Block-LDPC: A Practical LDPC Coding System
Design Approach

Hao Zhong,Student Member, IEEEBNd Tong ZhangMember, IEEE

Abstract—This paper presents a joint low-density parity-check An LDPC code is defined as the null space of @hx N
(LDPC) code-encoder-decoder design approach, called Block- sparse parity check matrix. It can be represented by a bipartite
LDPC, for practical LDPC coding system implementations. The graph, betweerd/ check (or constraint) nodes in one set and

key idea is to construct LDPC codes subject to certain hardware- ; .
oriented constraints that ensure the effective encoder and decoder N variable (or message) nodes in the other set. An LDPC code

hardware implementations. We develop a set of hardware- can be decoded by the message-passing decoding algorithm
oriented constraints, subject to which a semi-random approachis [4], [5] that directly matches the code bipartite graph as
used to construct Block-LDPC codes with good error-correcting jllustrated in Fig. 1: After variable nodes are initialized with
performance. Correspondingly, we develop an efficient encoding the channel messages, the decoding messages are iteratively

strategy and a pipelined partially parallel Block-LDPC encoder .
architecture, and a partially parallel Block-LDPC decoder ar- computed by all the variable nodes and check nodes and

chitecture. We present the estimation of Block-LDPC coding €xchanged through the edges between the neighboring nodes.
system implementation key metrics including the throughput and

hardware complexity for both encoder and decoder. The good

error-correcting performance of Block-LDPC codes has been check nodes

demonstrated through computer simulations. With the effective
encoder/decoder design and good error-correcting performance,
Block-LDPC provides a promising vehicle for real-life LDPC
coding system implementations.

\(iheck»to»vari able messages

\vari able-to-check messages
Index Terms—LDPC, Encoder, Decoder, VLSI architecture.

variable nodes
I. INTRODUCTION channel messages

OW-DENSITY parity-check (LDPC) codes have recentlfig. 1. Message-passing decoding based on LDPC code bipartite graph.
attracted tremendous research interest because of their

excellent error-correcting performance and highly parallel de-|n the context of LDPC decoder hardware implementation,
coding scheme. LDPC codes have been lately selected th¥ challenge is how to realize the parallel message passing.
the DVB (digital video broadcasting) standard and are beinthere are two decoder implementation styles: (1) fully parallel
seriously considered in various real-life applications such ggcoder that realizes fully parallel message passing by directly
magnetic storage, 10Gigabit Ethernet, and high-throughprstantiating the entire code bipartite graph into the hardware,
wireless LAN (local area network). Invented by Gallager [1hnd (2) partially parallel decoder that realizes partially parallel
in 1962, LDPC codes have been largely neglected by theessage passing by mapping a certain number of variable
scientific community for several decades until the remarkald@des or check nodes to a single hardware unit in time-division
success of Turbo codes that invoked the re-discovery of LDRfultiplexed mode. Fully parallel decoder can achieve very
codes, pioneered by MacKay and Neal [2] and Wiberg [3fhigh decoding throughput, e.g., a 1 Gbps decoder for 1024-
The past a few years experienced significant improvement gif, rate 1/2 LDPC code has been physically demonstrated
LDPC code construction and performance analysis. For t{g}. However, due to the typically large code length (at
practical LDPC coding system implementations, it has be@shst few thousand bits) and widespread code bipartite graph
well recognized that the conventional code-to-encoder/deco@ehnectivity, fully parallel decoder suffers from prohibitive
design approach, i.e., first construct the code and then devejl@plementation complexity, especially the routing overhead
the encoder/decoder hardware implementations, is not appigh a large number of global routing wires. This restricts the
priate and we mugbintly consider the code construction andpplications of fully parallel decoder to a very limited extent.
encoder/decoder hardware implementation. This is referred tCA|m|ng to achieve appropriate trade-off between imp|emen-
asjoint LDPC coding system desigRollowing the theme of tation complexity and decoding throughput, partially parallel
joint design, we developed a design solution, calkidck- decoder is of practical interest to most real-life applications
LDPC, for practical LDPC coding system implementations.and becomes the target of most prior work on LDPC decoder
hardware design. In this context, how to realize message

Manuscript received April, 2004; revised July, 2004. This work Waﬁassing ismore challenging because the fuIIy parallel bi-
supported in part by SRC contract No. 2004-HJ-1192.

The authors are with the department of Electrical, Computer and SysteR@rtite gr.aph connectivity has_to k_)e reallzpdrt_-by-part n
Engineering, Rensselaer Polytechnic Institute, Troy, NY. cooperation among a small-size interconnection network, a



reduced number of decoding hardware units, and a decodtogaddress the above weaknesses. The Block-LDPC consists
message storage fabric. It has been well recognized tlbétthree integral parts: (1) a semi-random implementation-
the code construction and partially parallel decoder hardwaygented code construction approach, (2) a low-complexity
design must be considered jointly to facilitate the partiallgncoding process and pipelined partially parallel encoder
parallel LDPC decoder implementation, which is the baskardware architecture, and (3) a partially parallel decoder
principle underlying all the recent work on LDPC decodenardware architecture. The entire joint design methodology
design. Interestingly but not surprisingly, nearly all the recentlyan be visualized as Fig. 2, where the appropriate LDPC code
proposed LDPC decoder design schemes [7]-[13] emplognstruction plays the essential role by determining both the
the essentially same joint design approach: The LDPC codeor-correcting performance and feasibility/efficiency of the
parity check matrix is élock structuredmatrix that can be encoder/decoder hardware implementations.

partitioned into an array of square block matrices, where each

block matrix is either a zero matrix or a permuted identity Perfermanc-orinted

matrix, even though the specific decoder architectures may ’

largely differ among different proposed design solutions.

