
2346 IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 8, AUGUST 2012

Architectural Exploration to Enable Sufficient MTJ Device Write Margin
for STT-RAM Based Cache

Hongbin Sun , Chuanyin Liu , Tai Min , Nanning Zheng , Fellow, IEEE, and Tong Zhang

Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
MagIC Technologies, Inc., Milpitas, CA 95035 USA
Rensselaer Polytechnic Institute, Troy, NY 12180 USA

As a promising nonvolatile memory technology, magnetic tunnel junction (MTJ) based spin-torque transfer RAM (STT-RAM) has
recently attracted much attention. However, recent device research suggested that, in order to maintain sufficient MTJ write margin to
prevent device breakdown, MTJs may be subject to unconventionally high random write error rates (e.g., and above) as memory
cell size is being scaled down. In this paper, we aim to develop a STT-RAM cache design solutions that can effectively tolerate high MTJ
write error rates at small performance and implementation cost, which makes it much easier to maintain sufficient MTJ write margin
and hence push the STT-RAM scalability envelope. Using the full system simulator PTLsim and a variety of benchmarks, we show that
the proposed architecture design can readily accommodate MTJ write error rate upto 2% at the penalty of less than 3% processor
performance degradation, less than 10% silicon area overhead, and negligible energy consumption overhead.

Index Terms—Cache memory, error correction code, fault tolerance, STT-RAM, write margin.

I. INTRODUCTION

S TT-RAM has recently attracted much attention, and it is
expected to offer suitable scalability toward the 22-nm

node and below [1]–[5]. Since STT-RAM can potentially
enable high-capacity on-chip nonvolatile data storage with
relatively high access speed and very low leakage power con-
sumption, many recent computer architecture research efforts
have explored the potential and demonstrated appealing pos-
sible advantages of using STT-RAM to implement low-level
on-chip caches in microprocessors (e.g., see [6]–[8]).
The basic storage element of STT-RAM is magnetic tunnel

junction (MTJ), and the nonvolatile data storage is realized by
modulating the resistance of MTJs. To program MTJs in STT-
RAM, the write voltage across MTJs should be high enough to
ensure desired MTJ state switching, and meanwhile cannot be
too high in order to avoid junction barrier breakdown. There-
fore, it is crucial to realize sufficient MTJ device write margin
between the programming voltage and device dielectric break-
down voltage. Unfortunately, recent device research revealed
two new phenomena, including backhopping and low proba-
bility bifurcated switching (LPBS) [9]–[12], that can substan-
tially reduce MTJ write margin and hence seriously threaten the
scalability of STT-RAM. In order to maintain sufficient MTJ
device write margin as memory cell size is being scaled down,
these two physics phenomena make MTJs subject to unconven-
tionally high random write error rates (e.g., and above)
[9]. Complementary to on-going material/device research that
aims to tackle this grand challenge by significantly reducing
MTJ write error rate through material/device engineering and
innovations, architecture level techniques that can effectively
tolerate relatively high MTJ write error rates may greatly con-

Manuscript received September 17, 2011; revised January 13, 2012 and Feb-
ruary 24, 2012; accepted February 27, 2012. Date of publication April 05, 2012;
date of current version July 20, 2012. Corresponding author: H. Sun (e-mail:
sunsir@mail.xjtu.edu.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMAG.2012.2193589

tribute to solving this grand challenge and ensuring future scal-
ability of STT-RAM, which motivates this work.
This paper concerns the design of STT-RAM based cache

memory that can tolerate relatively high random MTJ write
error rates. We propose an architectural fault tolerance strategy,
which tolerates random write errors by explicitly storing the lo-
cation of each write error in a separate storage memory. Com-
pared with error correction code (ECC) that uniformly protects
all the data block, this approach demands much less amount
of extra storage space for realizing memory fault tolerance. As
a result, when being combined with a simple recursive write-
read-verify scheme, it can very effectively reduce the overall
performance degradation under high random write error rates.
The effectiveness of applying this architecture design technique
in modern processor cache memory has been demonstrated by
carrying out extensive simulations. The full-system simulator
PTLsim [13] and Cacti memory modeling tool [14] are used for
processor simulation and cache memory modeling at the 65nm
technology node. Simulation results show that, by tolerating
random MTJ write error rate as high as 2%, these design tech-
niques only induce less than 3% computing system performance
degradation on average over a wide spectrum of SPEC2000
benchmarks, while only incurring less than 10% area overhead
and negligible dynamic energy consumption overhead. The re-
sults show that architecture level techniques can indeed play
an important role in ensuring sufficient MTJ write margin and
hence the future scalability of STT-RAM.

