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Self-Timed Dynamically Pipelined Adaptive Signal
Processing System: A Case Study of DLMS
Equalizer for Read Channel

Sizhong Chen and Tong Zhaniglember, IEEE

Abstract—Many pipelined adaptive signal processing systems and Viterbi algorithm, direct pipelining may simply ruin their
are subject to a trade-off between throughput and signal process- functionality and appropriate algorithm-level modification is
ing performance incurred by the pipelined adaptation feedback required for the use of pipelining. A pipelined adaptive sig-

loops. In the conventional synchronous design regime, such . . . . .
throughput/performance trade-off is typically fixed since the nal processing algorithm implemented using the conventional

pipeline depth is usually determined in the design phase and Synchronous pipeline typically has a fixed pipeline depth that
remains unchanged in the run time. Nevertheless, in many real- is determined in the design phase to accommodate the highest
life scenarios, the overall system performance can be potentially run-time throughput requirement. Although it is possible to
improved if we can run-time dynamically configure this trade-off. on-the-fly configure the pipeline depth of synchronous pipeline

With this motivation, we propose to apply self-timed pipeline, an b lectively b . tain | Is of ist this i
alternative to synchronous pipeline, to implement the pipelined y seleclively bypassing certain levels o registers, tis Is very

adaptive signal processing systems, in which the pipeline depth inflexible and cannot realize fine-grain graceful configuration
can be dynamically changed to realize run-time configurable on the throughput/performance trade-offs. For example, con-
throughput/performance trade-offs. Based on a well-known high sider an 8-stage pipelined recursive adaptation loop in which
speed self-timed pipeline style, we developed architecture and cir- the registers are almost evenly placed along the loop for

cuit level design techniques to implement the self-timed pipelined imizina the th hout. If b level of ist
adaptation feedback loop with configurable pipeline depth. we Maximizing the throughput. it we bypass one level of registers

demonstrate the proposed design approach using a delayed leasttO realize a 7-stage pipeline, the delay of the critical path may
mean square (DLMS) adaptive equalizer for magnetic recording double and the throughput will reduce almost by half.
read channel. The data transfer rate in hard disk varies as

the read head moves among tracks with different distance 4 sl : ;
from the center of the disk platter. By adjusting the pipeline Self-timed pipeline [4], [5] works in a different way from

depth on-the-fly, the DLMS equalizer can dynamically track its synchronous counterpart. Without a common and discrete

the best equalization performance allowed by the varying data Nnotion of time, self-timed pipeline relies on the handshake
transfer rates. Simulation result shows a significant performance between components to perform the synchronization and com-

improvement compared with its synchronous counterpart. munication. Each distinct data propagating through a self-
Index Terms— Self-timed, Pipelining, Adaptive signal process- timed pipeline is conventionally calledtaken The pipeline
ing, DLMS. depth of a self-timed pipeline simply equals the number of

