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Abstract— Many pipelined adaptive signal processing systems
are subject to a trade-off between throughput and signal process-
ing performance incurred by the pipelined adaptation feedback
loops. In the conventional synchronous design regime, such
throughput/performance trade-off is typically fixed since the
pipeline depth is usually determined in the design phase and
remains unchanged in the run time. Nevertheless, in many real-
life scenarios, the overall system performance can be potentially
improved if we can run-time dynamically configure this trade-off.
With this motivation, we propose to apply self-timed pipeline, an
alternative to synchronous pipeline, to implement the pipelined
adaptive signal processing systems, in which the pipeline depth
can be dynamically changed to realize run-time configurable
throughput/performance trade-offs. Based on a well-known high
speed self-timed pipeline style, we developed architecture and cir-
cuit level design techniques to implement the self-timed pipelined
adaptation feedback loop with configurable pipeline depth. We
demonstrate the proposed design approach using a delayed least
mean square (DLMS) adaptive equalizer for magnetic recording
read channel. The data transfer rate in hard disk varies as
the read head moves among tracks with different distance
from the center of the disk platter. By adjusting the pipeline
depth on-the-fly, the DLMS equalizer can dynamically track
the best equalization performance allowed by the varying data
transfer rates. Simulation result shows a significant performance
improvement compared with its synchronous counterpart.

Index Terms— Self-timed, Pipelining, Adaptive signal process-
ing, DLMS.

I. I NTRODUCTION

OVER the last two decades, adaptive signal processing
has developed into a self-contained field [1], [2] that

finds wide range of real-life applications such as adaptive
equalization, noise and echo cancellation, linear predictive
coding, and adaptive beam-forming. Adaptive signal process-
ing algorithms are characterized by their recursive operations
for realizing algorithmic self-designing/adaptation. To real-
ize high-throughput VLSI implementation of adaptive signal
processing algorithms, architecture-level techniquepipelining
is typically used [3]. Pipelined adaptive signal processing
systems are essentially subject to a trade-off between system
throughput and signal processing performance,i.e., deeper
pipelined adaptation feedback loop can realize higher through-
put, but the delayed feedback will incur larger performance
degradation. It should be pointed out that, for other recursive
algorithms such as infinite impulse response (IIR) filtering
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and Viterbi algorithm, direct pipelining may simply ruin their
functionality and appropriate algorithm-level modification is
required for the use of pipelining. A pipelined adaptive sig-
nal processing algorithm implemented using the conventional
synchronous pipeline typically has a fixed pipeline depth that
is determined in the design phase to accommodate the highest
run-time throughput requirement. Although it is possible to
on-the-fly configure the pipeline depth of synchronous pipeline
by selectively bypassing certain levels of registers, this is very
inflexible and cannot realize fine-grain graceful configuration
on the throughput/performance trade-offs. For example, con-
sider an 8-stage pipelined recursive adaptation loop in which
the registers are almost evenly placed along the loop for
maximizing the throughput. If we bypass one level of registers
to realize a 7-stage pipeline, the delay of the critical path may
double and the throughput will reduce almost by half.

Self-timed pipeline [4], [5] works in a different way from
its synchronous counterpart. Without a common and discrete
notion of time, self-timed pipeline relies on the handshake
between components to perform the synchronization and com-
munication. Each distinct data propagating through a self-
timed pipeline is conventionally called atoken. The pipeline
depth of a self-timed pipeline simply equals the number of
tokens present in the pipeline at the same time. Hence, we
can dynamically configure the pipeline depth by controlling
the number of tokens present in the pipeline. This property of
self-timed pipeline has been exploited in the design of a mixed
synchronous-asynchronous FIR filter that can support variable
latency (in terms of clock cycles) [6] and power manage-
ment of an embedded, single-issue processor [7]. In pipelined
adaptive signal processing systems, the pipeline depth of the
adaptation feedback loops is the key to tune the inherent trade-
off between throughput and signal processing performance.
This directly motivates us to apply self-timed pipeline for
the implementation of adaptive signal processing systems to
realize gracefully configurable throughput/performance trade-
off. This can be leveraged to improve the overall system
performance in many circumstances. For example, for adaptive
signal processing systems with variable data rate, we can dy-
namically adjust the pipeline depth to the minimum allowable
value according to the current data rate to realize the best
signal processing performance. Although the basic idea of
the above design approach is simple and intuitive, how to
implement it in the real systems involves the following three
critical design issues:
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1) What type of self-timed pipeline structure should be
used? Clearly, to justify the practicality of this design
approach, the employed self-timed pipeline must be
able to support the same (or comparable) throughput as
its synchronous counterpart when they have the same
pipeline depth. This means that the recursive self-timed
pipeline datapath should have the same (or comparable)
propagation delay as its synchronous counterpart. This is
a very strict requirement since most self-timed pipeline
design schemes involve extra delay overhead for realizing
self-timed handshake and have the longer latency than
their synchronous counterparts, although they can support
very fine-grain pipeline to realize high throughput. In this
work, we propose to use the well-known Ted William’s
high-speed self-timed pipeline [4], [8] because of itszero-
delay-overheadfeature (i.e., no extra handshake delay
is incurred when data propagate through the pipeline).
Hence the zero-delay-overhead pipeline can achieve the
same latency performance as its synchronous counterpart.