Code Construction

In the context of LDPC encoder design, the straightforward
method is to multiply the information bits with the dense Decoder-oriented Encoder-oriented
generator matrix derived from the sparse parity check matrix. constraing constraint
The denseness of the generator matrix and typically large ‘
code length make this straightforward method impractical Decoding Encoding
due to very high implementation complexity. Richardson and Algorithm f Procedure
Urbanke [14] demonstrated that, if the parity check matrix is v v
approximate lower (or upper) triangular, the encoding com-— | Decoder Architecure | | Encoder Architecure 1

plexity can be largely reduced by performing the encoding
directly based on the sparse parity check matrix. Most recently _ _
proposed low-complexity encoder hardware design schenfé 2- Joint code-encoder-decoder design methodology.

[15]-17] essentially follow this idea. . .
The above  summarized  state-of-the-art  LDPC Block-LDPC code is constructed subject to two types of

encoder/decoder design practice shows that the esse%%rastr.aints that ensure the eﬁegtive encoder and decoder hard-
of joint design is to apply certaiimplementation-oriented ware |mplementat|on§, respectively, andilegve.enough space
constraints on LDPC code construction to facilitate the LDPE’r cod_e error_-correctmg performance optimization. Our com-
encoder/decoder hardware implementations. A complete jom{ter simulations _ShOW that BlOCk'I‘.DP.C codes can achieve
design solution should successfully address the followirggzOd error-correcting performance W'th little de_gradatlon com-
three interleaved questions: pared with the codes constructed without any implementation-

1) What constraints should be used in LDPC code constrLPJ-iented constraints. We develop a low-complexity pipelined
tion to facilitate the hardware implementation? partially parallel Block-LDPC encoder architecture that can

2) How to preserve the good error-correcting performam%galize high encoding throughput with rather low implemen-
under those code construction constraints? ation complexity. The partially parallel decoder architecture

3) What are the appropriate encoder and decoder architiesc-relatively straightforward from the Block-LDPC code con-
tures? struction and the decoder architecture presented in this paper

The state-of-the-art LDPC coding system design solutior?gsmauy fol!ows the one we p_resenteq in [11]. .
The remainder of this paper is organized as follows. Section

in the open literature mainly have two weaknesses: (1) qut iscusses the Block-LDPC code construction. In Section I,

prior work addressed the above questions only in terms we present the efficient encoding strategy and its correspond-

decoder design and left encoder design unconsidered, ?r?éj encoder architecture. Section IV addresses the Block-

(2) most prior work d.'d not address how to further OptlmlzEDPC decoder design. Conclusions are drawn in Section V.
the code error-correcting performance under the corresponding

implementation-oriented constraints. The authors of [8], [16], Il. BLOCK-LDPC CoDE CONSTRUCTION

[17] considered both encoder and decoder design for regular . .
LDPC codes that are typically worse than irregular onesA Block-LDPC code is constructed subject to two types of

in terms of error-correcting performance. Hocevar [10], [1 onstraints, referred to asplementation-orientedonstraints

developed encoder/decoder design solution for irregular LDP@dPerformance-orientedonstraints that ensure the efficient
codes, but the specific code construction largely relies Ghcoder/decoder hardware implementations and good error-
hand-craft code template in lack of systematic constructiGq™eCting performance, respectively.
approach. Moreover, the encoder design [15] process involves ) ) )
an off-line Gaussian elimination that will increase the densé: mplementation-oriented Constraints
ness of the matrix based on which the encoding is performed,The implementation-oriented code construction constraints
leading to higher encoding computational complexity. consist of adecoder-orientedconstraint and anencoder-

The contribution of this paper is to provide a complete joirdriented constraint that demand the code parity check matrix
code-encoder-decoder design approach, called Block-LDPBpuld have the structure as shown in Fig. 3.



() -p o is largely application dependent. LDPC codes with carefully
designed irregular node degree distributions typically outper-
form regular one’s (c) Not too many small cycleJoo many
' small cycles in the code bipartite graph will seriously degrade
the effectiveness of the message-passing decoding algorithm,
0o 2 }TZ which will result in worse error-correcting performance; (d)
{

he]
-«
=
=
)
—

i

Widespread bipartite graph connectivitAny subset of the
nodes in the LDPC code bipartite graph should have a large
number of neighbors so that the messages generated by each
node can distribute more quickly throughout the graph to
improve the decoding performance.

The performance-oriented constraints in Block-LDPC code
Fig. 3. The parity check matribH subject to implementation-oriented construction directly originate from the. aboye last three 'f“'es
constraints. of thumb (note that the code length is typically determined

by the specific applications). The appropriate node degree
distributions are obtained by a well-known standard design

Decoder-oriented constraintforces the code parity checktechnique, i.e, density evolution [19]. To avoid too many small
matrix to be block structured with circular block matrices, i.egycles, we explicitly set a constraint on the giftbf the code
the entire parity check matrix can be partitioned into an arrdpjpartite graph during the code construction in a similar way
of p x p block matrices, each one denotedfds;. Each block as the bit-filling approach [20].
matrix H; ; is either a zero matrix or a right cyclic shift of Moreover, we note that the variable nodes with higher
an identity matrix. The value of is an important parameterdegree tend to converge more quickly than those with lower
determining the decoding parallelism. Such block-structurglggree during the message-passing iterative decoding. This
constraint is the key in the development of several differeatiggests that, witlinite humberof decoding iterations, not
partially parallel decoder architectures [7]-[12] with differenall the small cycles in the code bipartite graph are equally
trade-offs among decoding throughput, hardware complexityarmful, i.e., those small cycles passing low-degree variable
and code structure re-configurability. As we will see in Sectiomdes degrade the performance more seriously than the others.
IV, the decoder architecture presented in this paper is mdrbus, it is intuitive that we should put more effort to prevent
suitable for the applications demanding very high decodirggnall cycles from passing low-degree variable nodes. To this
throughput with minimal requirement on code structure rend, we introduce a concept, the degree of a cycle, which is
configurability. similar to the concept of ACE proposed in [18]:

Encoder-oriented constraint forces the code parity check Definition 2.1: We define thedegree of a cycleo be the
matrix to be lowermacro-blocktriangular as shown in the sum of degrees of all variable nodes found along the path of
shaded region of Fig. 3. Thé identity matricesI;, I, a cycle.