tokens present in the pipeline at the same time. Hence, we
can dynamically configure the pipeline depth by controlling
the number of tokens present in the pipeline. This property of
VER the last two decades, adaptive signal processigg|f-timed pipeline has been exploited in the design of a mixed
has developed into a self-contained field [1], [2] thadynchronous-asynchronous FIR filter that can support variable
finds wide range of real-life applications such as adaptiygtency (in terms of clock cycles) [6] and power manage-
equalization, noise and echo Cancellation, linear predictiﬁ@em of an embedded, Sing|e_issue processor [7] In p|pe||ned
coding, and adaptive beam-forming. Adaptive signal procesgdaptive signal processing systems, the pipeline depth of the
ing algorithms are characterized by their recursive operatioggaptation feedback loops is the key to tune the inherent trade-
for realizing algorithmic self-designing/adaptation. To reabff petween throughput and signal processing performance.
ize high-throughput VLSI implementation of adaptive signathis directly motivates us to apply self-timed pipeline for
processing algorithms, architecture-level technigigelining  the implementation of adaptive signal processing systems to
is typically used [3]. Pipelined adaptive signal processingalize gracefully configurable throughput/performance trade-
systems are essentially subject to a trade-off between sysigffd This can be leveraged to improve the overall system
throughput and signal processing performanice,, deeper performance in many circumstances. For example, for adaptive
pipelined adaptation feedback loop can realize higher througBignal processing systems with variable data rate, we can dy-
put, but the delayed feedback will incur larger performancgamically adjust the pipeline depth to the minimum allowable
degradation It should be pointed out that, for other recursivgalue according to the current data rate to realize the best
algorithms such as infinite impulse response (IIR) filteringignal processing performance. Although the basic idea of
_ _ , the above design approach is simple and intuitive, how to
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1) What type of self-timed pipeline structure should benore sectors per track than the inside zones. As a result,
used? Clearly, to justify the practicality of this desigmvhen the disk read head moves across different zones of
approach, the employed self-timed pipeline must Heacks, the data transfer rate will vary. For example, Hitachi
able to support the same (or comparable) throughput Beskstar 120G hard drive [11] has 31 track zones and its
its synchronous counterpart when they have the samata transfer rate varies between 185Mbps and 384Mbps.
pipeline depth. This means that the recursive self-timétherefore, magnetic recording read channel PRML equalizer
pipeline datapath should have the same (or comparabtan leverage the proposed design approach to improve the
propagation delay as its synchronous counterpart. Thisagerall performance by dynamically tracking the best possible
a very strict requirement since most self-timed pipelinequalization performance allowed by different data transfer
design schemes involve extra delay overhead for realizingtes. We designed the recursive adaptation loop of an LMS
self-timed handshake and have the longer latency thiter in PRML equalizer at transistor level using our proposed
their synchronous counterparts, although they can suppdetsign techniques. Circuit simulation shows that it can support
very fine-grain pipeline to realize high throughput. In thisipto 1.1Gbps data rate. Assuming 4 different data transfer
work, we propose to use the well-known Ted William'sates with the ratio of 4:5:6:7, MATLAB simulations show a
high-speed self-timed pipeline [4], [8] because ofziso- significant PRML equalization performance improvement over
delay-overheadeature (i.e., no extra handshake delathe one using conventional synchronous pipeline.
is incurred when data propagate through the pipeline).As self-timed VLSI system design becomes an increasingly
Hence the zero-delay-overhead pipeline can achieve tature technology and holds great promise to tackle many
same latency performance as its synchronous counterpahallenges faced by the current semiconductor industry, ap-

2) How to realize the self-timed data flow synchronizatiopropriately exploiting the unique characteristics of self-timed
in the recursive adaptation loop? In self-timed datapattircuits at the signal processing algorithm and architecture
synchronization of parallel computational threads relidevels for improving the overall system performance becomes
on forks and joins, where fork refers to a stage witha new and promising research paradigm. We believe that this
one input channel and multiple output channels and joimork is a valuable step in this direction, and hopefully it will
refers to a stage with multiple input channels and a singtl@ompt more research efforts to this paradigm. Remainder of
output channel. The recursive adaptation loop of adaptitlis paper is organized as follows. Section Il introduces nec-
signal processing algorithms contains many forks arebsary background of self-timed pipeline. Section Ill presents
joins. However, like many other self-timed pipeline styleshe self-timed pipelined LMS filter architecture. Key circuit
the zero-delay-overhead self-timed pipeline was initiallgesign issues are discussed in Section IV. The circuit design
proposed for linear datapath (i.e., without forks andnd simulation results of an example LMS filter in PRML
joins). Therefore, it must be appropriately modified tequalizer are given in Sections V, and the conclusion is drawn
support forks and joins. in Section VI.

3) How to realize run-time addition/removal of tokens in
order to change the pipeline depth? In a feedforward- I
only datapath, the pipeline depth can be readily changed
by adjusting the input data rate. However, as we will This section briefly describes the zero-delay-overhead self-
show later, it is not trivial to change the pipeline depttimed pipeline according to [4] and discusses some basic
in recursive adaptation loops. We have to design somencepts and properties of self-timed pipeline. For detailed
special circuit elements that can be placed on the recdiscussion on self-timed design, readers are referred to [5].
sive adaptation loop to realize run-time addition/removal Fig. 1(a) shows the structure of a zero-delay-overhead self-
of tokens. timed pipeline, where the function block at each pipeline stage

is implemented using dynamic differential cascode voltage

In this work, we developed techniques to tackle the abogitch logic (DCVSL) [12] as illustrated in Fig. 1(b). The