2) How to realize the self-timed data flow synchronization
in the recursive adaptation loop? In self-timed datapath,
synchronization of parallel computational threads relies
on forks and joins, where fork refers to a stage with
one input channel and multiple output channels and join
refers to a stage with multiple input channels and a single
output channel. The recursive adaptation loop of adaptive
signal processing algorithms contains many forks and
joins. However, like many other self-timed pipeline styles,
the zero-delay-overhead self-timed pipeline was initially
proposed for linear datapath (i.e., without forks and
joins). Therefore, it must be appropriately modified to
support forks and joins.

3) How to realize run-time addition/removal of tokens in
order to change the pipeline depth? In a feedforward-
only datapath, the pipeline depth can be readily changed
by adjusting the input data rate. However, as we will
show later, it is not trivial to change the pipeline depth
in recursive adaptation loops. We have to design some
special circuit elements that can be placed on the recur-
sive adaptation loop to realize run-time addition/removal
of tokens.

In this work, we developed techniques to tackle the above
design issues, which provides a complete architecture/circuit-
level design solution to realize the run-time configuration of
throughput/performance trade-off in pipelined adaptive signal
processing systems. Furthermore, we use magnetic recording
read channel adaptive equalizer as a test vehicle to demon-
strate the effectiveness of the proposed design approach. This
is motivated by two factors: (1) PRML (partial response
maximum likelihood) equalization has been widely used in
magnetic storage systems [9], where LMS (least mean square)
adaptive filters are typically used to improve the equalization
performance. LMS filter must be pipelined to meet the very
high data transfer rate requirement in magnetic storage. (2)
Modern magnetic hard disks use a technique calledzoned bit
recording[10] to maximize the storage capacity. It groups the
adjacent disk track into zones, and the outside zones have

more sectors per track than the inside zones. As a result,
when the disk read head moves across different zones of
tracks, the data transfer rate will vary. For example, Hitachi
Deskstar 120G hard drive [11] has 31 track zones and its
data transfer rate varies between 185Mbps and 384Mbps.
Therefore, magnetic recording read channel PRML equalizer
can leverage the proposed design approach to improve the
overall performance by dynamically tracking the best possible
equalization performance allowed by different data transfer
rates. We designed the recursive adaptation loop of an LMS
filter in PRML equalizer at transistor level using our proposed
design techniques. Circuit simulation shows that it can support
upto 1.1Gbps data rate. Assuming 4 different data transfer
rates with the ratio of 4:5:6:7, MATLAB simulations show a
significant PRML equalization performance improvement over
the one using conventional synchronous pipeline.

As self-timed VLSI system design becomes an increasingly
mature technology and holds great promise to tackle many
challenges faced by the current semiconductor industry, ap-
propriately exploiting the unique characteristics of self-timed
circuits at the signal processing algorithm and architecture
levels for improving the overall system performance becomes
a new and promising research paradigm. We believe that this
work is a valuable step in this direction, and hopefully it will
prompt more research efforts to this paradigm. Remainder of
this paper is organized as follows. Section II introduces nec-
essary background of self-timed pipeline. Section III presents
the self-timed pipelined LMS filter architecture. Key circuit
design issues are discussed in Section IV. The circuit design
and simulation results of an example LMS filter in PRML
equalizer are given in Sections V, and the conclusion is drawn
in Section VI.

II. BACKGROUND

This section briefly describes the zero-delay-overhead self-
timed pipeline according to [4] and discusses some basic
concepts and properties of self-timed pipeline. For detailed
discussion on self-timed design, readers are referred to [5].

Fig. 1(a) shows the structure of a zero-delay-overhead self-
timed pipeline, where the function block at each pipeline stage
is implemented using dynamic differential cascode voltage
switch logic (DCVSL) [12] as illustrated in Fig. 1(b). The
data validity information in support of self-timed operation is
embedded into the dual-rail signaling of the DCVSL logic:
When the dual-rail output F andF are both 0, it represents
an invalid datum; when one of F andF switches to 1 during
evaluation (EN=1), it represents avalid datum (1 or 0). The
completion detector (CD) at each stage, as shown in Fig. 1(a),
generates 1 when it detects valid data, otherwise generates 0.