..., I are calledmacro-block identity matricesThe size It is intuitive that the error-correcting performance can be
of eachI, is a multiple ofp and decreases as the index improved if we make the degree of the unavoidable small
increases froml to k. The value ofg is also a multiple cycles as large as possible, which has been verified through
of p (¢ = v-p as shown in Fig. 3). Lefl denote the our computer simulations.
(m-p—g) x (m-p— g) square matrix containind;, I, The widespread graph connectivity is not explicitly used
..., I;, and T; denote the sub-matrix of that containsl;, as a code construction constraint, but we implicitly ensure the
as illustrated in Fig. 3. Moreover, the maximum column weighvidespread graph connectivity by incorporating randomness in
of each sub-matrixT’; is 1. The encoder-oriented constrainthe overall code construction that can guarantee the widespread
ensures a low-complexity pipelined partially parallel encodepnnectivity almost for sure. Hence, based on the above
that only performs a few sparse matrix-vector multiplicationdiscussion, we explicitly use the following three performance-
and one small dense matrix-vector multiplication. The detailgdiented constraints in the code construction to ensure the good
encoding process and encoder architecture design will @eor-correcting performance:
discussed in Section Il 1) Node degree distribution constrainthe code construc-
tion must comply with the desired node degree distribu-
tion.
2) Girth constraint The code bipartite graph does not con-

To achieve good error-correcting performance, LDPC codes tain too many small cycles and is free of 4-cycle if
should have the following properties: (d)arge code length possible.

The performance improves as the code length increases, a¥) Degree of cycle constraintt prevents the variable nodes

the code length cannot be too small (typically at least few with lower degree from passing small cycles to further

thousand bits); (b)Carefully designed node degree distri-

bution The node degree distribution, particularly variable “We note that some recent results suggest that irregular codes may be
N . . more seriously subject to error floor and how to deal with this issue has been

node degree distribution, heavily affects the error-correctigcussed in [18].

performance. Design of appropriate node degree distributiodThe girth is defined as the minimum cycle length in a graph.

n«p

B. Performance-Oriented Constraints



preserve the effectiveness and fast convergence of ihestrated in Fig. 3. RBFS proceeds [fiijpping a zero block

message-passing iterative decoding algorithm. matrix once a time in the ungrayed region to a right cyclic
We note that, in practice, the typical values of small cyclghift of an identity matrix while keeping the gray region
length are 4 and 6, and the typical degree of low-degré@touched. The position of each flipped zero block matrix

variable nodes is 2. and the cyclic shift value are choseemdomlysubject to the
constraints on the degree of a cycle and girth. The number
C. Block-LDPC Code Construction of flipped zero block matrices on each block column and

) . block row is determined by the node degree distribution.
The overall Block-LDPC code construction process Consistqe constraints on degree of a cycle and girth are initialized

of three steps: (1) determine the code parity chepk mat, reasonably large numbers such as 12 and 10. During the
parameters, (2) conlstruct a group; of ck?de parity chefqe construction process, the constraint on degree of a cycle
ma’:ncesl,' and (3) select one code from the code group fgr sirth is relaxed (reduced) if the RBFS can not proceed
real application. with the current value after trying certain number of random

) . choices. Repeating the RBFS process with different random
Step 1 We first determine the parameters of the code parify, ,her seeds, we can obtain a group of Block-LDPC codes.

check matrix, including the size of code parity check matrix,
the value ofp (the size of each block matrix), node Olegre%tep 3 From the codes obtained in step 2, we select the code

distribution, the \./alue. of (or 7)’ the value ofk (the number for real application based on a metric cal®ale effecmetric,
of macro-block identity matrice§;s), and the size of eachWhich is also known as loopiness [21]. The cycle effect is

I,. The size of the parity check matrix should be determinegfbﬁned as:
by the desired code length and code rate of the specific I — Z N; - o
application, only subject to the constraint of being multiples ’
of p, i.e., m - p x n - p. The value ofp is determined by ) . ,
the desired encoder/decoder throughput (as we will see¥jere Vi is the number of cycles with the length ofand
Sections 11l and 1V, the encoder/decoder throughput directfy < 1 iS & value chosen for the sum to converge. The code with
depends om). The node degree distribution is obtained b§maller value of cycle e_ffeot tends to have less sma_ll cycle_s
the density evolution. Strictly speaking, the selection gof and better err(_)r-correctmg_p_erformance. Thus, we simply pick
involves the trade-off between encoding complexity reductidi® code leading to the minimum value bf
and code performance optimization space, i.e., the smaller
the value ofg, the less encoding complexity but the smalleb. Code Examples
space left for code performance optimization. Nevertheless, 1o gemonstrate the error-correcting performance, we con-
our computer simulations show that even the minimum valugrycted two rate-1/2 and two rate-7/8 Block-LDPC codes. The
e, g = p, seems to be enough for constructing BloCkspecific code parameters are given in Table I. The sizes of the
LDPC codes with good error-correcting performance. Henge_ 5 macro-block identity matriced(, - - ,I5) scale down
we suggest to simply sgt= p in practice, which means the gpproximately by factor of 2 as the indexincreases from
right-most block columhalways has the weight of 2. 1 to 5. The two codes with the rate of 1/2 have the node
As we will see in Section Ill, the value of affects the gegree distribution as follows: (a) check nodes: degree of 6
trade-off between encoder throughput and code performanceggo, degree of 7 31%: (b) variable nodes: degree of 2
optimization space, i.e., small value éfwill lead to high _. 2794 degree of 35 45%, degree of 4 14%, degree of
encoder throughput but leave less space for code performagee, 149, The two codes with the rate of 7/8 have the node
optimization. Our computer simulations show that~ 6 gegree distribution as follows: (a) check nodes: degree of 24

should be the appropriate range for The size of eacl; _ 100%; (b) variable nodes: degree of=2 26%, degree of
should decrease as the indeincreases froml to & in order 3 _. 5504 degree of 4> 12%, degree of 5> 7%.

to leave more code performance optimization space. Our
experience is to consecutively scale down the size by 2 with TABLE |
the increase of. PARAMETERS OF EXAMPLE CODES

i=6,8,...

