
1

Block-LDPC: A Practical LDPC Coding System
Design Approach

Hao Zhong,Student Member, IEEE,and Tong Zhang,Member, IEEE

Abstract— This paper presents a joint low-density parity-check
(LDPC) code-encoder-decoder design approach, called Block-
LDPC, for practical LDPC coding system implementations. The
key idea is to construct LDPC codes subject to certain hardware-
oriented constraints that ensure the effective encoder and decoder
hardware implementations. We develop a set of hardware-
oriented constraints, subject to which a semi-random approach is
used to construct Block-LDPC codes with good error-correcting
performance. Correspondingly, we develop an efficient encoding
strategy and a pipelined partially parallel Block-LDPC encoder
architecture, and a partially parallel Block-LDPC decoder ar-
chitecture. We present the estimation of Block-LDPC coding
system implementation key metrics including the throughput and
hardware complexity for both encoder and decoder. The good
error-correcting performance of Block-LDPC codes has been
demonstrated through computer simulations. With the effective
encoder/decoder design and good error-correcting performance,
Block-LDPC provides a promising vehicle for real-life LDPC
coding system implementations.

Index Terms— LDPC, Encoder, Decoder, VLSI architecture.

I. I NTRODUCTION

L OW-DENSITY parity-check (LDPC) codes have recently
attracted tremendous research interest because of their

excellent error-correcting performance and highly parallel de-
coding scheme. LDPC codes have been lately selected by
the DVB (digital video broadcasting) standard and are being
seriously considered in various real-life applications such as
magnetic storage, 10Gigabit Ethernet, and high-throughput
wireless LAN (local area network). Invented by Gallager [1]
in 1962, LDPC codes have been largely neglected by the
scientific community for several decades until the remarkable
success of Turbo codes that invoked the re-discovery of LDPC
codes, pioneered by MacKay and Neal [2] and Wiberg [3].
The past a few years experienced significant improvement on
LDPC code construction and performance analysis. For the
practical LDPC coding system implementations, it has been
well recognized that the conventional code-to-encoder/decoder
design approach, i.e., first construct the code and then develop
the encoder/decoder hardware implementations, is not appro-
priate and we mustjointly consider the code construction and
encoder/decoder hardware implementation. This is referred to
as joint LDPC coding system design. Following the theme of
joint design, we developed a design solution, calledBlock-
LDPC, for practical LDPC coding system implementations.

Manuscript received April, 2004; revised July, 2004. This work was
supported in part by SRC contract No. 2004-HJ-1192.

The authors are with the department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY.

An LDPC code is defined as the null space of anM × N
sparse parity check matrix. It can be represented by a bipartite
graph, betweenM check (or constraint) nodes in one set and
N variable (or message) nodes in the other set. An LDPC code
can be decoded by the message-passing decoding algorithm
[4], [5] that directly matches the code bipartite graph as
illustrated in Fig. 1: After variable nodes are initialized with
the channel messages, the decoding messages are iteratively
computed by all the variable nodes and check nodes and
exchanged through the edges between the neighboring nodes.

check nodes

variable nodes

channel messages

variable-to-check messages

check-to-variable messages

Fig. 1. Message-passing decoding based on LDPC code bipartite graph.

In the context of LDPC decoder hardware implementation,
the challenge is how to realize the parallel message passing.
There are two decoder implementation styles: (1) fully parallel
decoder that realizes fully parallel message passing by directly
instantiating the entire code bipartite graph into the hardware,
and (2) partially parallel decoder that realizes partially parallel
message passing by mapping a certain number of variable
nodes or check nodes to a single hardware unit in time-division
multiplexed mode. Fully parallel decoder can achieve very
high decoding throughput, e.g., a 1 Gbps decoder for 1024-
bit, rate 1/2 LDPC code has been physically demonstrated
[6]. However, due to the typically large code length (at
least few thousand bits) and widespread code bipartite graph
connectivity, fully parallel decoder suffers from prohibitive
implementation complexity, especially the routing overhead
with a large number of global routing wires. This restricts the
applications of fully parallel decoder to a very limited extent.

Aiming to achieve appropriate trade-off between implemen-
tation complexity and decoding throughput, partially parallel
decoder is of practical interest to most real-life applications
and becomes the target of most prior work on LDPC decoder
hardware design. In this context, how to realize message
passing ismore challenging because the fully parallel bi-
partite graph connectivity has to be realizedpart-by-part in
cooperation among a small-size interconnection network, a



2

reduced number of decoding hardware units, and a decoding
message storage fabric. It has been well recognized that
the code construction and partially parallel decoder hardware
design must be considered jointly to facilitate the partially
parallel LDPC decoder implementation, which is the basic
principle underlying all the recent work on LDPC decoder
design. Interestingly but not surprisingly, nearly all the recently
proposed LDPC decoder design schemes [7]–[13] employ
the essentially same joint design approach: The LDPC code
parity check matrix is ablock structuredmatrix that can be
partitioned into an array of square block matrices, where each
block matrix is either a zero matrix or a permuted identity
matrix, even though the specific decoder architectures may
largely differ among different proposed design solutions.

In the context of LDPC encoder design, the straightforward
method is to multiply the information bits with the dense
generator matrix derived from the sparse parity check matrix.
The denseness of the generator matrix and typically large
code length make this straightforward method impractical
due to very high implementation complexity. Richardson and
Urbanke [14] demonstrated that, if the parity check matrix is
approximate lower (or upper) triangular, the encoding com-
plexity can be largely reduced by performing the encoding
directly based on the sparse parity check matrix. Most recently
proposed low-complexity encoder hardware design schemes
[15]–[17] essentially follow this idea.

The above summarized state-of-the-art LDPC
encoder/decoder design practice shows that the essence
of joint design is to apply certainimplementation-oriented
constraints on LDPC code construction to facilitate the LDPC
encoder/decoder hardware implementations. A complete joint
design solution should successfully address the following
three interleaved questions:

1) What constraints should be used in LDPC code construc-
tion to facilitate the hardware implementation?