design issues, which provides a complete architecture/circulta validity information in support of self-timed operation is
level design solution to realize the run-time configuration &fmbedded into the dual-rail signaling of the DCVSL logic:
throughput/performance trade-off in pipelined adaptive signdhen the dual-rail output F anB are both 0, it represents
processing systems. Furthermore, we use magnetic recordingnvalid datum; when one of F anBl switches to 1 during
read channel adaptive equalizer as a test vehicle to demewaluation (EN=1), it representsvalid datum (1 or 0). The
strate the effectiveness of the proposed design approach. Tampletion detector (CD) at each stage, as shown in Fig. 1(a),
is motivated by two factors: (1) PRML (partial responsg@enerates 1 when it detects valid data, otherwise generates 0.
maximum likelihood) equalization has been widely used in The basic idea of zero-delay-overhead self-timed pipeline
magnetic storage systems [9], where LMS (least mean squéase)o make each DCVSL stage keegady-to-evaluatestatus
adaptive filters are typically used to improve the equalizati®o that it can start the evaluation as soon as tokens arrive,
performance. LMS filter must be pipelined to meet the vefyence tokens can propagate through the pipeline without being
high data transfer rate requirement in magnetic storage. (2dcked (or delayed) by handshake. According to the pipeline
Modern magnetic hard disks use a technique catleokd bit as shown in Fig. 1(a), the operation of zero-delay-overhead
recording[10] to maximize the storage capacity. It groups thself-timed pipeline can be described as follows: The pipeline
adjacent disk track into zones, and the outside zones hawénitialized in such a way that each stage generates invalid

. BACKGROUND
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Fig. 1. (a) Zero-delay-overhead self-timed pipeline structure, and (b) DCVSL structure.

output data (i.e., each AGKis 0) and is ready to evaluatea variable determined by how the pipeline is initialized and/or
(i.e., each ENis 1). Once valid data enter the pipeline antiow it is used by the environment. This is in sharp contrast to
reach stage, stagen starts the evaluation; after finishing thea synchronous pipeline, where the pipeline depth is fixed as
evaluation, it outputs valid data to its successor (i.e., stathee number of levels of registers along the datapath. We call
n + 1) that will subsequently start the evaluation. The outptite feature of variable pipeline depth @gnamic pipelining.

valid data of stage: will invoke ACK,, switch from 0 to How to control the pipeline depth essentially differs between
1. As both EN, and ACK, are 1, according to Fig. 1(a), feedforward-only datapaths and datapaths with feedback (or
EN,_1 will switch from 1 to 0, leading to the prechargerecursive datapaths):

of stagen — 1. In the same manner, after the stage+ 1
finishes the evaluation and generates valid data, stage
will start to evaluate and stage will be precharged (i.e.,
EN,, switches from 1 to 0). Clearly, ENO will make EN,_;
switch back to 1 so that stage— 1 becomes ready to receive
and evaluate new valid data. In this way, valid data can input data rate, yet will accommodate a fast input data
propagate through the pipeline datapath. The naene-delay- rate as a deep pipeline.

overheadcomes from the fact that the forward propagation * N @ recursive datapath, the pipeline depth is determined
latency exactly equals the function block latency without any by the initialization. Once the stages in the recursive data-
extra delay incurred by self-timed handshake as in many other Path are initialized to be tokens and bubbles, the number
self-timed pipeline design styles. Such high speed performance ©Of tokens and bubbles remains constant and cannot be
comes at the cost of degraded robustness, i.e., to guarantee changed by varying the input/output data rate. Hence,
the correct functionality, the precharge of a stagast be to dynamically change the pipeline depth, the recursive
faster than the evaluation of its successor. This assumption 00p must contain some special elements that can be run-
is practically reasonable and can be easily satisfied in the real time configured to add/remove tokens. Fig. 2(b) shows a
implementations. Finally, we note that the dual-rail dynamic recursive self-timed pipeline, in which parallel threads of
logic DCVSL is self-consistent with such zero-delay-overhead =~ Computation are synchronized by joins and forks.
self-timed handshake and can provide a 2x speed performancgv

advantage compared with conventional static CMOS logic. %% ese r?cc)):ZI tr;atst:]] irfgggghaﬁt t?]fea':grlgggée%fr?ﬁgrswee:% %p
the cost, dynamic circuits generally suffer from higher powege th [13] V1\'/hZ trlwou h utV\(ldle endslon the ratio of thglﬁurlnber
dissipation and less noise immunity. P ’ gnp P

of tokens (or pipeline depth) to the number of bubbles. If the
From the above description, we know that, when datatio is less than a threshold, the datapath is irtd¢ken limited
propagate through the pipeline, all the stages alternate amefgde and increasing the pipeline depth will improve the
three different statuses (denoted as D, S, and B respectivelyt@®ughput. Otherwise, the datapath isbimbble limitedmode
illustrated in Fig. 2): (1)holds a data(D): the stage receives and increasing pipeline depth will decrease the throughput.

and processes valid data (EN=1); (®)lds a space(S): the Readers are referred to [5], [13] for a detailed discussion.
stage is precharged (EN=0) and generates invalid data OUtp“tl'Iinally