The basic idea of zero-delay-overhead self-timed pipeline
is to make each DCVSL stage keepready-to-evaluatestatus
so that it can start the evaluation as soon as tokens arrive,
hence tokens can propagate through the pipeline without being
blocked (or delayed) by handshake. According to the pipeline
as shown in Fig. 1(a), the operation of zero-delay-overhead
self-timed pipeline can be described as follows: The pipeline
is initialized in such a way that each stage generates invalid
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Fig. 1. (a) Zero-delay-overhead self-timed pipeline structure, and (b) DCVSL structure.

output data (i.e., each ACKi is 0) and is ready to evaluate
(i.e., each ENi is 1). Once valid data enter the pipeline and
reach stagen, stagen starts the evaluation; after finishing the
evaluation, it outputs valid data to its successor (i.e., stage
n + 1) that will subsequently start the evaluation. The output
valid data of stagen will invoke ACKn switch from 0 to
1. As both ENn and ACKn are 1, according to Fig. 1(a),
ENn−1 will switch from 1 to 0, leading to the precharge
of stagen − 1. In the same manner, after the stagen + 1
finishes the evaluation and generates valid data, stagen + 2
will start to evaluate and stagen will be precharged (i.e.,
ENn switches from 1 to 0). Clearly, ENn=0 will make ENn−1

switch back to 1 so that stagen− 1 becomes ready to receive
and evaluate new valid data. In this way, valid data can
propagate through the pipeline datapath. The namezero-delay-
overheadcomes from the fact that the forward propagation
latency exactly equals the function block latency without any
extra delay incurred by self-timed handshake as in many other
self-timed pipeline design styles. Such high speed performance
comes at the cost of degraded robustness, i.e., to guarantee
the correct functionality, the precharge of a stagemust be
faster than the evaluation of its successor. This assumption
is practically reasonable and can be easily satisfied in the real
implementations. Finally, we note that the dual-rail dynamic
logic DCVSL is self-consistent with such zero-delay-overhead
self-timed handshake and can provide a 2x speed performance
advantage compared with conventional static CMOS logic. As
the cost, dynamic circuits generally suffer from higher power
dissipation and less noise immunity.

From the above description, we know that, when data
propagate through the pipeline, all the stages alternate among
three different statuses (denoted as D, S, and B respectively as
illustrated in Fig. 2): (1)holds a data(D): the stage receives
and processes valid data (EN=1); (2)holds a spacer(S): the
stage is precharged (EN=0) and generates invalid data output;
(3) holds a bubble(B): the stage does not receive valid data
and keeps invalid data output with EN=1. Notice that a stage
holding a data is always followed by a stage holding a spacer.
It is a convention that we say the two neighboring stages
holding a data and a spacer together hold atoken. As a token
moves forward through the pipeline, what is left is a bubble
that is available to be occupied by another token.

Thepipeline depthof a self-timed pipeline equals the num-
ber of tokens present in the pipeline at the same time, which is

a variable determined by how the pipeline is initialized and/or
how it is used by the environment. This is in sharp contrast to
a synchronous pipeline, where the pipeline depth is fixed as
the number of levels of registers along the datapath. We call
the feature of variable pipeline depth asdynamic pipelining.
How to control the pipeline depth essentially differs between
feedforward-only datapaths and datapaths with feedback (or
recursive datapaths):

• In a feedforward-only datapath such as an FIR filter, the
pipeline depth can be easily controlled by the input data
rate. A self-timed feedforward-only pipeline behaves like
a shallow pipeline with a small pipeline depth for a slow
input data rate, yet will accommodate a fast input data
rate as a deep pipeline.

• In a recursive datapath, the pipeline depth is determined
by the initialization. Once the stages in the recursive data-
path are initialized to be tokens and bubbles, the number
of tokens and bubbles remains constant and cannot be
changed by varying the input/output data rate. Hence,
to dynamically change the pipeline depth, the recursive
loop must contain some special elements that can be run-
time configured to add/remove tokens. Fig. 2(b) shows a
recursive self-timed pipeline, in which parallel threads of
computation are synchronized by joins and forks.

We note that the throughput of a self-timed recursive loop
does notalways increase with the increase of the pipeline
depth [13]. The throughput depends on the ratio of the number
of tokens (or pipeline depth) to the number of bubbles. If the
ratio is less than a threshold, the datapath is in thetoken limited
mode and increasing the pipeline depth will improve the
throughput. Otherwise, the datapath is inbubble limitedmode
and increasing pipeline depth will decrease the throughput.
Readers are referred to [5], [13] for a detailed discussion.