2) How to preserve the good error-correcting performance
under those code construction constraints?

3) What are the appropriate encoder and decoder architec-
tures?

The state-of-the-art LDPC coding system design solutions
in the open literature mainly have two weaknesses: (1) most
prior work addressed the above questions only in terms of
decoder design and left encoder design unconsidered, and
(2) most prior work did not address how to further optimize
the code error-correcting performance under the corresponding
implementation-oriented constraints. The authors of [8], [16],
[17] considered both encoder and decoder design for regular
LDPC codes that are typically worse than irregular ones
in terms of error-correcting performance. Hocevar [10], [15]
developed encoder/decoder design solution for irregular LDPC
codes, but the specific code construction largely relies on
hand-craft code template in lack of systematic construction
approach. Moreover, the encoder design [15] process involves
an off-line Gaussian elimination that will increase the dense-
ness of the matrix based on which the encoding is performed,
leading to higher encoding computational complexity.

The contribution of this paper is to provide a complete joint
code-encoder-decoder design approach, called Block-LDPC,

to address the above weaknesses. The Block-LDPC consists
of three integral parts: (1) a semi-random implementation-
oriented code construction approach, (2) a low-complexity
encoding process and pipelined partially parallel encoder
hardware architecture, and (3) a partially parallel decoder
hardware architecture. The entire joint design methodology
can be visualized as Fig. 2, where the appropriate LDPC code
construction plays the essential role by determining both the
error-correcting performance and feasibility/efficiency of the
encoder/decoder hardware implementations.

Code Construction

Decoding
Algorithm

Encoding
Procedure

Decoder Architecure Encoder Architecure

Perfermance-oriented
constraint

Decoder-oriented
constraint

Encoder-oriented
constraint

Fig. 2. Joint code-encoder-decoder design methodology.

Block-LDPC code is constructed subject to two types of
constraints that ensure the effective encoder and decoder hard-
ware implementations, respectively, and leave enough space
for code error-correcting performance optimization. Our com-
puter simulations show that Block-LDPC codes can achieve
good error-correcting performance with little degradation com-
pared with the codes constructed without any implementation-
oriented constraints. We develop a low-complexity pipelined
partially parallel Block-LDPC encoder architecture that can
realize high encoding throughput with rather low implemen-
tation complexity. The partially parallel decoder architecture
is relatively straightforward from the Block-LDPC code con-
struction and the decoder architecture presented in this paper
basically follows the one we presented in [11].

The remainder of this paper is organized as follows. Section
II discusses the Block-LDPC code construction. In Section III,
we present the efficient encoding strategy and its correspond-
ing encoder architecture. Section IV addresses the Block-
LDPC decoder design. Conclusions are drawn in Section V.

II. B LOCK-LDPC CODE CONSTRUCTION

A Block-LDPC code is constructed subject to two types of
constraints, referred to asimplementation-orientedconstraints
andperformance-orientedconstraints that ensure the efficient
encoder/decoder hardware implementations and good error-
correcting performance, respectively.

A. Implementation-oriented Constraints

The implementation-oriented code construction constraints
consist of a decoder-orientedconstraint and anencoder-
orientedconstraint that demand the code parity check matrix
should have the structure as shown in Fig. 3.



3

H1,1

Hm,1 Hm,n

p

p

H1,j

Hm,j

Hi,jHi,1

. . . . . .

. . . . . .

. . . . . .

. . .
. . .

. . .
. . .

. . .

. .
 .

. .
 .

g

m   p.

g=    pγ..(n-m)   p

n   p.

I1

I2

..
.

Ik

H1,n

T1

T2

Tk

. .
 .

. .
 .

Fig. 3. The parity check matrixH subject to implementation-oriented
constraints.

Decoder-oriented constraintforces the code parity check
matrix to be block structured with circular block matrices, i.e.,
the entire parity check matrix can be partitioned into an array
of p×p block matrices, each one denoted asHi,j . Each block
matrix Hi,j is either a zero matrix or a right cyclic shift of
an identity matrix. The value ofp is an important parameter
determining the decoding parallelism. Such block-structured
constraint is the key in the development of several different
partially parallel decoder architectures [7]–[12] with different
trade-offs among decoding throughput, hardware complexity,
and code structure re-configurability. As we will see in Section
IV, the decoder architecture presented in this paper is more
suitable for the applications demanding very high decoding
throughput with minimal requirement on code structure re-
configurability.

Encoder-oriented constraint forces the code parity check
matrix to be lowermacro-block triangular as shown in the
shaded region of Fig. 3. Thek identity matricesI1, I2,
· · · , Ik are calledmacro-block identity matrices. The size
of each Ii is a multiple of p and decreases as the indexi
increases from1 to k. The value ofg is also a multiple
of p (g = γ · p as shown in Fig. 3). LetT denote the
(m · p − g) × (m · p − g) square matrix containingI1, I2,
· · · , Ik, andTi denote the sub-matrix ofT that containsIi,
as illustrated in Fig. 3. Moreover, the maximum column weight
of each sub-matrixTi is 1. The encoder-oriented constraint
ensures a low-complexity pipelined partially parallel encoder
that only performs a few sparse matrix-vector multiplications
and one small dense matrix-vector multiplication. The detailed
encoding process and encoder architecture design will be
discussed in Section III.

B. Performance-Oriented Constraints

To achieve good error-correcting performance, LDPC codes
should have the following properties: (a)Large code length:
The performance improves as the code length increases, and
the code length cannot be too small (typically at least few
thousand bits); (b)Carefully designed node degree distri-
bution: The node degree distribution, particularly variable
node degree distribution, heavily affects the error-correcting
performance. Design of appropriate node degree distribution

is largely application dependent. LDPC codes with carefully
designed irregular node degree distributions typically outper-
form regular ones1; (c) Not too many small cycles: Too many
small cycles in the code bipartite graph will seriously degrade
the effectiveness of the message-passing decoding algorithm,
which will result in worse error-correcting performance; (d)
Widespread bipartite graph connectivity: Any subset of the
nodes in the LDPC code bipartite graph should have a large
number of neighbors so that the messages generated by each
node can distribute more quickly throughout the graph to
improve the decoding performance.