(3) holds a bubbleB): the stage does not receive valid dat

« In a feedforward-only datapath such as an FIR filter, the
pipeline depth can be easily controlled by the input data
rate. A self-timed feedforward-only pipeline behaves like
a shallow pipeline with a small pipeline depth for a slow

it should be pointed out that, besides the pipeline

?egister bypass as we mentioned in Section I, a synchronous

ggchnique called wave pipelining [14], [15] can also realize a

. ; : ; CYhriable pipeline depth by allowing multiple data waves to flow

It IS a convention that we say the two neighboring staggs any time between two neighboring registers. However, this

holding a data and a spacer t_oge_ther hotdl@n As_a token approach requires extensive design effort to accurately balance

MOVeS forvyard through the plpelme, what is left is a bUbbll‘Fle path delays, and is very vulnerable to process, temperature

that is available to be occupied by another token. and voltage variations. The latter will get worse since the
The pipeline depthof a self-timed pipeline equals the num-variation is inevitably becoming more and more serious as

ber of tokens present in the pipeline at the same time, whichG810S technology continuously scales down.
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Fig. 2. (a) Abstract view of a feedforward-only zero-delay-overhead pipeline with token-flow snapshot, and (b) abstract view of a recursive zero-delay-overhead
pipeline with token-flow snapshot.

I1l. ARCHITECTURE OFDYNAMICALLY PIPELINED LMS  loops to balance the latency between neighboring registers and
FILTER hence improve the overall throughput. In this scenario, the

In this section, we present the architecture of pipelined LM&de-off between throughput and equalization performance is
adaptive filter that employs the self-timed pipeline to realiZé<€d at the design phase. _ o
dynamic pipeline depth configuration. In the conventional Fig. 3(b) shows the self-timed DLMS with dynamic pipeline

LMS algorithm [2], the filter coefficients are updated as: depth control. For simplicity and clarity, we omit the joins
and forks. Each computational unit (multiplier or adder) is

{ w(n) = W(”_l);“'e(”)'u(")’ (1) implemented using zero-delay-overhead self-timed pipeline
e(n) = d(n)—w'(n—1)-u(n), with fine granularity. The ternfine granularity means that
where wT(n) = [wo(n),wi(n),--- ,wy_1(n)] is the filter the self-timed pipeline datapath contains enough number of
coefficient vectoru(n) is the input vectory, is the step size, Pipeline stages so that the adaptation loops always work in
d(n) is the desired signal, andn) is the error. the token limited mode within the target pipeline depth range.
Since the filter coefficients adaptation loops prevent thherefore, the filter throughput monotonically varies with the
standard LMS adaptive filter from being directly pipelinedPipeline depth (or the number of tokens), i.e., we can increase
we have to appropriately modify the algorithm to intentionallfgnd decrease the throughput by increasing and decreasing the
create extra delays on the adaptation loops for pipelining. Tgmber of tokens in the datapath, respectively. In this scenario,
this end’ two methods have been proposed: de|ayed L,\W@ value ofD in (2) will become a variable that is equivalent
(DLMS) [16], [17] and relaxed look-ahead pipelined LMJo the current pipeline depth. To enable the above self-timed
(PIPLMS) [3], [18]. DLMS introduces the same amount oPLMS to work in a synchronous environment, we need to
delays in the adaptation formula of all the filter coefficient$!Se two input self-timed FIFOs (first-in first-out) buffers and
while PIPLMS presents a more general framework to insetfe output self-timed FIFO to communicate with external
delays onto the adaptation loop and includes DLMS asS¥nchronous environment, as shown in Fig. 3(b).
special case. The filtering performance of these adaptationT0 realize the correct filtering according to (2), we must
delayed approaches is inferior to that of the standard LMStialize the self-timed DLMS in such a way that all the
algorithm. The performance loss is generally determined §gefficient adaptation loops have the same number of tokens
the amount of delays inserted onto the adaptation lodpe€-, the same number of pipeline stages are initialized to hold
Although some modified DLMS algorithms [19]-[21] havevalid data in all the loops). Moreover, as shown in Fig. 3(b),
been proposed to improve the performance, they suffer frdh buffer element TR, which contains two pipeline stages
significant hardware overhead. For the purpose of simplici§d each stage contains a simple DCVSL inverter, must be
we consider the standard DLMS in this work. The desighitialized to hold a token, i.e., one stage holds valid data and
scheme presented below can be straightforwardly applied&aother one holds a spacer. The other buffer elements that are

other pipelined adaptive filters. The DLMS is formulated astabelled as SR in the buffer chain as shown in Fig. 3(b) can be
initialized to either token or bubble subject to the requirement