Finally, it should be pointed out that, besides the pipeline
register bypass as we mentioned in Section I, a synchronous
technique called wave pipelining [14], [15] can also realize a
variable pipeline depth by allowing multiple data waves to flow
at any time between two neighboring registers. However, this
approach requires extensive design effort to accurately balance
the path delays, and is very vulnerable to process, temperature
and voltage variations. The latter will get worse since the
variation is inevitably becoming more and more serious as
CMOS technology continuously scales down.
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Fig. 2. (a) Abstract view of a feedforward-only zero-delay-overhead pipeline with token-flow snapshot, and (b) abstract view of a recursive zero-delay-overhead
pipeline with token-flow snapshot.

III. A RCHITECTURE OFDYNAMICALLY PIPELINED LMS
FILTER

In this section, we present the architecture of pipelined LMS
adaptive filter that employs the self-timed pipeline to realize
dynamic pipeline depth configuration. In the conventional
LMS algorithm [2], the filter coefficients are updated as:{

w(n) = w(n− 1) + µ · e(n) · u(n),
e(n) = d(n)−wT (n− 1) · u(n), (1)

where wT (n) = [w0(n), w1(n), · · · , wN−1(n)] is the filter
coefficient vector,u(n) is the input vector,µ is the step size,
d(n) is the desired signal, ande(n) is the error.

Since the filter coefficients adaptation loops prevent the
standard LMS adaptive filter from being directly pipelined,
we have to appropriately modify the algorithm to intentionally
create extra delays on the adaptation loops for pipelining. To
this end, two methods have been proposed: delayed LMS
(DLMS) [16], [17] and relaxed look-ahead pipelined LMS
(PIPLMS) [3], [18]. DLMS introduces the same amount of
delays in the adaptation formula of all the filter coefficients,
while PIPLMS presents a more general framework to insert
delays onto the adaptation loop and includes DLMS as a
special case. The filtering performance of these adaptation-
delayed approaches is inferior to that of the standard LMS
algorithm. The performance loss is generally determined by
the amount of delays inserted onto the adaptation loop.
Although some modified DLMS algorithms [19]–[21] have
been proposed to improve the performance, they suffer from
significant hardware overhead. For the purpose of simplicity,
we consider the standard DLMS in this work. The design
scheme presented below can be straightforwardly applied to
other pipelined adaptive filters. The DLMS is formulated as:{

w(n) = w(n− 1) + µ · e(n−D) · u(n−D),
e(n−D) = d(n−D)−wT (n−D − 1) · u(n−D), (2)

where D is the number of extra delays on the adaptation
loops for pipelining. As the cost of the increased throughput,
the convergence rate is degraded due to the delayed feedback
of error signals.

Fig. 3(a) shows a DLMS architecture with synchronous
pipeline, where all the registers R’s share a common clock.
The coefficient adaptation delayD is fixed as the number of
the extra levels of registers on the adaptation loops. Retiming
[22] can be used to distribute the registers along the adaptation

loops to balance the latency between neighboring registers and
hence improve the overall throughput. In this scenario, the
trade-off between throughput and equalization performance is
fixed at the design phase.

Fig. 3(b) shows the self-timed DLMS with dynamic pipeline
depth control. For simplicity and clarity, we omit the joins
and forks. Each computational unit (multiplier or adder) is
implemented using zero-delay-overhead self-timed pipeline
with fine granularity. The termfine granularity means that
the self-timed pipeline datapath contains enough number of
pipeline stages so that the adaptation loops always work in
the token limited mode within the target pipeline depth range.
Therefore, the filter throughput monotonically varies with the
pipeline depth (or the number of tokens), i.e., we can increase
and decrease the throughput by increasing and decreasing the
number of tokens in the datapath, respectively. In this scenario,
the value ofD in (2) will become a variable that is equivalent
to the current pipeline depth. To enable the above self-timed
DLMS to work in a synchronous environment, we need to
use two input self-timed FIFOs (first-in first-out) buffers and
one output self-timed FIFO to communicate with external
synchronous environment, as shown in Fig. 3(b).

To realize the correct filtering according to (2), we must
initialize the self-timed DLMS in such a way that all the
coefficient adaptation loops have the same number of tokens
(i.e., the same number of pipeline stages are initialized to hold
valid data in all the loops). Moreover, as shown in Fig. 3(b),
the buffer element TR, which contains two pipeline stages
and each stage contains a simple DCVSL inverter, must be
initialized to hold a token, i.e., one stage holds valid data and
another one holds a spacer. The other buffer elements that are
labelled as SR in the buffer chain as shown in Fig. 3(b) can be
initialized to either token or bubble subject to the requirement
that the buffer chain must have the same number of tokens as
that of the coefficient adaptation loops.