The performance-oriented constraints in Block-LDPC code
construction directly originate from the above last three rules
of thumb (note that the code length is typically determined
by the specific applications). The appropriate node degree
distributions are obtained by a well-known standard design
technique, i.e, density evolution [19]. To avoid too many small
cycles, we explicitly set a constraint on the girth2 of the code
bipartite graph during the code construction in a similar way
as the bit-filling approach [20].

Moreover, we note that the variable nodes with higher
degree tend to converge more quickly than those with lower
degree during the message-passing iterative decoding. This
suggests that, withfinite numberof decoding iterations, not
all the small cycles in the code bipartite graph are equally
harmful, i.e., those small cycles passing low-degree variable
nodes degrade the performance more seriously than the others.
Thus, it is intuitive that we should put more effort to prevent
small cycles from passing low-degree variable nodes. To this
end, we introduce a concept, the degree of a cycle, which is
similar to the concept of ACE proposed in [18]:

Definition 2.1: We define thedegree of a cycleto be the
sum of degrees of all variable nodes found along the path of
a cycle.
It is intuitive that the error-correcting performance can be
improved if we make the degree of the unavoidable small
cycles as large as possible, which has been verified through
our computer simulations.

The widespread graph connectivity is not explicitly used
as a code construction constraint, but we implicitly ensure the
widespread graph connectivity by incorporating randomness in
the overall code construction that can guarantee the widespread
connectivity almost for sure. Hence, based on the above
discussion, we explicitly use the following three performance-
oriented constraints in the code construction to ensure the good
error-correcting performance:

1) Node degree distribution constraint: The code construc-
tion must comply with the desired node degree distribu-
tion.

2) Girth constraint: The code bipartite graph does not con-
tain too many small cycles and is free of 4-cycle if
possible.

3) Degree of cycle constraint: It prevents the variable nodes
with lower degree from passing small cycles to further

1We note that some recent results suggest that irregular codes may be
more seriously subject to error floor and how to deal with this issue has been
discussed in [18].

2The girth is defined as the minimum cycle length in a graph.



4

preserve the effectiveness and fast convergence of the
message-passing iterative decoding algorithm.

We note that, in practice, the typical values of small cycle
length are 4 and 6, and the typical degree of low-degree
variable nodes is 2.

C. Block-LDPC Code Construction

The overall Block-LDPC code construction process consists
of three steps: (1) determine the code parity check matrix
parameters, (2) construct a group of code parity check
matrices, and (3) select one code from the code group for
real application.

Step 1: We first determine the parameters of the code parity
check matrix, including the size of code parity check matrix,
the value ofp (the size of each block matrix), node degree
distribution, the value ofg (or γ), the value ofk (the number
of macro-block identity matricesIis), and the size of each
Ii. The size of the parity check matrix should be determined
by the desired code length and code rate of the specific
application, only subject to the constraint of being multiples
of p, i.e., m · p × n · p. The value ofp is determined by
the desired encoder/decoder throughput (as we will see in
Sections III and IV, the encoder/decoder throughput directly
depends onp). The node degree distribution is obtained by
the density evolution. Strictly speaking, the selection ofg
involves the trade-off between encoding complexity reduction
and code performance optimization space, i.e., the smaller
the value ofg, the less encoding complexity but the smaller
space left for code performance optimization. Nevertheless,
our computer simulations show that even the minimum value,
i.e., g = p, seems to be enough for constructing Block-
LDPC codes with good error-correcting performance. Hence
we suggest to simply setg = p in practice, which means the
right-most block column3 always has the weight of 2.

As we will see in Section III, the value ofk affects the
trade-off between encoder throughput and code performance
optimization space, i.e., small value ofk will lead to high
encoder throughput but leave less space for code performance
optimization. Our computer simulations show that4 ∼ 6
should be the appropriate range fork. The size of eachIi

should decrease as the indexi increases from1 to k in order
to leave more code performance optimization space. Our
experience is to consecutively scale down the size by 2 with
the increase ofi.

Step 2: We apply arandom block flipping/shifting(RBFS)
method to construct a group of LDPC code parity check
matrices. The basic principle of RBFS is to randomly
construct the code parity check matrixblock-by-block(the
size of each block matrix isp × p) subject to the hardware-
oriented constraints and performance-oriented constraints.
RBFS starts from a nearly zero block structuredm · p× n · p
matrix in which the only non-zero portion is thek macro-
block identity matricesI1, · · · , Ik in the shaded region as

3We useblock columnandblock rowto represent each successivep columns
and rows in the block structured parity check matrix.

illustrated in Fig. 3. RBFS proceeds byflipping a zero block
matrix once a time in the ungrayed region to a right cyclic
shift of an identity matrix while keeping the gray region
untouched. The position of each flipped zero block matrix
and the cyclic shift value are chosenrandomlysubject to the
constraints on the degree of a cycle and girth. The number
of flipped zero block matrices on each block column and
block row is determined by the node degree distribution.
The constraints on degree of a cycle and girth are initialized
as reasonably large numbers such as 12 and 10. During the
code construction process, the constraint on degree of a cycle
or girth is relaxed (reduced) if the RBFS can not proceed
with the current value after trying certain number of random
choices. Repeating the RBFS process with different random
number seeds, we can obtain a group of Block-LDPC codes.

Step 3: From the codes obtained in step 2, we select the code
for real application based on a metric calledcycle effectmetric,
which is also known as loopiness [21]. The cycle effect is
defined as:

L =
∑

i=6,8,...

Ni · αi,

where Ni is the number of cycles with the length ofi and
α < 1 is a value chosen for the sum to converge. The code with
smaller value of cycle effectL tends to have less small cycles
and better error-correcting performance. Thus, we simply pick
the code leading to the minimum value ofL.