L e rate | length | m n k | MDC irth

Step 2 We apply arandom block flipping/shiftingRBFS) —sqge 112 4086 641128 3'?2 3?2 58 9'6
method to construct a group of LDPC code parity checkcode2| 172 | 8192 | 64 | 128 | 64 | 64 | 5 8 6
matrices. The basic principle of RBFS is to randomly code3| 7/8 | 4096 | 32 | 256 | 16 | 16 | 5 | 8 6
code 4| 7/8 | 8192 | 32 | 256 | 32 | 32 | 5| 8 6

construct the code parity check matrtock-by-block(the
size of each block matrix ip x p) subject to the hardware-

oriented constraints and performance-oriented constralntswe simulate the code error-correcting performance with

RBFS s_tartifrﬁmha neallrly zero block st_ructymcrjiéo X1 P the assumption that each code is modulated by BPSK and

g:atrll(x.cljn whic t € only non-Izerp pﬁrtlor;] '3 td MAacro-  yransmitted over AWGN channel. Fig. 4 shows the simulated
ock identity matricesly,---, I In the shaded region asgppp (bit error rate) vs. SNR (signal to noise ratio). For
3We useblock columrandblock rowto represent each successiveolumns  the purpose of comparison, we also. constructed four LDPC

and rows in the block structured parity check matrix. codes without any implementation-oriented code construction

“MDC: minimum degree of cycle



constraints, i.e., setting = 1 andg = m - p (eliminating A. Encoding Process
the lower triangular part) and then using the same codefg|iowing the idea of encoding based on approximate lower

construction process as dgscr_ibed above. As _shown in Fig(élr, upper) triangular parity check matrix, Block-LDPC encod-
the performance degradation incurred by the implementatiqRy process has the same data flow as the algorithm described

oriented constraints is not significant. in [14]. According to Fig. 3, we can write the Block-LDPC

@ code parity check matrixas
a

107 ‘ ; ‘ A B T

—<— rate-1/2, 4096b
U trainted rate—1/2, 4096b )
b o ratoti2, 81920 CDE
10 °F —+— Unconstrainted rate-1/2, 8192b

whereA is (m-p—g) x ((n—m)-p),Bis (m-p—g) x g,

the lower triangular matrixX is (m-p—g) x (m-p—g), C
isgx((n—m)-p),Disgxg,andEis gx (m-p—g). Let

[z1, 22, 23] be a codeword decomposed according to (1), i.e,
z1 is the information bit vector with the length ¢ —m) - p,
redundant parity check bit vectogs and zs; have the length

of g andm-p— g, respectively. The encoding process performs
the computation of the vectors andzs as follows [14]:

E
3

z;, = @' (E-(T' (A-2]))+C-z]),
R T I T 25 = T (A2 +B ),
E/No(®) where® = E-T~!.B + D. In the entire encoding process,
the multiplications withT~! and®~! may lead to significant
) computational complexity overhead since t_hey are most I_iker
107 : P T dense matrices. To reduce the computational complexity of
~5- Unconstrainted rate~7/8, 4096b the multiplication with ®~!, which is linearly proportional
ol e e oy rate_7/6, 81925 to g2, we mainly rely on the minimization of in the code

construction (note thagy is a multiple of the block size,

i.e., g = v -p). As we pointed out in Section II-C, our
simulations show thay = p (or v = 1), is typically enough

for constructing Block-LDPC codes with good error-correcting
performance. Hence we can fix=p (p is typically a small
number such as 16 and 32) to minimize the computational
complexity of the multiplication with® 1.

To reduce the computational complexity of the multiplica-
tion with T—!, we replace the direct multiplication with /a
stage back substitutiofRecall that the lower triangular matrix
3 32 34 36 38 4 T containsk macro-block identity matrices along the diagonal

Ee/No(@8) as illustrated in Fig. 3 and can be written as:
Fig. 4. BER vs. SNR simulation results. I o - 0
Toy I, - O
T= . . .| 2
1. BLoCcKk-LDPC ENCODERDESIGN ) ) o
Tip1 Tro -+ I

Exploiting the structural properties of the Block-LDPC code
parity check matrix, we developed a low-complexity pipelineherels, I, - - -, I, are thek macro-block identity matrices;
partially parallel encoder hardware architecture. As we wiiachT ; is a block structured matrix composed of an array
show later, thelow complexitycomes from two aspects:Of p x p zero and right cyclic shifted identity matrice€)

(1) the encoding is performed based on the sparse pafi@presents zero matrix. Given the matiikxand input vector

check matrix and mainly involves a few sparse matrix-vectd1, X2, -~ ,xx]", instead of directly computing the output
multiplications and a small dense matrix-vector multiplicatiorYector as

hence the overall computational complexity is not significant, [ v, I o) .. o1 X1

and (2) encoding carnes_out in a partially parallgl fashion via |y, Ty, I ... 0 Xo

hardware resource sharing for further complexity reduction. | . =1 . . . . . , (3)
In the following, we first describe the encoding process, then | - : : R :

present a hardware architecture design for the sparse matrix-L Y& Trp Tra - L Xk

vector multiplication involved in the encoding, finally show the | _ . _

I d hitect d th timated i | tati We assume that the parity check matrix is full rank, i.e., the p rows
overall encoder architecture and the estimated Implementation jinearly independent. In our simulations, all the matrices constructed are
metrics. full rank.