{ w(n) =wn—1)+u 'Te(” = D)-u(n-D), (2) that the buffer chain must have the same number of tokens as
e(n—D) =dn-D)-w'(n—D~1) u(n-D), that of the coefficient adaptation loops.
where D is the number of extra delays on the adaptation As we pointed out in the above, the number of tokens
loops for pipelining. As the cost of the increased throughpubr pipeline depth) in a recursive loop cannot be changed
the convergence rate is degraded due to the delayed feeddacksimply changing the input/output data rate. To support
of error signals. dynamic pipeline depth control, we propose to modify one
Fig. 3(a) shows a DLMS architecture with synchronougipeline stage on the recursive loop in such a way that this
pipeline, where all the registers R’s share a common clogkipeline stage can act as mpeline depth modifie(PDM).
The coefficient adaptation delay is fixed as the number of Configured by external request signals, PDM can add/remove
the extra levels of registers on the adaptation loops. Retimitakens or simply operate as a normal pipeline stage. The
[22] can be used to distribute the registers along the adaptataesign of PDM will be discussed in Section IV-B. Clearly,
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Fig. 3. Synchronous and self-timed DLMS filter architectures.

it is desirable to put such PDM on the common part of all IV. DESIGN OFKEY CIRCUIT ELEMENTS
the coefficient adaptation loops in DLMS so that we can rpig section presents the circuit level design techniques

control the number of tokens on all the loops simultaneously (5ckie the latter two design issues posed in Section I,
using only one PDM. Moreover, when we add/remove tokefis ohhort of the implementation of dynamically pipelined
to/ffrom the loops, the same amount of tokens should Bg, e signal processing systems. We present the techniques
correspondingly added or removed in the SR buffer chain {§ gesign forks and joins for zero-delay-overhead self-timed
order to guarantee the correct functionality according to Qﬂipeline in Section IV-A, and present a design solution to

Hence, as illustrated in Fig. 3(b), totally two pipeline Ste‘glqﬁ‘lplement the pipeline depth modifier in Section IV-B.
should be modified as PDM.

A. Design of Fork and Join

We expect that such self-timed pipelined adaptive filters In self-timed datapath, synchronization of parallel computa-
can be leveraged to improve the overall system performartganal threads relies on forks and joins, where fork refers to a
in many scenarios, including (a) When the input data rastage with one input channel and multiple output channels and
changes, we can correspondingly change the pipeline dejutim refers to a stage with multiple input channels and a single
to a minimum allowable value to obtain the best filteringutput channel. The original zero-delay-overhead pipeline is
performance. (b) Using the self-timed FIFOs as elastic buffemly suitable for the datapath without forks and joins. How-
we can configure the throughput vs. performance trade-effer, implementation of coefficient adaptation feedback loop
when the adaptive filter works in different modes with differin DLMS and other adaptive filters involves many forks and
ent filtering performance requirements (such as training ajans for the synchronization of computations. In this work, we
tracking modes). (c) By examining the magnitude of the erroeevelop the design of fork and join that support zero-delay-
signal and using the self-timed FIFOs as elastic buffers, wogerhead pipeline, as described in the following.
can dynamically adjust the throughput vs. performance trade-When afork holds a token, some of its successors can
off to achieve better overall system performance, i.e., if thevaluate immediately while some others may stall for certain
magnitude of the error signal becomes larger, we can decreesgsons (e.g., being blocked by their own successors). Hence
the pipeline depth under the constraint that the FIFOs will nat fork should hold the token until it receives ACK signals
overflow, and after the magnitude of the error signal drop badkpm all of its successors. But if we simply AND all the ACK
we can correspondingly increase the pipeline depth. signals together, this may result in a potential malfunction:



TCAS-I 1399 6

ACK,ACK,, ACK_ACK,
(=l
ACK,, ACK_,
1 1
< |4 =
—/pcvsL |1 peyst Lt ,[DCVSL
A Buttor” B
»/DCVSL | ,[DCVSL ,
| Buffer | D T
(a) ©)

Fig. 4. (a) Fork design, (b) 2-input clock strobe circuit (CSC), and (c) strobe circuit switch.

consider the scenario that, before the fork receives the AGHputs become valid before generating valid output data. How-
signals from all the successors, one of its successors has passed if we use the conventional DCVSL circuit to implement
the token to its own successor and is ready to receive a nthwe join, this cannot be always guaranteed, i.e., the join stage
token. This successor will interpret the token still being helshay generate valid output data even though the data from
by the fork as a new token and then process this token for thee or more input channels are not valid yet. For example,
second time, which will lead to a malfunction. It is referred taonsider the DCVSL 2-input AND/NAND gate in Fig. 5(a)
as slow or stalled right environment (SRE) problem in [231hat is derived from the binary decision diagram (BDD) [25] of
Two solutions are proposed to address the fork design isghe Boolean logic function. Suppose the ing& A} and{B,

in [23]. The first solution is to condition the acknowledgmenB} are from two independent channels, i.e., this AND/NAND
signals received from the stages next to the fork stage agate acts as a join. When the inp{8, B} is not valid and
make them persistent. The second solution, which requirgs, A} is valid and equals td0, 1}, this gate will generate
more significant modifications, is to modify the basic controlalid data output. This violates the above requirement on join.
circuit of every subsequent pipeline stage and make all the
acknowledgment signals persistent. In this paper, we propose
a fork design scheme as illustrated in Fig. 4 (a), in which
we adopt theclock strobe circuitas shown in Fig. 4(b) and