D. Code Examples

To demonstrate the error-correcting performance, we con-
structed two rate-1/2 and two rate-7/8 Block-LDPC codes. The
specific code parameters are given in Table I. The sizes of the
k = 5 macro-block identity matrices (I1, · · · , I5) scale down
approximately by factor of 2 as the indexi increases from
1 to 5. The two codes with the rate of 1/2 have the node
degree distribution as follows: (a) check nodes: degree of 6
⇒ 69%, degree of 7⇒ 31%; (b) variable nodes: degree of 2
⇒ 27%, degree of 3⇒ 45%, degree of 4⇒ 14%, degree of
5 ⇒ 14%. The two codes with the rate of 7/8 have the node
degree distribution as follows: (a) check nodes: degree of 24
⇒ 100%; (b) variable nodes: degree of 2⇒ 26%, degree of
3 ⇒ 55%, degree of 4⇒ 12%, degree of 5⇒ 7%.

TABLE I

PARAMETERS OF EXAMPLE CODES

rate length m n p g k MDC girth
code 1 1/2 4096 64 128 32 32 5 8 6
code 2 1/2 8192 64 128 64 64 5 8 6
code 3 7/8 4096 32 256 16 16 5 8 6
code 4 7/8 8192 32 256 32 32 5 8 6

4MDC: minimum degree of cycle

We simulate the code error-correcting performance with
the assumption that each code is modulated by BPSK and
transmitted over AWGN channel. Fig. 4 shows the simulated
BER (bit error rate) vs. SNR (signal to noise ratio). For
the purpose of comparison, we also constructed four LDPC
codes without any implementation-oriented code construction



5

constraints, i.e., settingp = 1 and g = m · p (eliminating
the lower triangular part) and then using the same code
construction process as described above. As shown in Fig. 4,
the performance degradation incurred by the implementation-
oriented constraints is not significant.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a)

B
E

R

E
b
/N

0
(dB)

rate−1/2, 4096b
Unconstrainted rate−1/2, 4096b
rate−1/2, 8192b
Unconstrainted rate−1/2, 8192b

3 3.2 3.4 3.6 3.8 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

(b)

B
E

R

E
b
/N

0
(dB)

rate−7/8, 4096b
Unconstrainted rate−7/8, 4096b
rate−7/8, 8192b
Unconstrainted rate−7/8, 8192b

Fig. 4. BER vs. SNR simulation results.

III. B LOCK-LDPC ENCODERDESIGN

Exploiting the structural properties of the Block-LDPC code
parity check matrix, we developed a low-complexity pipelined
partially parallel encoder hardware architecture. As we will
show later, thelow complexity comes from two aspects:
(1) the encoding is performed based on the sparse parity
check matrix and mainly involves a few sparse matrix-vector
multiplications and a small dense matrix-vector multiplication,
hence the overall computational complexity is not significant,
and (2) encoding carries out in a partially parallel fashion via
hardware resource sharing for further complexity reduction.
In the following, we first describe the encoding process, then
present a hardware architecture design for the sparse matrix-
vector multiplication involved in the encoding, finally show the
overall encoder architecture and the estimated implementation
metrics.

A. Encoding Process

Following the idea of encoding based on approximate lower
(or upper) triangular parity check matrix, Block-LDPC encod-
ing process has the same data flow as the algorithm described
in [14]. According to Fig. 3, we can write the Block-LDPC
code parity check matrix5 as

H =
[

A B T
C D E

]
, (1)

whereA is (m · p− g)× ((n−m) · p), B is (m · p− g)× g,
the lower triangular matrixT is (m · p− g)× (m · p− g), C
is g× ((n−m) · p), D is g× g, andE is g× (m · p− g). Let
[z1, z2, z3] be a codeword decomposed according to (1), i.e,
z1 is the information bit vector with the length of(n−m) ·p,
redundant parity check bit vectorsz2 andz3 have the length
of g andm·p−g, respectively. The encoding process performs
the computation of the vectorsz2 andz3 as follows [14]:

zT
2 = Φ−1 · (E · (T−1 · (A · zT

1 )) + C · zT
1 ),

zT
3 = T−1 · (A · zT

1 + B · zT
2 ),

whereΦ = E ·T−1 ·B + D. In the entire encoding process,
the multiplications withT−1 andΦ−1 may lead to significant
computational complexity overhead since they are most likely
dense matrices. To reduce the computational complexity of
the multiplication withΦ−1, which is linearly proportional
to g2, we mainly rely on the minimization ofg in the code
construction (note thatg is a multiple of the block sizep,
i.e., g = γ · p). As we pointed out in Section II-C, our
simulations show thatg = p (or γ = 1), is typically enough
for constructing Block-LDPC codes with good error-correcting
performance. Hence we can fixg = p (p is typically a small
number such as 16 and 32) to minimize the computational
complexity of the multiplication withΦ−1.

To reduce the computational complexity of the multiplica-
tion with T−1, we replace the direct multiplication with ak-
stage back substitution. Recall that the lower triangular matrix
T containsk macro-block identity matrices along the diagonal
as illustrated in Fig. 3 and can be written as:

T =


I1 O · · · O

T2,1 I2 · · · O
...

...
...

...
Tk,1 Tk,2 · · · Ik

 , (2)

whereI1, I2, · · · , Ik are thek macro-block identity matrices;
eachTi,j is a block structured matrix composed of an array
of p × p zero and right cyclic shifted identity matrices;O
represents zero matrix. Given the matrixT and input vector
[x1,x2, · · · ,xk]T , instead of directly computing the output
vector as

y1

y2

...
yk

 =


I1 O · · · O
T2,1 I2 · · · O
...

...
...

...
Tk,1 Tk,2 · · · Ik


−1 

x1

x2

...
xk

 , (3)

5We assume that the parity check matrix is full rank, i.e., them · p rows
are linearly independent. In our simulations, all the matrices constructed are
full rank.



6

wherexi andyi (i = 1, 2, · · · , k) arep-bit sub-vectors, we can
solve eachyi consecutively by usingk-stage back substitution
as

yi = Ti,1y1 + Ti,2y2 + · · ·+ Ti,i−1yi−1 + xi. (4)

Hence the multiplication withT−1 is replaced by a series of
sparse matrix-vector multiplications and vector additions, lead-
ing to significant reduction of the computational complexity.