wherex; andy; (i = 1,2, - - - , k) arep-bit sub-vectors, we can initialized to the value oti; ;. However, since eacl; may
solve eachy; consecutively by using-stage back substitution participate in the computations of more than opgs and
as the correspondingl; ;’'s have different values, in order to
B support the parallel computation of ali’s, we have to use
Yi=Tiiy1+ Tioya +- -+ Tiim¥ict £ X (4 gither multi-port register file or several single-port register
Hence the multiplication witir ! is replaced by a series offile blocks for the storage of eack;, both of which will
sparse matrix-vector multiplications and vector additions, leaificrease the implementation complexity. In the following, we
ing to significant reduction of the computational complexitywill present a method to further trade the speed for the storage
complexity reduction and present the corresponding matrix-
B. Block Structured Matrix-Vector Multiplication vector multiplication hardware arc.h|tecture. ,
) ] 1) Storage Complexity Reduction Via Task Scheduling:
From the above discussion, we know that the overall epyith the goal of reducing implementation complexity, we
codlr_lg process ma_un_ly c_0n3|sts of a certain number of SPa§Bre each input sub-vectag; only in one p-bit single-
matrix-vector multiplications and one small dense matriysor register file associated with one binary counter for
vector multiplication. The complexity and speed metrics Qfyqress generation. Hence each input sub-vector at most can
the encoder is largely determined by how to implement thegg icipate in the computation of one output sub-vector at
sparse matrix-vector multiplications. We note that each spaf§g.e. Nevertheless, since the weight of each block column
matrix involved in the multiplication is block structured andy, the block structured matrix might be larger than one, each
the corresponding matrix-vector multiplications can be writtqﬂput sub-vector may participate in the computation of more

as. than one output sub-vectors. Therefore, instead of computing
Ui Uiz ... U, X1 Y1 all the ¢ output sub-vectors in fully parallel, we have to

Ui Uz ... U, Xo Yo schedulethe computations in gartially parallel fashion

: : : : = » (8 to ensure each input sub-vector at once participate in the
. . R ) ) computations of at most one output sub-vector, which can be
Uf,,l Ut_yg e Ut“g Xs Yy p p

interpreted as the following task scheduling problem:
where eaclp x p block matrixU; ; is either a zero matrix or
a right cyclic shift of an identity matrix, and eaety andy; Task Scheduling Problem: Schedule the computations of
arep x 1 sub-vectors. all the ¢ output sub-vectors intd time slots subject to two
We can leverage the circular structure of all the non-zewwnstraints: (1) If the computations of two output sub-vectors
block matrices to develop efficient matrix-vector multiplicatiomeed the same input sub-vector, then we must compute
hardware architecture. Define a $&t= {(4, )|V U, ; is non- these two output sub-vectors in different time slots; (2) The
zero}. Since each non-zertJ; ; is a right cyclic shift of an value ofl should be minimized in order to maximize the speed.
identity matrix, we havey; = 3 , ) .p x;[1 d;;], whered,
is the right cyclic shift value olU; ; andx;[1 d; ;] represents  To solve the above scheduling problem, we first represent
cyclic shifting up the sub-vectox; by d; ; positions. Thus the the block structured matrix) with a graphG as follows: (1)
matrix-vector multiplication reduces to a set of vector XORepresent each block row as a node in the graph, and (2) if two
(modulo 2 summations]y; = >_; »ep X;[T di ], 1 <@ < block rows have non-zero block matrices in the same block
t}. Although the direct parallel implementation of theses vecolumn position, then connect the two corresponding nodes
tor XORs can easily achieve extremely high speed, such higiith an edge. Clearly, two nodes connected with an edge in
speed is not necessary for most applications, and appropridie graphG indicate that the computations of the two output
trade-off between implementation complexity and speed sub-vectors corresponding to the two block rows share the
encoder design is desirable. same input sub-vector, and hence cannot be performed in the
Such a trade-off can be realized by usingiater-vector- same time slot. If we use different color to represent different
parallel/intra-vector-serial computational style: compute alltime slot, the above task scheduling problem can be directly
the ¢t sub-vectorsy,,ys,- - ,y; in parallel, but only 1 out of transformed into the following classic graph coloring problem:
the p bits in each sub-vector is computed at once. Since the
value ofp is typically small, e.g., 16 and 32, the overall matrixColoring Problem: Color the nodes in the grapty¥ with the
vector multiplication can still achieve high speed. Clearlyninimum number of colors such that adjacent nodes have
because of the inter-vector-serial operation, the computatiatiferent colors.
of all thep bits in the same sub-vectgt, can share the same
hardware resource in a time-division multiplexed mode for There are many well established algorithms that can effec-
implementation complexity reduction. tively solve the above coloring problem. Interested readers are
To computey; = Z(m.)ep x;[1 d; ;] bit by bit consecu- referred to [22]. Given the solution to this coloring problem,
tively, we only need to retrieve each involved sub-vectgr we simply schedule the computations of the output sub-vectors
bit by bit consecutively. Hence, it can be easily conceivezbrresponding to the block rows with the same color in the
that, in the hardware implementation, we can store each sshme time slot. In this way, the implementation complexity
vectorx; in an individual register file and use a binary countesan be reduced by storing each input sub-vector in @bé
to generate the access address, where the binary countesinigle-port register file.