As we pointed out in the above, the number of tokens
(or pipeline depth) in a recursive loop cannot be changed
by simply changing the input/output data rate. To support
dynamic pipeline depth control, we propose to modify one
pipeline stage on the recursive loop in such a way that this
pipeline stage can act as apipeline depth modifier(PDM).
Configured by external request signals, PDM can add/remove
tokens or simply operate as a normal pipeline stage. The
design of PDM will be discussed in Section IV-B. Clearly,
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Fig. 3. Synchronous and self-timed DLMS filter architectures.

it is desirable to put such PDM on the common part of all
the coefficient adaptation loops in DLMS so that we can
control the number of tokens on all the loops simultaneously
using only one PDM. Moreover, when we add/remove tokens
to/from the loops, the same amount of tokens should be
correspondingly added or removed in the SR buffer chain in
order to guarantee the correct functionality according to (2).
Hence, as illustrated in Fig. 3(b), totally two pipeline stages
should be modified as PDM.

We expect that such self-timed pipelined adaptive filters
can be leveraged to improve the overall system performance
in many scenarios, including (a) When the input data rate
changes, we can correspondingly change the pipeline depth
to a minimum allowable value to obtain the best filtering
performance. (b) Using the self-timed FIFOs as elastic buffers,
we can configure the throughput vs. performance trade-off
when the adaptive filter works in different modes with differ-
ent filtering performance requirements (such as training and
tracking modes). (c) By examining the magnitude of the error
signal and using the self-timed FIFOs as elastic buffers, we
can dynamically adjust the throughput vs. performance trade-
off to achieve better overall system performance, i.e., if the
magnitude of the error signal becomes larger, we can decrease
the pipeline depth under the constraint that the FIFOs will not
overflow, and after the magnitude of the error signal drop back,
we can correspondingly increase the pipeline depth.

IV. D ESIGN OFKEY CIRCUIT ELEMENTS

This section presents the circuit level design techniques
to tackle the latter two design issues posed in Section I,
in support of the implementation of dynamically pipelined
adaptive signal processing systems. We present the techniques
to design forks and joins for zero-delay-overhead self-timed
pipeline in Section IV-A, and present a design solution to
implement the pipeline depth modifier in Section IV-B.

A. Design of Fork and Join

In self-timed datapath, synchronization of parallel computa-
tional threads relies on forks and joins, where fork refers to a
stage with one input channel and multiple output channels and
join refers to a stage with multiple input channels and a single
output channel. The original zero-delay-overhead pipeline is
only suitable for the datapath without forks and joins. How-
ever, implementation of coefficient adaptation feedback loop
in DLMS and other adaptive filters involves many forks and
joins for the synchronization of computations. In this work, we
develop the design of fork and join that support zero-delay-
overhead pipeline, as described in the following.

When a fork holds a token, some of its successors can
evaluate immediately while some others may stall for certain
reasons (e.g., being blocked by their own successors). Hence
a fork should hold the token until it receives ACK signals
from all of its successors. But if we simply AND all the ACK
signals together, this may result in a potential malfunction:
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consider the scenario that, before the fork receives the ACK
signals from all the successors, one of its successors has passed
the token to its own successor and is ready to receive a new
token. This successor will interpret the token still being held
by the fork as a new token and then process this token for the
second time, which will lead to a malfunction. It is referred to
as slow or stalled right environment (SRE) problem in [23].
Two solutions are proposed to address the fork design issue
in [23]. The first solution is to condition the acknowledgment
signals received from the stages next to the fork stage and
make them persistent. The second solution, which requires
more significant modifications, is to modify the basic control
circuit of every subsequent pipeline stage and make all the
acknowledgment signals persistent. In this paper, we propose
a fork design scheme as illustrated in Fig. 4 (a), in which
we adopt theclock strobe circuitas shown in Fig. 4(b) and
(c) from IPCMOS developed at IBM [24]. The function of
CSC is to combine several acknowledge ACK pulses (each
ACK is a 0→1→0 pulse) into one pulse, somewhat similar to
the functionality of a C-element that combines signal levels
(0 or 1) not pulses. For detailed discussion of CSC, readers
are referred to [24]. As shown in Fig. 4(a), identical buffers
(few cascaded DCVSL inverters) are placed on the interface
between fork and each output channel. Controlled by the same
signal ACKF2 that is generated by a CSC with the input of
ACKC and ACKE , the buffers on all the channels start to
hold bubble (i.e., be available to receive new token) at the
same time.