II. DEVICE WRITE MARGIN OF STT-MRAM

As discussed in the previous publication [6]–[8], [15], each
typical 1T1MTJ STT-RAM cell contains oneMTJ as the storage
element and one nMOS transistor as the access control device.
As the basic storage element, each MTJ has two ferromagnetic
layers separated by one Mg-oxide (MgO) barrier layer. The re-
sistance of each MTJ depends on the relative magnetization di-
rections of the two ferromagnetic layers, i.e., when the magneti-
zation is parallel (or anti-parallel), MTJ is in a low (or high) re-
sistance state. In STT-RAM, parallel or anti-parallel magnetiza-

0018-9464/$31.00 © 2012 IEEE

SUN et al.: ARCHITECTURAL EXPLORATION TO ENABLE SUFFICIENT MTJ DEVICE WRITE MARGIN 2347

tion is realized by steering a write current directly throughMTJs
along opposite directions. During write or read operations, the
bit-line (BL) and source-line (SL) establish appropriate voltage
drop across the cell, and the word-line (WL) turns on/off the
nMOS transistor to realize memory cell access control.
To successfully switch the MTJ resistance state, the

across-MTJ voltage and hence through-MTJ write current
should be sufficiently large. However, a too high across-MTJ
voltage may result in dielectric breakdown of the MgO barrier.
Currently, MTJs with 1.2 nm or less MgO layer are necessary
in order to realize a low resistance-area product (RA) and
hence reduce the required through-MTJ write current. A low
write current can directly translate into smaller access nMOS
transistor and the overall memory cells size. The dielectric
breakdown of such thin MgO barriers under voltage/current
stress therefore becomes critical to the success of STT-RAM
technology. As a result, it is crucial to maintain sufficient
write margin between the MTJ write voltage and the device
breakdown voltage.
Recent device research for the MTJ with longitudinal mag-

netic anisotropy (LMA) discovered new phenomena that can
significantly erode the MTJ device write margin for highly
scaled technology nodes [9]–[12]. One of them is the so-called
backhopping phenomenon in which the magnetization of free
layer can switch back to its original state after a successful
write operation. Another one is called low probability bifur-
cated switching (LPBS), which can further largely reduce
the slope of the write error rate vs. write voltage curve, as
illustrated in [9]. We note that these two phenomena occur
randomly on all the MTJ devices and are not associated with
device defects. Clearly, the newly discovered backhopping
and LPBS phenomena for highly scaled technology nodes can
largely narrow the write margin, which seriously threatens
the scalability of STT-RAM. More recent studies on the write
error rate (WER) of LMA type MTJ suggests that even though
at relative low writing voltage, up to 80% of Vc0, the WER
behaves as expected since both thermal heating and field-like
term are negligible [16]. But for the required reliable writing
of a device, the applied write voltage needs to be higher than
Vc0, especially at fast switching region less than 50ns. Then
the existence of the “stagnation point” or “zero-torque point”
can significantly increase the required switching voltage, could
be several times larger than Vc0 to obtain reliable low WER
[17]. This increase is mainly due to thermal fluctuation other
than the magnitude of the onset spin torque. The situation is
somewhat better for the MTJ with perpendicular magnetic
anisotropy (PMA) which reduces the Vc0 significantly, hence
less required switching write voltage, lowering both field-like
term and thermal fluctuation. This potential advantage has been
extensively investigated to reduce the WER of PMA type MTJs
[18]–[20]. However, the WER problem of LMA-type MTJs is
still untouched.
In parallel to intensive on-going material/device research that

aim to tackle this grand challenge by significantly reducingMTJ
write error rate while still maintaining sufficient margin, intu-
itively it can be highly desirable if the architecture and appli-
cation can effectively tolerate high random memory write error
rates. Since backhopping and LPBS induced random errors only