(c) from IPCMOS developed at IBM [24]. The function of
CSC is to combine several acknowledge ACK pulses (each
ACK is a 0—1—0 pulse) into one pulse, somewhat similar to
the functionality of a C-element that combines signal levels
(0 or 1) not pulses. For detailed discussion of CSC, readé|
are referred to [24]. As shown in Fig. 4(a), identical buffers
(few cascaded DCVSL inverters) are placed on the interface
between fork and each output channel. Controlled by the same
signal ACKg- that is generated by a CSC with the input of @
ACK and ACKg, the buffers on all the channels start to

hold bubble (i.e., be available to receive new token) at tiy. 5. Modified DCVSL circuit for joins.

same time.

The operation can be briefly described as follows: whenTo solve this problem, authors of [23] proposed to add
a token propagates through a fork, the valid data will bexplicit request signals to each input channel of the join, and
copied to all the buffers simultaneously and then propagateus required additional control circuit. Our approach is to
on all the channels independently. Notice that each ACtodify the DCVSL design of the join in such a way that
pulse generated by the completion detector indicates thait @&annot finish the evaluation until the data from all input
token has propagated through its associated DCVSL functiohannels become valid. To this end, we propose to apply
block. With the help of CSC that combines several independestiundant binary decision diagrag®BDD) to design the pull
ACK pulses into one pulse, the fork will hold spacers (i.edown network of the DCVSL function block of a join. The
precharged and keeps EN=0) until the valid data move awayly difference between RBDD and BDD is that, in RBDD,
on all the channels. each decision path must go through the decision of all the

According to its definition, goin must wait until all the input data, as illustrated in Fig. 5(b). It is clear that the resulted

<] >-
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Fig. 6. Pipeline depth modifier structure.

circuit will be more complex than the original one. As a returnn Fig. 7. Because of the extra C-element in PDM, when the
such circuit will keep the output as invalid (i.e., equals{@ PDM stage holds a bubble (i.e., no valid data present)z EN
0}) until all the input data have become valid (or differentialyemains 0 so that the DCVSL function block in the PDM
Through such simple circuit modification, we can easily realiztage keeps being precharged. This is contrast to a zero-delay-
the join in the self-timed pipeline. overhead pipeline stage: when it holds a bubble, its EN signal
is 1 and hence its DCVSL function block is ready to evaluate.
When valid data reach the PDM stage, the data will be blocked
until ENg switches from 0 to 1 to enable the data to propagate

As we mentioned earlier, the control of the pipeline deptihrough. Notice that EN will be 1 only when ACKREM is
along the recursive datapath is realized by modifying one (i.e., valid data are detected at the front of PDM stage)
pipeline stage so that this stage can act as a pipeline degiftl ACKADD is 0 (i.e., no valid data are being held by the
modifier (PDM) as shown in Fig. 6, where Fig. 6(a) shows thguccessor of PDM stage). Clearly, the PDM stage is no longer
structure of PDM and Fig. 6(b) shows the circuit that generatgsro-delay-overhead. As a return for the extra delay overhead
two internal signals REM and REQ for PDM. The desigihcurred by the C-element, we can readily realize the token-
of PDM involves trading the zero-delay-overhead propertgmoval operation as described below.
for augmented functionality of adding/removing tokens. This The basic idea of realizing token-removal is that, when a
is realized by inserting a well-known C-elemer[26] in  token reaches the PDM stage (i.e., the token is being held
the original zero-delay-overhead pipeline, as illustrated @y the stage A according to Fig. 6), we keep the PDM stage
Fig. 6(a), todestroythe zero-delay-overhead property of ongeing precharged (EN keeps 0) and, meanwhile, mimic the
pipeline stage and, consequently, provide the functionality gbrmal handshake protocol so that the stage A is precharged
adding/removing tokens. The operation of PDM is described fsst (ENA switches 0) to remove the token’ and then begins to
follows. Configured by external host through four handshakg|d a bubble (EN switches back to 1) and hence is ready to
signals including REQADD, ACK_ADD, REQREM, and receive a new token. In this way, a token simply disappears at
ACK_REM, The PDM can operate in three different modesihe interface between the PDM stage and its preceding stage.