B. Block Structured Matrix-Vector Multiplication

From the above discussion, we know that the overall en-
coding process mainly consists of a certain number of sparse
matrix-vector multiplications and one small dense matrix-
vector multiplication. The complexity and speed metrics of
the encoder is largely determined by how to implement these
sparse matrix-vector multiplications. We note that each sparse
matrix involved in the multiplication is block structured and
the corresponding matrix-vector multiplications can be written
as:

U1,1 U1,2 . . . U1,s

U2,1 U2,2 . . . U1,s

...
... . . .

...
Ut,1 Ut,2 . . . Ut,s




x1

x2

...
xs

 =


y1

y2

...
yt

 , (5)

where eachp× p block matrixUi,j is either a zero matrix or
a right cyclic shift of an identity matrix, and eachxj andyi

arep× 1 sub-vectors.
We can leverage the circular structure of all the non-zero

block matrices to develop efficient matrix-vector multiplication
hardware architecture. Define a setP = {(i, j)|∀ Ui,j is non-
zero.}. Since each non-zeroUi,j is a right cyclic shift of an
identity matrix, we haveyi =

∑
(i,j)∈P xj [↑ di,j ], wheredi,j

is the right cyclic shift value ofUi,j andxj [↑ di,j ] represents
cyclic shifting up the sub-vectorxj by di,j positions. Thus the
matrix-vector multiplication reduces to a set of vector XORs
(modulo 2 summations){yi =

∑
(i,j)∈P xj [↑ di,j ], 1 ≤ i ≤

t}. Although the direct parallel implementation of theses vec-
tor XORs can easily achieve extremely high speed, such high
speed is not necessary for most applications, and appropriate
trade-off between implementation complexity and speed in
encoder design is desirable.

Such a trade-off can be realized by using aninter-vector-
parallel/intra-vector-serialcomputational style: compute all
the t sub-vectorsy1,y2, · · · ,yt in parallel, but only 1 out of
the p bits in each sub-vector is computed at once. Since the
value ofp is typically small, e.g., 16 and 32, the overall matrix-
vector multiplication can still achieve high speed. Clearly,
because of the inter-vector-serial operation, the computations
of all the p bits in the same sub-vectoryi can share the same
hardware resource in a time-division multiplexed mode for
implementation complexity reduction.

To computeyi =
∑

(i,j)∈P xj [↑ di,j ] bit by bit consecu-
tively, we only need to retrieve each involved sub-vectorxj

bit by bit consecutively. Hence, it can be easily conceived
that, in the hardware implementation, we can store each sub-
vectorxj in an individual register file and use a binary counter
to generate the access address, where the binary counter is

initialized to the value ofdi,j . However, since eachxj may
participate in the computations of more than oneyi’s and
the correspondingdi,j ’s have different values, in order to
support the parallel computation of allyi’s, we have to use
either multi-port register file or several single-port register
file blocks for the storage of eachxj , both of which will
increase the implementation complexity. In the following, we
will present a method to further trade the speed for the storage
complexity reduction and present the corresponding matrix-
vector multiplication hardware architecture.

1) Storage Complexity Reduction Via Task Scheduling:
With the goal of reducing implementation complexity, we
store each input sub-vectorxj only in one p-bit single-
port register file associated with one binary counter for
address generation. Hence each input sub-vector at most can
participate in the computation of one output sub-vector at
once. Nevertheless, since the weight of each block column
in the block structured matrix might be larger than one, each
input sub-vector may participate in the computation of more
than one output sub-vectors. Therefore, instead of computing
all the t output sub-vectors in fully parallel, we have to
schedule the computations in apartially parallel fashion
to ensure each input sub-vector at once participate in the
computations of at most one output sub-vector, which can be
interpreted as the following task scheduling problem:

Task Scheduling Problem: Schedule the computations of
all the t output sub-vectors intol time slots subject to two
constraints: (1) If the computations of two output sub-vectors
need the same input sub-vector, then we must compute
these two output sub-vectors in different time slots; (2) The
value ofl should be minimized in order to maximize the speed.

To solve the above scheduling problem, we first represent
the block structured matrixU with a graphG as follows: (1)
represent each block row as a node in the graph, and (2) if two
block rows have non-zero block matrices in the same block
column position, then connect the two corresponding nodes
with an edge. Clearly, two nodes connected with an edge in
the graphG indicate that the computations of the two output
sub-vectors corresponding to the two block rows share the
same input sub-vector, and hence cannot be performed in the
same time slot. If we use different color to represent different
time slot, the above task scheduling problem can be directly
transformed into the following classic graph coloring problem:

Coloring Problem: Color the nodes in the graphG with the
minimum number of colors such that adjacent nodes have
different colors.

There are many well established algorithms that can effec-
tively solve the above coloring problem. Interested readers are
referred to [22]. Given the solution to this coloring problem,
we simply schedule the computations of the output sub-vectors
corresponding to the block rows with the same color in the
same time slot. In this way, the implementation complexity
can be reduced by storing each input sub-vector in onep-bit
single-port register file.