x
Y y
U \1 LBl Y
[010i000i001/000/100i000i000 ?" Vi
001/000/{100/000 010000000 2 Y
100/000/010/000{001/000/000 *Ii s
001/000000/010/000000{001 a2 ijl.
100000 000,001;000:000;100 13 22 X
010000000 100000000 010 %5 Y, U 00U 00U 00 x; Vi
e U, 00U 0 0, y
000100000010, 000/000:000 T i3 4 s 6 X 2
000/010000001,000/000 000 o = )’;.x @ 00 00,000 xi =1y
000{001/000/100i{000/000/000 Yf: D U, 0 U,0 U,U,U|[]|x, ¥,
100000/ 010/000/100{001/010 s i 0 U,0 0 0 U,O0|/[|X ys
010/{000{001;/000{010;100001 s Va4 x7 )
001000/100/000,001 010100 K Via
000, 001000000000 010000 ;"’ Vis
000100000000 000:001. 000 r“"’ Yas
000i010i000i000i000:i100:i000O0 Y”’ Vs
- T
X37
(@) (b)
Fig. 5. Block structured matrix-vector multiplication example.
, . T d adc) i i hardwired XOR i jte add)
Example 3.1:Let's consider the multiplication betWeen “seeators b bioks  intereomections  trees e blocks - generator
the block structured matriXJ and vectorx as illustrated
in Fig. 5, where all the fifteen non-zero block matrices, o 1ot oo
- . . . . . og, p bits i i
U,,U,, -, Uys, are right cyclic shift of an identity matrix. AN D G L . DA Y,
. - . L |
The block structured matrix) is represented by a graph for (p bits) I (p bits)
which three different colors are enough to solve the coloring T,
problem, as illustrated in Fig. 6. Thus, we compute the five
output sub-vectors in three time slots: in the first time slot, WAG
we computey; andys bit by bit, which involves five input
sub-vectorsxy, xa, - - ,x5. Similarly, we compute{ys,ys}
. . f . log, p bi ] 1bit
and{y4} in the second and third time slot, respectively. RAG, 08, bits X, |10 : o N
- (» bits) " 1 bit @ 7 t <
yellow r, (p bits)

@ )

Fig. 7. Hardware architecture for block structured sparse matrix-vector
multiplication.

red

The entire matrix-vector multiplication requirds p clock
cycles. At the beginning of eaghclock cycles, we have:

« If sub-vectorx; participates in the computation of sub-
vector y; in the following p clock cycles, the binary
counter RAG is initialized to the cyclic shift valuel; ;;

« If sub-vectorx; does not participate in any computation

in the following p clock cycles, the register file Xwill

be disabled;

yellow

green

Fig. 6. The graph with the solution to the coloring problem.

2) Matrix-Vector Multiplication Hardware Architecture:
Fig. 7 shows the proposed hardware architecture to implement

the sparse block structured matrix-vector multiplication in e
the partially parallel style as described in the above. Eache
input sub-vectorx; and output sub-vectoy, are stored in

The binary counter WAG is always initialized to O;
The register file Y will be disabled if sub-vectoy; is
not computed in the following clock cycles.

register files X and Y;, respectively. The read address of each
register file X is generated by a binary counter RAG he

write address of all the register files;’¥ is generated by a
binary counter WAG. The output of Xis routed through the  Fig. 8 shows the structure of the pipelined partially par-
hardwired interconnection network to the input of the XORllel Block-LDPC encoder that mainly contains 7 function
tree XT; if x; participates in the computation gf. blocks: The four function blocks A, B, C, and E realize the

Suppose the size of each block matriywisp and! different multiplications with the block structured sparse matrides

colors are used in the task scheduling, we arrange altthd, C, and E, respectively. These four function blocks are
output sub-vectors intéd groups, and the sub-vectors in thalirectly designed as described in section IlI-B. The function
same group are computed bit-by-bit in the sagnodock cycles. block @ realizes the multiplication with the small dense matrix

C. Overall Encoder Structure



TABLE Il
THE NUMBER OF REGISTERS REQUIRED IN THE ENCODER

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Block A output | 2(m-p—g) | 2(m-p—g) | 2(m-p—g) | 2(m-p—g) | 2(m-p—g)
Block B output - - - - 2(m -p—g)
Block C output 2g 2g 2g - -
Block E output - - 2g - -
Block ® output - - - 2g 2g
Block T1 output - 2(m-p—g) - - -
Total 2m - p dm -p—2g 2m - p+ 2g 2m - p dm -p —2g
infomation bits in Fig. 7. Each sparse matrix-vector multiplication block
requires two sets of register files to store the input vector,
| Function Block A | [ Function Block C | i.e., the two sets of input register files alternatively receive

Pipeline the output from the preceding pipeline stage and provide the

data for the current computation. The register file complexity
in terms of number of bits needed for each pipeline stage are
listed in the Table II.

Let/,,q. denote the maximum number of colors used in the
task scheduling in all the sparse matrix-vector multiplications.
Except the pipeline stages for function blocks T1 and T2,
any other pipeline stage at most takgs. - p clock cycles to
complete the present computation. Because of the small size
(i.e.,pxp) of the dense matri@ !, it is feasible to implement

(XOR) T the function block® (multiplication with 1) in fully paral-
lel, i.e., implemented as g:bit input p-bit output XOR array.
T The latency of such fully parallel implementation of function
QP*‘“‘“’“S = block ® will be much less thar,,.., - p clock cycles. As
for the function block T1 and T2, since the maximum collum
Fig. 8. Pipelined Block-LDPC encoder structure. weight of each sub-matri¥’; ; is 1 (according to the encoder-
oriented constraint as described in section II-C), each of these
sub-matrix and vector multiplications can be performed in 1
®~!. The two identical function blocks T1 and T2 realize théime slot, i.e.p clock cycles. Thus each of T1 and T2 requires
multiplication with T~ by using thek-stage back substitution (k — 1) - p clock cycles to complete the present computation.
as described in section lllI-A. Each dashed horizontal line i'ﬂ’]erefore, the pipeline stage latency of this pipelined encoder
Fig. 8 represents one pipeline stage. Fig. 9 shows the structigrénax/,,.., ¥ — 1) - p clock cycles, i.e., each pipeline stage
of function blocks T1 and T2, where each SUb-b'OCKj T takes ma((lm(m, k— 1) D clock Cyc|es to Comp|ete the present
performs the multiplication with the sub-matrik; ; in the computation and moves the output to the next pipeline stage.
lower triangular matrixT. Since all the sub-matrice¥; ; Let f5 denote the clock frequency of the encoder, the encoding
are also block structured, we can again use the architecttifoughout would bén —m)-p- f/(p-MaxX(lnae, k—1)) =
described in section 1lI-B for each multiplication. (n—m) - fg/max(lmaz, k — 1).