The operation can be briefly described as follows: when
a token propagates through a fork, the valid data will be
copied to all the buffers simultaneously and then propagate
on all the channels independently. Notice that each ACK
pulse generated by the completion detector indicates that a
token has propagated through its associated DCVSL function
block. With the help of CSC that combines several independent
ACK pulses into one pulse, the fork will hold spacers (i.e.,
precharged and keeps EN=0) until the valid data move away
on all the channels.

According to its definition, ajoin must wait until all the

inputs become valid before generating valid output data. How-
ever, if we use the conventional DCVSL circuit to implement
the join, this cannot be always guaranteed, i.e., the join stage
may generate valid output data even though the data from
one or more input channels are not valid yet. For example,
consider the DCVSL 2-input AND/NAND gate in Fig. 5(a)
that is derived from the binary decision diagram (BDD) [25] of
the Boolean logic function. Suppose the input{A, A} and{B,
B} are from two independent channels, i.e., this AND/NAND
gate acts as a join. When the input{B, B} is not valid and
{A, A} is valid and equals to{0, 1}, this gate will generate
valid data output. This violates the above requirement on join.
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To solve this problem, authors of [23] proposed to add
explicit request signals to each input channel of the join, and
thus required additional control circuit. Our approach is to
modify the DCVSL design of the join in such a way that
it cannot finish the evaluation until the data from all input
channels become valid. To this end, we propose to apply
redundant binary decision diagram(RBDD) to design the pull
down network of the DCVSL function block of a join. The
only difference between RBDD and BDD is that, in RBDD,
each decision path must go through the decision of all the
input data, as illustrated in Fig. 5(b). It is clear that the resulted
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circuit will be more complex than the original one. As a return,
such circuit will keep the output as invalid (i.e., equals to{0,
0}) until all the input data have become valid (or differential).
Through such simple circuit modification, we can easily realize
the join in the self-timed pipeline.

B. Design of Pipeline Depth Modifier

As we mentioned earlier, the control of the pipeline depth
along the recursive datapath is realized by modifying one
pipeline stage so that this stage can act as a pipeline depth
modifier (PDM) as shown in Fig. 6, where Fig. 6(a) shows the
structure of PDM and Fig. 6(b) shows the circuit that generates
two internal signals REM and REQ for PDM. The design
of PDM involves trading the zero-delay-overhead property
for augmented functionality of adding/removing tokens. This
is realized by inserting a well-known C-element1 [26] in
the original zero-delay-overhead pipeline, as illustrated in
Fig. 6(a), todestroythe zero-delay-overhead property of one
pipeline stage and, consequently, provide the functionality of
adding/removing tokens. The operation of PDM is described as
follows. Configured by external host through four handshake
signals including REQADD, ACK ADD, REQ REM, and
ACK REM, The PDM can operate in three different modes:

1) Normal mode: By default, both REQADD and
REQ REM are 1 and PDM works as a normal pipeline
stage that, however, is no longer zero-delay-overhead;

2) Token-removal mode: To remove a token from the re-
cursive datapath (i.e., reduce the pipeline depth by 1),
the host switches REQREM to 0 right after ACKREM
switches from 1 to 0, and then switches REQREM back
to 1 right after the next 1→0 switch of ACK REM;

3) Token-addition mode: To add a token into the recursive
datapath (i.e., increase the pipeline depth by 1), the host
switches REQADD to 0 right after ACKADD switches
from 1 to 0, and then switches REQADD back to 1 right
after the next 1→0 switch of ACK ADD.

In the normal mode where both REQADD and REQREM
are 1, the circuit in Fig. 6 directly reduces to the one as shown

1The C-element is a state-holding element, and, with two inputs X and Y
and one output Z, its function can be described as: if X is equal to Y, then
Z=X, else Z holds previous value. C-element is extensively used in many
self-timed pipeline styles to realize handshake.

in Fig. 7. Because of the extra C-element in PDM, when the
PDM stage holds a bubble (i.e., no valid data present), ENB

remains 0 so that the DCVSL function block in the PDM
stage keeps being precharged. This is contrast to a zero-delay-
overhead pipeline stage: when it holds a bubble, its EN signal
is 1 and hence its DCVSL function block is ready to evaluate.
When valid data reach the PDM stage, the data will be blocked
until ENB switches from 0 to 1 to enable the data to propagate
through. Notice that ENB will be 1 only when ACKREM is
1 (i.e., valid data are detected at the front of PDM stage)
and ACK ADD is 0 (i.e., no valid data are being held by the
successor of PDM stage). Clearly, the PDM stage is no longer
zero-delay-overhead. As a return for the extra delay overhead
incurred by the C-element, we can readily realize the token-
removal operation as described below.