7

(b)

x1
x2
x3
x4
x5
x6
x7

y1

y2

y3

y4

y5

=

U1    0   U2  0   U3   0   0

0    U7   0   U8   0    0    0
U9   0   U10  0   U11  U12   U13

 0   U14  0    0    0   U15   0

U
x

x1,1
x2,1
x3,1

x1,2
x2,2
x3,2

x1,3
x2,3
x3,3

x1,4
x2,4
x3,4

x1,5
x2,5
x3,5

x1,6
x2,6
x3,6

x1,7
x2,7
x3,7

y1,1
y2,1
y3,1

y1,2
y2,2
y3,2

y1,3
y2,3
y3,3

y1,4
y2,4
y3,4

y1,5
y2,5
y3,5

y

=

(a)

0  1  0
0  0  1
1  0  0

0  0  0
0  0  0
0  0  0

0  0  1
1 0  0
0  1 0

0  0  0
0  0  0
0  0  0

1  0  0
0  1  0
0  0  1

0  0  0
0  0  0
0  0  0

0  0  0
0  0  0
0  0  0

0  0  1
1  0  0
0  1 0

0  0  0
0  0  0
0  0  0

0  0  0
0  0  0
0  0  0

0  1  0
0  0  1
1  0  0

0  0  0
0  0  0
0  0  0

0  0  0
0  0  0
0  0  0

0  0  1
1  0  0
0  1  0

0  0  0
0  0  0
0  0  0

1  0  0
0  1  0
0  0  1

0  0  0
0  0  0
0  0  0

0  1  0
0  0  1
1  0  0

0  0  0
0  0  0
0  0  0

0  0  0
0  0  0
0  0  0

0  0  0
0  0  0
0  0  0

1  0  0
0  1  0
0  0  1

0  0  0
0  0  0
0  0  0

0 1  0
0  0  1
1  0  0

0  0  0
0  0  0
0  0  0

1  0  0
0  1  0
0  0  1

0  0 1
1  0  0
0  1  0

0 1  0
0  0  1
1  0  0

0  0  0
0  0  0
0  0  0

0  0  1
1  0  0
0  1  0

0  0  0
0  0  0
0  0  0

0  0  0
0  0  0
0  0  0

0  0  0
0  0  0
0  0  0

0  1  0
0  0  1
1  0  0

0  0  0
0  0  0
0  0  0

 U4   0   0   U5   0    0   U6

Fig. 5. Block structured matrix-vector multiplication example.

Example 3.1:Let’s consider the multiplication between
the block structured matrixU and vectorx as illustrated
in Fig. 5, where all the fifteen non-zero block matrices,
U1,U2, · · · ,U15, are right cyclic shift of an identity matrix.
The block structured matrixU is represented by a graph for
which three different colors are enough to solve the coloring
problem, as illustrated in Fig. 6. Thus, we compute the five
output sub-vectors in three time slots: in the first time slot,
we computey1 and y3 bit by bit, which involves five input
sub-vectorsx1,x2, · · · ,x5. Similarly, we compute{y2,y5}
and{y4} in the second and third time slot, respectively.

red

yellow

green

red

yellow

block
row 1

block
row 2

block
row 3

block
row 5

block
row 4

Fig. 6. The graph with the solution to the coloring problem.

2) Matrix-Vector Multiplication Hardware Architecture:
Fig. 7 shows the proposed hardware architecture to implement
the sparse block structured matrix-vector multiplication in
the partially parallel style as described in the above. Each
input sub-vectorxj and output sub-vectoryi are stored in
register files Xj and Yi, respectively. The read address of each
register file Xj is generated by a binary counter RAGj . The
write address of all the register files Yi’s is generated by a
binary counter WAG. The output of Xj is routed through the
hardwired interconnection network to the input of the XOR
tree XTi if xj participates in the computation ofyi.

Suppose the size of each block matrix isp×p andl different
colors are used in the task scheduling, we arrange all thet
output sub-vectors intol groups, and the sub-vectors in the
same group are computed bit-by-bit in the samep clock cycles.

Y1

Yt

read address
generators

input register
file blocks

hardwired
interconnections

XOR
trees

output register
file blocks

. .
 .

RAG1

RAGs

(p bits)

(p bits)

(p bits)

(p bits)

1

...
XTt

1 bit

1

r1

...

XT1

1 bit1 bit

1 bit

1 bit

1 bit
1 bit

1 bit

log2 p bits

. .
 .

. .
 .

. .
 .

rt

X1

Xs

log2 p bits

WAG

write address
generator

Fig. 7. Hardware architecture for block structured sparse matrix-vector
multiplication.

The entire matrix-vector multiplication requiresl · p clock
cycles. At the beginning of eachp clock cycles, we have:

• If sub-vectorxj participates in the computation of sub-
vector yi in the following p clock cycles, the binary
counter RAGj is initialized to the cyclic shift valuedi,j ;

• If sub-vectorxj does not participate in any computation
in the following p clock cycles, the register file Xj will
be disabled;

• The binary counter WAG is always initialized to 0;
• The register file Yi will be disabled if sub-vectoryi is

not computed in the followingp clock cycles.

C. Overall Encoder Structure

Fig. 8 shows the structure of the pipelined partially par-
allel Block-LDPC encoder that mainly contains 7 function
blocks: The four function blocks A, B, C, and E realize the
multiplications with the block structured sparse matricesA,
B, C, and E, respectively. These four function blocks are
directly designed as described in section III-B. The function
blockΦ realizes the multiplication with the small dense matrix



8

TABLE II

THE NUMBER OF REGISTERS REQUIRED IN THE ENCODER.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Block A output 2(m · p − g) 2(m · p − g) 2(m · p − g) 2(m · p − g) 2(m · p − g)
Block B output - - - - 2(m · p − g)
Block C output 2g 2g 2g - -
Block E output - - 2g - -
Block Φ output - - - 2g 2g
Block T1 output - 2(m · p − g) - - -

Total 2m · p 4m · p − 2g 2m · p + 2g 2m · p 4m · p − 2g

infomation bits

Function Block  A

Function Block  T2

ΦFunction Block

Function Block  E

Function Block  T1

Function Block  C

addition

addition

Function Block  B

pipeline

 parity bits z3

(XOR)

(XOR)

parity bits z2

Fig. 8. Pipelined Block-LDPC encoder structure.

Φ−1. The two identical function blocks T1 and T2 realize the
multiplication withT−1 by using thek-stage back substitution
as described in section III-A. Each dashed horizontal line in
Fig. 8 represents one pipeline stage. Fig. 9 shows the structure
of function blocks T1 and T2, where each sub-block Ti,j

performs the multiplication with the sub-matrixTi,j in the
lower triangular matrixT. Since all the sub-matricesTi,j

are also block structured, we can again use the architecture
described in section III-B for each multiplication.

x1

T3,1

T3,2

Tk,1

Tk,2

Tk,k-1

. . .