Fig. 1. Normalized IPC performance vs. write error rate when choosing one
Hamming code for each error rate.

occur whenMTJs are being written, it is intuitive that we can use
a recursive write-read-verify scheme to mitigate the errors. Its
basic idea is simple: Right after memory write, we read the data
out and verify whether every bit has been correctly written, and
if write errors are identified, subsequent write-read-verify op-
erations will be re-issued until all the bits are correctly written.
This scheme can be directly combined with conventional fault
tolerance techniques, such as error correction codes, to more ef-
fectively handle relatively high random MTJ write error rates.
The key is to leverage extra architectural fault tolerance capa-
bility to largely reduce the average number of write-read-verify
recursions, hence directly reduce the overall performance degra-
dation. Combining recursive write-read-verify with the conven-
tional ECC has been extensively studied in the recent work [15].
Nevertheless, as the random write error rate increases, we

have to use a stronger ECC that demands more coding redun-
dancy and hence increases the size of each data block. Clearly,
a larger data block is subject to more write errors and accord-
ingly demands even stronger ECC. This confliction tends to
largely degrade the effectiveness of such ECC-based solution
under very high write error rates (e.g., 1% and above). Fig. 1
shows the normalized IPC (instruction per cycle) performance
under different write error rate using Hamming code.We can see
that, under error rate of 2%, the average IPC reduces to 93.8%.
In particular, for benchmark “art”, the IPC performance can be
even as low as 84%. We note that, as the location of backhop-
ping and LPBS induced write error can be identified right after
each write-read-verify operation, it is very inefficient to pro-
tect STT-RAM cache with conventional fault tolerant solutions,
which are originally designed to compensate unpredictable de-
fects. This directly motivates the work in this paper, which aims
to findmore efficient fault tolerance technique to fully utilize the
location-aware advantage of random MTJ write error.

III. A DESIGN SOLUTION FOR TOLERATING HIGH RANDOM
MTJ WRITE ERROR RATES

As we discussed in the above section, using the conventional
ECC technique in STT-RAM cache to tolerate write errors be-
comes inefficient when the error rate is high. In this section,
we present a new design solution that can more effectively tol-
erate higher write error rates at smaller computing performance
penalty.

2348 IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 8, AUGUST 2012

Fig. 2. Overview of proposed STT-RAM L2 cache architecture.

A. Architecture Design

The basic idea is to explicitly store the location of write error
using a separate small cache called error storage cache. In
contrast to ECC, this approach can utilize the location-aware ad-
vantage of MTJ write error to dynamically provide just-enough
error correction capability for different cache sub-blocks
using just-enough extra redundant storage space. As a re-
sult, it can more effectively reduce the required number of
write-read-verify recursions. Assuming we target at STT-RAM
based L2 cache, Fig. 2 shows the overview of this proposed
cache architecture, which consists of two main blocks:
1) A conventional STT-RAM L2 cache core that follows the
current L2 cache design practice (e.g., see [21]) and does
not have any protection against the write errors. Hence,
the cache core has to use the recursive write-read-verify
operation to identify and further correct the random MTJ
write errors;

2) A small error storage cache that stores the location of all the
write errors being identified by the write-read-verify oper-
ation. By providing the addresses of error bits when neces-
sary, this error storage cache can help to correct the error
bits and hence maintain the data integrity of the overall L2
cache.

As shown in Fig. 2, the error storage cache contains both
tag and data arrays just as the conventional cache does. The
locations of write errors are stored in the unit of error correction
entry. Each error correction entry consists of three components:
valid bit, block index, and addr-info. The valid bit and block
index locate in the tag array, while the addr-info locates in the
data array. The valid bit indicates the status of the corresponding
entry: setting the valid bit to ‘0’ (false) means that the entry is
inactive and data in block index and addr-info are invalid; while
setting the valid bit to ‘1’ means that data in this entry should
be used to correct the write error. The block index stores the ID
of cache block that contains write error(s) and addr-info stores
the location of one error bit within this cache block.
The error storage cache aims to reduce the number of main

cache core write-read-verify recursions and hence reduce the
computing system performance degradation. Fig. 3 and Fig. 4
illustrate the corresponding overall cache write and read oper-
ation flow, respectively. During the cache write, L2 cache core
first checks its tag array to determine whether it is a hit or miss.