The basic idea of realizing token-removal is that, when a
token reaches the PDM stage (i.e., the token is being held
by the stage A according to Fig. 6), we keep the PDM stage
being precharged (ENB keeps 0) and, meanwhile, mimic the
normal handshake protocol so that the stage A is precharged
first (ENA switches 0) to remove the token, and then begins to
hold a bubble (ENA switches back to 1) and hence is ready to
receive a new token. In this way, a token simply disappears at
the interface between the PDM stage and its preceding stage.
We can describe the token-removal as the following two-step
process:

1) Preparation step. When the host needs to remove one
token, it switches REQREM from 1 to 0 after it detects
1→0 switch of ACK REM. Notice that 1→0 switch of
ACK REM indicates a token just propagate through the
pipeline in the normal mode. According to Fig. 6(b), the
1→0 switch of REQREM will affect the circuit behavior
when the next token arrives (i.e., ACKREM switches
from 0 to 1).

2) Removal step. When the second token propagates through
the stage A and reaches the PDM stage, the ACKREM
will switch from 0 to 1. Because REQREM is 0 now,
according to the circuit that generates the signals REM
and REQ as shown in Fig. 6(b), both REM and REQ will
be 1. REM=1 will discharge the signal ENA and therefor
pre-charge the stage A; REQ=1 will keep the ENB as
0 and the PDM stage being pre-charged. In this way,
the token is removed from the pipeline. The additional
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Fig. 7. Equivalent pipeline depth modifier in normal mode (both REQADD and REQREM are 1).

PMOS transistor in stage A controlled by ACKREM is
used to prevent the short circuit current when REM=1
and ENB=0. After the precharge of stage A completes,
both ACK REM and REM will switch to 0. Because both
ENB and ACK REM are 0 now, ENA will switch from 0
to 1 so that stage A will hold a bubble (i.e., it is ready to
receive a new token). Meanwhile, after the host detects
ACK REM switches from 1 to 0, the host will switch the
REQ REM back from 0 to 1 so that the PDM stage will
work in the normal mode when succeeding tokens come.

Let’s consider the operation ofadding a token. Recall that
in the normal operation, after one stage, say stagei, receives
valid data from its predecessor, say stagei− 1, and generates
valid output data, stagei− 1 will be immediately precharged
and hence hold a spacer. The basic idea of adding a token is
to prevent the precharge operation so that the predecessor still
holds the valid data that will be interpreted as a new token. As
shown in Fig. 6, after valid data propagate through stage B and
reach stage C, the internal node X is 1. When stage C generates
valid output data, since the request signal REQADD has been
switched to 0, the node X will keep 1, i.e., stage B will not
be precharged and hence still hold the valid output data. As
the valid data held by stage C move forward, stage C will be
precharged that leads to the 1→0 switch of ACK ADD. This
acknowledges the host that the command of adding a token
has been processed and host must switch the REQADD back
to 1 immediately. After stage C is enabled to receive new valid
data (i.e., stage C begins to hold a bubble), it will interpret
the valid data still being held by stage B as a new valid data.
Thus the same valid data will propagate through stage C for
the second time leading to one more token in the datapath.

In the above design, the pipeline depth is changed by
directly duplicating or removing a token in the datapath.
Clearly this is not applicable to some applications such as
microprocessor where the interdependence of data and instruc-
tions should be maintained all the time, e.g., an instruction can
not be simply duplicated or removed from a pipeline. In the
context of signal processing, this approach is valid since we
just need to preserve the functionality of the algorithm instead
of the one-to-one mapping of the input-output behavior.

V. A CASE STUDY OF DLMS EQUALIZER FOR MAGNETIC

RECORDINGREAD CHANNEL

Partial response maximum likelihood (PRML) equalization
techniques such as EPRIV PRML are being widely applied to
magnetic recording read channels in order to increase the data
transfer rate and storage density [27], [28]. An EPRIV PRML
read channel mainly contains two key blocks: adaptive filter
and Viterbi detector. The adaptive filter typically uses LMS
algorithm. As we mentioned in Section I, because of the use
of zoned bit recording, the data transfer rate in modern hard
disks varies as the disk read head moves across different zones
of tracks on the disk. Moreover, the very high data transfer
rate demands LMS adaptive filter to be pipelined. Hence, the
design of pipelined LMS adaptive filter for EPRIV PRML
read channels provides an appropriate real-life application of
the proposed design approach.