. .
 .

. . .

. . .

. .
 .

y1

x2 xk

y2 y3
yk

y1 y1 y1 y1

y2
y2

y2

yk

T2,1

x3

. .
 .y3

Fig. 9. Structure of function blocks T1 and T2.

Pipelining is realized by the input/output register file banks
in each sparse matrix-vector multiplication block as illustrated

in Fig. 7. Each sparse matrix-vector multiplication block
requires two sets of register files to store the input vector,
i.e., the two sets of input register files alternatively receive
the output from the preceding pipeline stage and provide the
data for the current computation. The register file complexity
in terms of number of bits needed for each pipeline stage are
listed in the Table II.

Let lmax denote the maximum number of colors used in the
task scheduling in all the sparse matrix-vector multiplications.
Except the pipeline stages for function blocksΦ, T1 and T2,
any other pipeline stage at most takeslmax · p clock cycles to
complete the present computation. Because of the small size
(i.e.,p×p) of the dense matrixΦ−1, it is feasible to implement
the function blockΦ (multiplication withΦ−1) in fully paral-
lel, i.e., implemented as ap-bit input p-bit output XOR array.
The latency of such fully parallel implementation of function
block Φ will be much less thanlmax · p clock cycles. As
for the function block T1 and T2, since the maximum collum
weight of each sub-matrixT i,j is 1 (according to the encoder-
oriented constraint as described in section II-C), each of these
sub-matrix and vector multiplications can be performed in 1
time slot, i.e.p clock cycles. Thus each of T1 and T2 requires
(k − 1) · p clock cycles to complete the present computation.
Therefore, the pipeline stage latency of this pipelined encoder
is max(lmax, k − 1) · p clock cycles, i.e., each pipeline stage
takes max(lmax, k−1) ·p clock cycles to complete the present
computation and moves the output to the next pipeline stage.
Let fE denote the clock frequency of the encoder, the encoding
throughout would be(n−m) ·p ·fE/(p ·max(lmax, k−1)) =
(n−m) · fE/max(lmax, k − 1).

To estimate the encoder logic gate complexity in terms of
the number of 2-input NAND gates, we count each 2-input
XOR gate as three 2-input NAND gates and eachz-bit binary
counter as8z 2-input NAND gates. Let|P| denote the total
number of nonzero blocks in the parity check matrix. Letθ
denote the ratio of the number of nonzero blocks in the lower
triangular sub-matrixT divided by|P|. For the function block
A, B, C, E, T1 and T2, we need approximately(1+θ) ·(|P|−
m) XOR gates and(1 + θ) · |P| counters in total. Thus the
number of NAND gates is about3(1+θ)·(|P|−m)+8dlog2 pe·
(1 + θ) · |P| ≈ (1 + θ) · |P| · (3 + 8dlog2 pe). We assume the
function blockΦ consumes16g2 XOR gates, i.e.12g2 NAND
gates. Furthermore, we need approximately|P| · dlog2 pe bits
of ROM to store the initialization values for all the counters.
We summarize the estimation of the key metrics of the encoder
in the Table III.



9

TABLE III

THE SPEED AND COMPLEXITY ESTIMATION OF THE ENCODER

User Data Rate ROM (bits) Register Storage (bits) Number of Logic Gates
(n−m)·fE

max(lmax,k−1)
|P| · dlog2 pe 14m · p − 2g (1 + θ) · |P| · (3 + 8dlog2 pe) + 1

2
g2

IV. LDPC DECODERDESIGN

In this section, we briefly present the partially parallel
Block-LDPC code decoder architecture and its implementation
metrics estimation. Fig. 10 shows the decoder architecture for
a Block-LDPC code with anm · p×n · p parity check matrix.
It containsm check node computation units (CNUs) andn
variable node computation units (VNUs), where each CNUi

and VNUj perform the computations, respectively, for thep
rows (or check nodes) andp columns (or variable nodes)
in the same block row and block column in time-division
multiplexing fashion. It contains2·n channel message memory
blocks (CMMBs), each CMMB stores the messages associated
with p columns in the same block column. Two sets ofn
CMMBs alternatively store the channel messages for current
decoding and receive the channel messages of the next block
to be decoded.

Let Hi,j denote the block matrix with the position(i, j)
in the Block-LDPC code parity check matrix, and setP =
{(i, j)|∀ Hi,j is non-zero.}. The total number of non-zero
block matrices in the parity check matrix is|P|. The |P| ×
p decoding messages are stored in|P| decoding message
memory blocks (DMMBs), each DMMBi,j (where(i, j) ∈ P)
stores thep messages associated with thep 1’s in Hi,j .
The decoder containsn p-bit hard decision memory blocks
(HDMBs) to store the hard decision bits. The access address
of each CMMBj , HDMBj or DMMBi,j is generated by an
individual binary counter. Each CNUi connects with all the
DMMB i,js with the same indexi. Each VNUj connects with
all the the CMMBj , HDMBj and DMMBi,j with the same
index j.

|P| + 3n Memory Blocks

VNUn

CNUmCNUiCNU1

VNUi
VNU1

. . . . . .

. . . . . .

Fig. 10. Decoder architecture.

The decoding process consists of an initialization phase and
an iterative decoding phase as described in the following.
Initialization: Upon the received code block data, CMMBs
are initialized to store the channel messages associated with
all the variable node. The content of each CMMBj is copied to

all the DMMBi,js with the same indexj as the initial variable-
to-check messages.
Iterative Decoding: Each decoding iteration is completed
in 2p clock cycles, and the decoder works in check node
processing mode and variable node processing mode during
the 1st and 2ndp clock cycles, respectively.

(1) During thecheck node processing, the decoder per-
forms the computations of all the check nodes and realizes
the message passing between neighboring nodes in the code
bipartite graph. In each clock cycle, each CNU retrieves
one variable-to-check message from each connected DMMB,
convert it to one check-to-variable message, and send the
check-to-variable message back to the same DMMB. The
memory access address of each DMMBi,j is generated by a
binary counter that is initialized to the right cyclic shift value
di,j of the non-zero block matrixHi,j at the beginning of
check node processing.