‘ Function Block (P

Function Block B

parity bits Z,

To estimate the encoder logic gate complexity in terms of
the number of 2-input NAND gates, we count each 2-input
rrrrrrr — XOR gate as three 2-input NAND gates and eadbit binary
‘ counter a3z 2-input NAND gates. Let{P| denote the total
number of nonzero blocks in the parity check matrix. Bet
denote the ratio of the number of nonzero blocks in the lower

S triangular sub-matrir divided by|P|. For the function block
— (—’% A, B, C, E, T1 and T2, we need approximatély+6) - (|P| —

Y, N

Y T
-)‘ TkZ i

- ﬂTg m) XOR gates and1 + 0) - |P| counters in total. Thus the
| number of NAND gates is abo@{1+6)-(|P|—m)+8[log, p]-
Y v, M " (146) [P~ (1+0)-|P|-(3+8[logyp]). We assume the
function block® consumesi g? XOR gates, i.e5g? NAND
Fig. 9. Structure of function blocks T1 and T2. gates. Furthermore, we need approximat&ly- [log, p| bits
of ROM to store the initialization values for all the counters.
Pipelining is realized by the input/output register file banké/e summarize the estimation of the key metrics of the encoder
in each sparse matrix-vector multiplication block as illustrated the Table III.




TABLE Ill
THE SPEED AND COMPLEXITY ESTIMATION OF THE ENCODER

User Data Rate] ROM (bits) Register Storage (bits Number of Logic Gates
a2 E | || - [logy p] 14m-p—2g (1+06) - [P|- (3 +8[logs p]) + 34
IV. LDPC DECODERDESIGN all the DMMB; ;s with the same index as the initial variable-

to-check messages.

In this section, we briefly present the partially parallglerative Decoding Each decoding iteration is completed
Block-LDPC code decoder architecture and its implementatign 2p clock cycles, and the decoder works in check node

metrics estimation. Fig. 10 shows the decpder architectyre B?Bcessing mode and variable node processing mode during
a Block-LDPC code with am - p x n - p parity check matrix. ine 1st and 2ngh clock cycles, respectively.
It containsm check node computation units (CNUs) and

variable node computation units (VNUs), where each GNL{O

?QVSSV(I:I) EJCEZSE r?oéles)cc;r:guggﬂﬁgﬁé r((aosrp(\a/gr'i\;et:{é fg(r)dtj:)the message passing between neighboring nodes in the code
bipartite graph. In each clock cycle, each CNU retrieves

in the same block row and block column in tlme'd'V'S'onone variable-to-check message from each connected DMMB,

multiplexing fashion. It contain®-n channel message memory opvert it to one check-to-variable message, and send the
blocks (CMMBSs), each CMMB stores the messages associaﬁ?]d ’

. . check-to-variable message back to the same DMMB. The
with p columns in the same block column. Two sets rof
: memory access address of each DMMBs generated by a
CMMBs alternatively store the channel messages for curren oo ", i .
decoding and receive the channel messages of the next bl nary counter that is initialized to the right cyclic shift value
9 9 i, Of the non-zero block matri; ; at the beginning of

to be decoded. check node processing.

Let H, ; denote the block matrix with the positiof, j ) . .
in the Blgck-LDPC code parity check matrix pand oéétQ (2) During thevariable node processingthe decoder per-

o . orms the computations of all the variable nodes. In each cloc
{(#,4)|V H;; is non-zero}. The total numbe; of non-zero]c h putati Fallth labl des. | h clock
blol:jk matr;é]es in the parit.y check matrix j®|. The [P| x cycle, each VNU retrieves one check-to-variable message from
p decoding messages are stored [ decod.ing message each connected DMMB and one channel message from the

T connected CMMB, convert each check-to-variable message
memory blocks (DMMBS), each DMME, (where(i, j) € P) to variable-to-check message, and send it back to the same

stores thep messages aS.SOCIated W.lth tpel’s in H,, DMMB. The memory access addresses of each memory block
The decoder contains p-bit hard decision memory blocks
are generated by the counters that are set to zero at the

(HDMBS) to store the hard decision bits. The access address .=~ £ variabl q .
of each CMMB;, HDMB; or DMMB; ; is generated by an eginning of variable node procesgng. )

individual binary counter. Each CNWonnects with all the "€ number of node computation units (CNU and VNU)
DMMB; ;s with the same index Each VNU, connects with N this partially parallel decoder is reduced by the fagtor

all the the CMMB, HDMB; and DMMB; ; with the same compared with its fully parallel counterpart. This partially
index ;. ’ ! 7 parallel decoder is well suited for high speed hardware imple-

mentations because of the regular structure and simple control
logic.

