi de-
coder,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no.
4, pp. 484–488, Apr. 2005.

[8] S. Swaminathan, R. Tessier, D. Goeckel, and W. Burleson, “A Dy-
namically Reconfigurable Adaptive Viterbi Decoder,” in Proc. of Int.
ACM/SIGDA Symp. Field Programmable Gate Arrays, Feb. 2002, pp.
227–236.

[9] F. Sun and T. Zhang, “Parallel high-throughput limited search trellis
decoder VLSI design,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 13, no. 9, pp. 1013–1022, Sep. 2005.

[10] H.-L. Lou, “Implementing the Viterbi algorithm,” IEEE Signal
Process. Mag., vol. 12, no. 9, pp. 42–52, Sep. 1995.

[11] C. Rader, “Memory management in a Viterbi decoder,” IEEE Trans.
Commun., vol. 29, no. 9, pp. 1399–1401, Sep. 1981.

[12] P. J. Black and T. H. Meng, “Hybrid survivor path architectures for
Viterbi decoders,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Apr. 1993, pp. 433–436.

[13] G. Feygin and P. Gulak, “Architectural tradeoffs for survivor sequence
memory management in Viterbi decoders,” IEEE Trans. Commun., vol.
41, no. 3, pp. 425–429, Mar. 1993.

[14] E. Boutillon and N. Demassieux, “High speed low power architec-
ture for memory management in a Viterbi decoder,” in Proc. IEEE Int.
Symp. on Circuits Syst., May 1996, vol. 4, pp. 284–287.

[15] P. J. Black and T. H.-Y. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi
decoder,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1877–1885,
Dec. 1992.

[16] Y.-N. Chang, H. Suzuki, and K. K. Parhi, “A 2-Mb/s 256-state 10-mW
rate-1/3 Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 35, no. 6,
pp. 826–834, Jun. 2000.

[17] K. Kanda, H. Sadaaki, and T. Sakurai, “90% write power-saving
SRAM using sense-amplifying memory cell,” IEEE J. Solid-State
Circuits, vol. 39, no. 6, pp. 927–933, Jun. 2004.

[18] M. Petrov, A. M. Obeid, A. Garcia, and M. Glesner, “A multipath high
speed Viterbi decoder,” in Proc. 2003 10th IEEE Int. Conf. on Elec-
tronics, Circuits Syst. (ICECS), Dec. 2003, pp. 1160–1163.

Fei Sun (S’06) received the B.S. and M.S. degrees in
electrical engineering from Xian Jiaotong university,
China, in 2000 and 2003, respectively. He has been
working toward the Ph.D. degree in electrical, com-
puter and systems engineering department at Rensse-
laer Polytechnic Institute, Troy, NY, since 2003.

His research interests include VLSI architectures
for communication and storage systems. Currently he
is working on power efficient high throughput trellis
detector architecture design for read channels.

Tong Zhang (S’98–M’02) received the B.S. and
M.S. degrees in electrical engineering from the
Xian Jiaotong University, Xian, China, in 1995 and
1998, respectively. He received the Ph.D. degree
in electrical engineering from the University of
Minnesota, Minneapolis, in 2002.

Currently he is an Assistant Professor in electrical,
computer and systems engineering department at
Rensselaer Polytechnic Institute, Troy, NY. His
current research interests include algorithm and
architecture co-design for communication and data

storage systems, variation-tolerant signal processing IC design, fault-tolerant
system design for digital memory, and interconnect system design for hybrid
CMOS/nanodevice electronic systems.