(2) During thevariable node processing, the decoder per-
forms the computations of all the variable nodes. In each clock
cycle, each VNU retrieves one check-to-variable message from
each connected DMMB and one channel message from the
connected CMMB, convert each check-to-variable message
to variable-to-check message, and send it back to the same
DMMB. The memory access addresses of each memory block
are generated by the counters that are set to zero at the
beginning of variable node processing.

The number of node computation units (CNU and VNU)
in this partially parallel decoder is reduced by the factorp
compared with its fully parallel counterpart. This partially
parallel decoder is well suited for high speed hardware imple-
mentations because of the regular structure and simple control
logic.

Given each decoding message uniformly quantized toq
bits6, we estimate that each CNU and VNU require320 ·q and
250 · q gates (in terms of 2-input NAND gate), respectively.
The total sizes of DMMBs, CMMBs, and HDMBs are|P|·p·q
bits,2n·p·q, andn·p bits, respectively. LetfD denote the clock
frequency of the decoder and the number of iterations isD, the
decoding throughput can be up to(n−m)·fD

2D . We summarize
the estimated key metrics of the decoder in Table IV.

TABLE IV

THE SPEED AND COMPLEXITY ESTIMATION OF THE DECODER.

User Data Rate Memory (bits) # of Gates
(n−m)·fD

2D
(2n + |P|) · p · q + n · p (320m + 250n) · q

6We note that recent results suggest that uniform quantization with too
small value ofq may lead to error floor in the decoding. Interested readers
are referred to [23].



10

V. CONCLUSIONS

This paper presented a joint code-encoder-decoder de-
sign solution, called Block-LDPC, for practical LDPC cod-
ing system implementations. The key is to construct LDPC
codes subject to certain implementation-oriented constraints
and performance-oriented constraints, simultaneously. We pre-
sented the code construction constraints and developed a semi-
random approach for Block-LDPC code construction. Com-
puter simulation showed that the Block-LDPC codes have in-
significant error-correcting performance degradation compared
with LDPC codes constructed without any implementation-
oriented constraints. Leveraging the implementation-oriented
constraints, we developed a pipelined partially parallel Block-
LDPC code encoder and a partially parallel Block-LDPC code
decoder. We believe the Block-LDPC design approach will
provide communication system designers an unique opportu-
nity to explore the attractive merits of LDPC codes in many
real-life applications.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,”IRE Transactions on
Information Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes,”Electronics Letters, vol. 32, pp.
1645–1646, Aug. 1996.

[3] N. Wiberg, “Codes and decoding on general graphs,” Ph.D.
Dissertation, Linkoping University, Sweden, 1996. available at
http://www.essrl.wustl.edu/˜jao/itrg2000/.

[4] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, pp. 399–
431, Mar. 1999.

[5] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,”IEEE Transactions on Information Theory,
vol. 47, pp. 498–519, Feb. 2001.

[6] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,”IEEE Journal of Solid-State
Circuits, vol. 37, no. 3, pp. 404–412, March 2002.

[7] J. Thorpe, “Low-density parity-check (LDPC) codes
constructed from protographs,” inIPN Progress Report,
http://ipnpr.jpl.nasa.gov/tmo/progressreport/42-154/154C.pdf, Aug.
2003, pp. 42–154.

[8] S. Olcer, “Decoder architecture for array-code-based LDPC codes,” in
Global Telecommunications Conference, Dec. 2003, pp. 2046 – 2050.

[9] M. M. Mansour and N. R. Shanbhag, “Architecture-aware low-density
parity-check codes,” inIEEE International Symposium on Circuits and
Systems (ISCAS), Bangkok, Thailand, May 2003, pp. 57–60.

[10] D. E. Hocevar, “LDPC code construction with flexible hardware
implementation,” inIEEE International Conference on Communications,
2003, pp. 2708 –2712.

[11] H. Zhong and T. Zhang, “Design of VLSI implementation-oriented
LDPC codes,” inIEEE Semiannual Vehicular Technology Conference
(VTC), Oct. 2003.

[12] Flarion Technologies, “Methods and Apparatus for Decoding LDPC
Codes,” US patent number: 6,633,856 B2, Oct. 2003.

[13] Jose M. F. Moura, J. Lu, , and H. Zhang, “Structured low-density parity-
check codes,”IEEE signal processing magazine, pp. 42–55, Jan 2004.

[14] T. Richardson and R. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Transactions on Information Theory, vol.
47, no. 2, pp. 638–656, Feb. 2001.

[15] D.E Hocevar, “Efficient encoding for a family of quasi-cyclic LDPC
codes,”Global Telecommunications Conference, vol. 7, pp. 3996 – 4000,
2003.

[16] E. Eleftheriou and S. Olcer, “Low-density parity-check codes for
digital subscriber lines,” inProc. IEEE International Conference on
Communications, 2002, pp. 1752–1757.

[17] T. Zhang and K. K. Parhi, “Joint (3, k)-regular LDPC code and
decoder/encoder design,”IEEE Transactions on Signal Processing, vol.
52, no. 4, pp. 1065-1079, April 2004.

[18] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of
irregular LDPC codes with low error floors,” inProc. IEEE International
Conference on Communications, 2003, pp. 3125–3129.

[19] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching low-density parity-check codes,”IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[20] J. Campello and D. S. Modha, “Extended bit-filling and LDPC code
design,” inProc. IEEE Global Telecommunications Conference, 2001,
pp. 985–989.

[21] J. Thorpe, “Design of LDPC graphs for hardware implementation,” in
Proc. IEEE International Symposium on Information Theory, 2002, pp.
483–483.

[22] The Boost Graph Library, http://www.boost.org/libs/graph/.
[23] D. Declercq and F. Verdier, “Optimization of LDPC finite precision

belief propagation decoding with discrete density evolution,”3rd
International Symposium on Turbo Codes and Related Topics Brest,
France, September 2003.