Using the above proposed design techniques, we designed
a coefficient adaptation loop in a 9-tap DLMS adaptive filter
that is used in EPRIV PRML read channels. Because of the
lack of mature automation design tool for self-timed pipeline,
the design is conducted manually at transistor level with
IBM 7HP 0.18µm BiCMOS technology in the CADENCE
design environment. The finite word-length configuration of
this design is as follows: the input sampled data is 6-bit;
the filter tap coefficients are 10-bit; the feedback error signal
is 10-bit; the step size is 9-bit; all the other intermediate
results (outputs of multipliers and adders) are 16-bit. The two’s
complement multiplication is realized using Baugh-Wooley
multiplier that consists of a carry-save adder array and one
additional carry ripple adder to merge the partial results. The
output of the 9 filter taps is summed together by a carry-
save adder array followed by a carry ripple adder. In order to
guarantee the datapath can always work in token-limited mode,
the numbers of pipeline stages of all the multipliers and the
carry-save adder array range from 6 to 8. Moreover, in order
to reduce the hardware complexity overhead, we usepartial
completion detection in the design of multipliers and adder
array: Because of the wide bit-width in the computations,
implementing completion detectors for all the bits in the same
pipeline stage will result in very high complexity overhead.
Leveraging the regular and well-balanced datapaths in both
multipliers and adder array, we only detect a small portion of
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all the bits on the same pipeline. Furthermore, because of the
fine pipeline granularity, the delay of a completion detector
and the followed handshake circuit is comparable to or even
larger than the delay one pipeline stage, which further helps
to justify the use of partial completion detection.

For the purpose of comparison, we designed a DCVSL
based synchronous counterpart of the same coefficient adap-
tation loop. The pipeline depth is 7, where each multiplier
and the carry-save adder array are pipelined with 2 stages,
and the CADENCE simulation result shows that the estimated
delay of critical path is 1ns leading to a throughput of 1 giga
samples per second. The supply voltage is set to be 1.8 V. In
the self-timed implementation, with the equivalent pipelining
depth (token number), the maximum throughput is about 1.1
giga samples per second. This suggests that under the same
pipeline depth, self-timed design can achieve slightly higher
maximum throughput than the synchronous one, which can
be explained intuitively as follows: The synchronous and self-
timed datapaths have the same latency denoted asτ . In the
context of synchronous design, with the pipeline depth ofD,
the pipeline registers cannot be perfectly evenly distributed
along the synchronous pipeline leading to the critical path
longer thanτ/D; on the other hand, the fine granularity of
self-timed pipeline can help the tokens be evenly distributed
along the pipeline datapath, so that the critical path of the self-
timed pipeline can closely approachτ/D. In order to realize
fine grain self-timed pipeline, compared with its synchronous
counterpart, the self-timed pipeline (implemented using partial
completion detection as described above) consumes more
transistors (19% more transistors in this case).

BER (bit error rate) performance of the considered EPRIV
PRML read channel is simulated using MATLAB. Assume the
data rate uniformly changes among 4 values corresponding to
the throughput of DLMS filters with pipeline depth of 4, 5,
6, and 7, respectively. The synchronous DLMS filter keeps
the fixed pipeline depth of 7 no matter what the current data
rate is, nevertheless, its self-timed counterpart can dynamically
change the pipeline depth by changing the number of tokens
and correspondingly changing the step sizeµ to realize the
best possible equalization performance. The read-back signal
from the disk head is modeled by convolving random data
sequence with the Lorentzian pulse and adding white Gaussian
noise. Output of the adaptive DLMS filter is feed to a 8-state
Viterbi decoder for sequence detection. In the simulation, we
assume the length of the training sequence is 120. Fig. 8 shows
the BER vs. SNR simulation results of both synchronous
implementation with fixed pipelining depth of 7 and self-
timed implementation with variable pipelining depth. This
clearly shows the great potential on improving the overall
system performance using the proposed self-timed pipeline
with dynamic pipelining depth control.

VI. CONCLUSION

In this paper, for the first time, we propose to exploit the
dynamic pipelining property of self-timed pipeline to realize
reconfigurable throughput/performance trade-off in pipelined
adaptive signal processing systems. PRML read channel equal-
izer is considered in this work as a test vehicle. For practical
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Fig. 8. Simulated performance of EPRIV PRML read channel using
synchronous and self-timed DLMS equalizers with the training length of 120.

implementation, we propose to use a zero-delay-overhead self-
timed pipeline style that supports very high speed operation.
We develop techniques to enable the application of zero-
delay-overhead self-timed pipeline in this context and realize
run-time pipeline depth control. Simulations under variable
data rate scenarios demonstrate a significant performance
gain. It is our hope that this work will motivate the real-
life adaptive signal processing system designers to re-think
their design from a self-timed perspective integrally at the
algorithm, architecture, and circuit levels for potential system
performance improvement.
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