1) Normal mode: By default, both READD and We can describe the token-removal as the following two-step

REQREM are 1 and PDM works as a normal pipelingrocess:
stage that, however, is no longer zero-delay-overhead; 1y preparation step When the host needs to remove one

2) Token-removal mode: To remove a token from the re-  (oyen, it switches REQREM from 1 to O after it detects
cursive datapath (i.e., reduce the pipeline depth by 1), 1 .0 switch of ACKREM. Notice that 150 switch of

B. Design of Pipeline Depth Modifier

the host switches REREM to 0 right after ACKREM ACK_REM indicates a token just propagate through the
switches from 1 to 0, and then switches RIREM 'back pipeline in the normal mode. According to Fig. 6(b), the
to 1 right after the next -0 switch of ACKREM; 1—0 switch of REQREM will affect the circuit behavior

3) Token-addition mode: To add a token into the recursive \yhen the next token arrives (i.e., ACREM switches
datapath (i.e., increase the pipeline depth by 1), the host om0 to 1).

switches REQADD to 0 right after ACKADD switches 2y Removal stepiVhen the second token propagates through

from 1 to 0, and then switches REGDD back to 1 right the stage A and reaches the PDM stage, the AREKM
after the next +-0 switch of ACKADD. will switch from O to 1. Because RE@EM is 0 now,
In the normal mode where both READD and REQREM according to the circuit that generates the signals REM

are 1, the circuit in Fig. 6 directly reduces to the one as shown and REQ as shown in Fig. 6(b), both REM and REQ will
be 1. REM=1 will discharge the signal ENand therefor
1The C-element is a state-holding element, and, with two inputs X and Y pre-charge the stage A; REQ=1 will keep the F£Ms
and one output Z, its function can be described as: if X is equal to Y, then v .
Z=X, else Z holds previous value. C-element is extensively used in many O a@nd the_ PDM stage being prg-ch_arged. In th'.slway’
self-timed pipeline styles to realize handshake. the token is removed from the pipeline. The additional
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___________________________

ACK_REM

ACK_ADD

[ 1
: F— . ‘7
[cn]: :
—» DCVSL f : DCVSL . [ DCVSL) -
A : B ™ c >

PDM stage ~

Fig. 7. Equivalent pipeline depth modifier in normal mode (both R&QD and REQREM are 1).

PMOS transistor in stage A controlled by AGREM is V. A CASE STUDY OF DLMS EQUALIZER FORMAGNETIC

used to prevent the short circuit current when REM=1 RECORDING READ CHANNEL

and EN3=0. After the precharge of stage A completes,

both ACK.REM and REM will switch to 0. Because both Partial response maximum likelihood (PRML) equalization

ENp and ACK.REM are 0 now, EN will switch from 0 techniques such as EPRIV PRML are being widely applied to

to 1 so that stage A will hold a bubble (i.e., it is ready ténagnetic recording read channels in order to increase the data

receive a new token). Meanwhile, after the host detedt@nsfer rate and storage density [27], [28]. An EPRIV PRML

ACK_REM switches from 1 to 0, the host will switch theread channel mainly contains two key blocks: adaptive filter

REQREM back from 0 to 1 so that the PDM stage willand Viterbi detector. The adaptive filter typically uses LMS

work in the normal mode when succeeding tokens com@gorithm. As we mentioned in Section |, because of the use
of zoned bit recording, the data transfer rate in modern hard
disks varies as the disk read head moves across different zones