) Given each decoding message uniformly quantized; to
oo oo bits®, we estimate that each CNU and VNU requg® - ¢ and
. 250 - ¢ gates (in terms of 2-input NAND gate), respectively.
4 4 4
(10 [0 (700

(1) During thecheck node processingthe decoder per-
rms the computations of all the check nodes and realizes

The total sizes of DMMBs, CMMBs, and HDMBs afB|-p-q
[0 [0 [0 bits, 2n-p-q, andn-p bits, respectively. Lefp denote the clock
) (g 1P+ 3n Memory Blocks gy g frequency of the decoder and the number of iteratiots,ithe
i i decoding throughput can be up ﬁ@‘;’bﬂ We summarize
| the estimated key metrics of the decoder in Table IV.

|
... e o o %
i
| TABLE IV

THE SPEED AND COMPLEXITY ESTIMATION OF THE DECODER
Fig. 10. Decoder architecture. User Data Rate] Memory (bits) # of Gates
G o | 2n+|P])-p-g+n-p | (320m+250n)-q

The decoding process consists of an initialization phase and
an iterative decoding phase as described in the following.
Initialization: Upon the received code block data, CMMBs _ o ,
S\We note that recent results suggest that uniform quantization with too

are initiali?ed to store the channel messages assoqated ngall value ofg may lead to error floor in the decoding. Interested readers
all the variable node. The content of each CMMB copied to are referred to [23].



10

V. CONCLUSIONS [18] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of
) o irregular LDPC codes with low error floors,” ifroc. IEEE International
This paper presented a joint code-encoder-decoder de- Conference on Communicatigrz003, pp. 3125-3129.
sign solution, called Block-LDPC, for practical LDPC cod{19] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-

. . . . approaching low-density parity-check codeslEEE Transactions on
ing system implementations. The key is to construct LDPC | jtoimation Theoryvol. 47, no. 2, pp. 619-637, Feb. 2001.

codes subject to certain implementation-oriented constraifdg] J. Campello and D. S. Modha, “Extended bit-filing and LDPC code

and performance-oriented constraints, simultaneously. We pre- gSSiggg ;”B'SFOC- IEEE Global Telecommunications Conferenze01,
sented the code construction constraints and developed a S@/i- 5 Thorpe, “Design of LDPC graphs for hardware implementation,” in

random approach for Block-LDPC code construction. Com-  Proc. IEEE International Symposium on Information The@§02, pp.
puter simulation showed that the Block-LDPC codes have in- = 483-483.

. . . 22] The Boost Graph Library, http://www.boost.org/libs/graph/.
S|gn|f|cant error-correcting performance degradatlon compa D. Declercq and F. Verdier, “Optimization of LDPC finite precision

with LDPC codes constructed without any implementation-  belief propagation decoding with discrete density evolution3rd

oriented constraints. Leveraging the implementation-oriented International Symposium on Turbo Codes and Related Topics Brest,
. LT . France September 2003.

constraints, we developed a pipelined partially parallel Block-

LDPC code encoder and a partially parallel Block-LDPC code

decoder. We believe the Block-LDPC design approach will

provide communication system designers an unique opportu-

nity to explore the attractive merits of LDPC codes in many

real-life applications.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check code$RE Transactions on
Information Theoryvol. IT-8, pp. 21-28, Jan. 1962.

[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codes,Electronics Lettersvol. 32, pp.
1645-1646, Aug. 1996.

[3] N. Wiberg, “Codes and decoding on general graphs,” Ph.D.
Dissertation, Linkoping University, Sweden, 1996. available at
http://www.essrl.wustl.edu/"jao/itrg2000/.

[4] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,”|EEE Transactions on Information Thegmyol. 45, pp. 399—
431, Mar. 1999.

[5] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm EEE Transactions on Information Theory
vol. 47, pp. 498-519, Feb. 2001.

[6] A.J.Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder/EEE Journal of Solid-State
Circuits, vol. 37, no. 3, pp. 404-412, March 2002.

[7]1 J. Thorpe, “Low-density  parity-check (LDPC) codes
constructed from protographs,” inlPN  Progress Report
http://ipnpr.jpl.nasa.gov/tmo/progressport/42-154/154C.pdf, Aug.
2003, pp. 42-154.

[8] S. Olcer, “Decoder architecture for array-code-based LDPC codes,” in
Global Telecommunications Confereng&ec. 2003, pp. 2046 — 2050.

[9] M. M. Mansour and N. R. Shanbhag, “Architecture-aware low-density
parity-check codes,” iIlEEE International Symposium on Circuits and
Systems (ISCASBangkok, Thailand, May 2003, pp. 57-60.

[10] D. E. Hocevar, “LDPC code construction with flexible hardware
implementation,” iNnEEE International Conference on Communicatipns
2003, pp. 2708 —2712.

[11] H. Zhong and T. Zhang, “Design of VLSI implementation-oriented
LDPC codes,” inlEEE Semiannual Vehicular Technology Conference
(VTC) Oct. 2003.

[12] Flarion Technologies, “Methods and Apparatus for Decoding LDPC
Codes,”US patent number: 6,633,856 BQct. 2003.

[13] Jose M. F. Moura, J. Lu, , and H. Zhang, “Structured low-density parity-
check codes,1EEE signal processing magazingp. 42-55, Jan 2004.

[14] T. Richardson and R. Urbanke, “Efficient encoding of low-density
parity-check codes,”|EEE Transactions on Information Thegryol.

47, no. 2, pp. 638-656, Feb. 2001.

[15] D.E Hocevar, “Efficient encoding for a family of quasi-cyclic LDPC
codes,"Global Telecommunications Confereneel. 7, pp. 3996 — 4000,
2003.

[16] E. Eleftheriou and S. Olcer, “Low-density parity-check codes for
digital subscriber lines,” inProc. IEEE International Conference on
Communications2002, pp. 1752-1757.

[17] T. Zhang and K. K. Parhi, *“Joint3(k)-regular LDPC code and
decoder/encoder desigriEEE Transactions on Signal Processjngl.

52, no. 4, pp. 1065-1079, April 2004.