Let's consider the operation a@fdding a token. Recall that Of tracks on the disk. Moreover, the very high data transfer
in the normal operation, after one stage, say stageceives raté demands LMS adaptive filter to be pipelined. Hence, the
valid data from its predecessor, say stagel, and generates design of pipelined LMS adaptive filter for EPRIV PRML
valid output data, stage— 1 will be immediately precharged 'ead channels provides an appropriate real-life application of
and hence hold a spacer. The basic idea of adding a tokeh@ Proposed design approach.
to prevent the precharge operation so that the predecessor stil¥sing the above proposed design techniques, we designed
holds the valid data that will be interpreted as a new token. &scoefficient adaptation loop in a 9-tap DLMS adaptive filter
shown in Fig. 6, after valid data propagate through stage B aifi@t is used in EPRIV PRML read channels. Because of the
reach stage C, the internal node X is 1. When stage C generdae of mature automation design tool for self-timed pipeline,
valid output data, since the request signal REQD has been the design is conducted manually at transistor level with
switched to 0, the node X will keep 1, i.e., stage B will notBM 7HP 0.1§m BiCMOS technology in the CADENCE
be precharged and hence still hold the valid output data. Agsign environment. The finite word-length configuration of
the valid data held by stage C move forward, stage C will Bbis design is as follows: the input sampled data is 6-bit;
precharged that leads to the-D switch of ACKADD. This the filter tap coefficients are 10-bit; the feedback error signal
acknowledges the host that the command of adding a tokénl10-bit; the step size is 9-bit; all the other intermediate
has been processed and host must switch the_RBQ back results (outputs of multipliers and adders) are 16-bit. The two’s
to 1 immediately. After stage C is enabled to receive new val@mplement multiplication is realized using Baugh-Wooley
data (i.e., stage C begins to hold a bubble), it will interprgaultiplier that consists of a carry-save adder array and one
the valid data still being held by stage B as a new valid datadditional carry ripple adder to merge the partial results. The
Thus the same valid data will propagate through stage C fewtput of the 9 filter taps is summed together by a carry-
the second time leading to one more token in the datapathsave adder array followed by a carry ripple adder. In order to

guarantee the datapath can always work in token-limited mode,

In the above design, the pipeline depth is changed Kye numbers of pipeline stages of all the multipliers and the
directly duplicating or removing a token in the datapatltarry-save adder array range from 6 to 8. Moreover, in order
Clearly this is not applicable to some applications such &s reduce the hardware complexity overhead, we peseial
microprocessor where the interdependence of data and instremmpletion detection in the design of multipliers and adder
tions should be maintained all the time, e.g., an instruction carray: Because of the wide bit-width in the computations,
not be simply duplicated or removed from a pipeline. In thimplementing completion detectors for all the bits in the same
context of signal processing, this approach is valid since wéeline stage will result in very high complexity overhead.
just need to preserve the functionality of the algorithm instedgveraging the regular and well-balanced datapaths in both
of the one-to-one mapping of the input-output behavior.  multipliers and adder array, we only detect a small portion of
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all the bits on the same pipeline. Furthermore, because of tl 10° e Syrhvonous. Baiog ngis120
fine pipeline granularity, the delay of a completion detecto —=— Self-timed, training length=120
and the followed handshake circuit is comparable to or eve ' ' ' '
larger than the delay one pipeline stage, which further helg
to justify the use of partial completion detection.

For the purpose of comparison, we designed a DCVS
based synchronous counterpart of the same coefficient ad¢
tation loop. The pipeline depth is 7, where each multiplie@
and the carry-save adder array are pipelined with 2 stage
and the CADENCE simulation result shows that the estimate
delay of critical path is 1ns leading to a throughput of 1 gige
samples per second. The supply voltage is setto be 1.8 V. 10 [
the self-timed implementation, with the equivalent pipelining
depth (token number), the maximum throughput is about 1.
giga samples per second. This suggests that under the sa ‘ ‘

. . . . . . . 13 135 14 14.5 15 15.5 16 16.5 17 17.5
pipeline depth, self-timed design can achieve slightly highe SNR(dB)

maximum throughput than the synchronous one, which can
be explained intuitively as follows: The synchronous and sefflg: &

Simulated performance of EPRIV PRML read channel using

. synchronous and self-timed DLMS equalizers with the training length of 120.
timed datapaths have the same latency denoted. &s the

context of synchronous design, with the pipeline depttDof

the pipeline registers cannot be perfectly evenly distributgd)iementation, we propose to use a zero-delay-overhead self-
along the synchronous pipeline leading to the critical paffineq pipeline style that supports very high speed operation.
longer thanr/D; on the other hand, the fine granularity ofye develop techniques to enable the application of zero-
self-timed pipeline can help the tokens be evenly distributefl|ay_overhead self-timed pipeline in this context and realize
along the pipeline datapath, so that the critical path of the s€lf, ime pipeline depth control. Simulations under variable
timed pipeline can closely approaetiD. In order to realize 15 rate scenarios demonstrate a significant performance
fine grain self-timed pipeline, compared with its synchronOLbsam_ It is our hope that this work will motivate the real-
counterpart, the self-timed pipeline (implemented using partigh, 5qaptive signal processing system designers to re-think
completion detection as described above) consumes Mgir design from a self-timed perspective integrally at the

transistors (19% more transistors in this case). algorithm, architecture, and circuit levels for potential system
BER (bit error rate) performance of the considered EPR'Eferformance improvement.

PRML read channel is simulated using MATLAB. Assume the

data rate uniformly changes among 4 values corresponding to
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