Fig. 3. Cache write operation flow in the proposed cache architecture.

In case of cache hit, the data array and error storage cache are ac-
cessed in parallel. The cache core writes to the data array, reads
the data out and verifies whether any random write errors occur.
In the meantime, the error storage cache identifies its available
error correction entries, which include both empty entries of
which the valid bit is false and active entries that contain the
error location information associated with the cache block being
accessed. If the available entries are sufficient to store the error
information for current cache write, we update the error storage
cache with the new locations and finish the cache write. Other-
wise, we have to issue another write-read-verify operation to re-
duce or eliminate the residual write errors in the corresponding
cache block.
Regarding cache memory read as illustrated in Fig. 4, data

array and error storage cache are only accessed in case of L2
cache hit. If the error storage cache misses, it means the cache

SUN et al.: ARCHITECTURAL EXPLORATION TO ENABLE SUFFICIENT MTJ DEVICE WRITE MARGIN 2349

TABLE I
CACTI REPORT FOR L2 CACHE, ESC(4K,128), ESC(2K,128), ESC(1K,128), ESC(512,128) AND ESC(256,128)

Fig. 4. Cache read operation flow in the proposed cache architecture.

block read from L2 cache core is error free and the operation
is finished; Otherwise, the information of error locations is read
from the error storage cache and used to correct the write errors
in the cache block read from L2 cache core. Since we only need
to flip the value of error bit according to the error location infor-
mation, the error correction latency can be considerably shorter
compared with ECC techniques. As a result, the error correc-
tion operation of proposed error storage cache has little impact
on the read latency of L2 cache.
Another important design issue of error storage cache is how

to avoid/mitigate the potential performance degradation due to
error storage cache update. As error storage cache has to be
updated after L2 cache write, an immediate write operation to
error storage cache may block the subsequent L2 cache read.
To address this issue, we propose two techniques, including
(1) we use a small SRAM buffer in the error storage cache to
temporarily hold the data, and update the error storage cache
during the next L2 cache write. (2) To reduce the number of
write-read-verify recursions in error storage cache update and
hence reduce write latency of error storage cache, we use Ham-
ming code to protect the error storage cache following the same
principle as the conventional ECC-based design solution. Since
the error storage cache is considerably smaller than the L2 cache
core, the ECC-induced overhead tends to be very small in the en-
tire L2 cache. If more than one errors occur during error storage
cache update, we have to repeat the write-read-verify operations
to write the corresponding data again until no more than one
write errors are left.

Fig. 5. Normalized IPC performance for proposed STT-RAM L2 cache that is
protected by error storage cache (ESC).

B. An Experimental Case Study

We carry out simulations to evaluate the effectiveness of the
above proposed cache architecture and further compare with
the approaches previously presented in [15] in terms of per-
formance, power consumption, and area overhead. During the
simulation, we use the same experimental methodology to [15],
which includes a cycle-accurate full system simulator PTLsim
[13], modified cache modeling tool Cacti [14], and the selected
14 benchmarks from the SPEC2000 suite [22].
In this case study, we choose the set size of error storage

cache to be 128, which means that the error storage cache is
128-way set associative. By setting the associativity as 128,
we vary the set number of error storage cache to evaluate
the performance vs. cost overhead tradeoffs, where a larger
set number means more redundancy resource is available
in error storage cache. We use ESC (set number, associa-
tivity) to represent the configuration of error storage cache,
where ESC stands for error storage cache. Five representative
ESC configurations are selected in our experiment, including
ESC(4K,128), ESC(2K,128), ESC(1K,128), ESC(512,128)
and ESC(256,128). By using the modified STT-RAM Cacti
tool, we estimate the access time, dynamic energy and area
overhead, and list the results in Table I. We note that, to reduce
the number of write-read-verify recursions in error storage
cache, Hamming code (522,512) is used to protect the data in
each set.
Fig. 5 shows the performance comparison among the above

five different configurations of error storage cache. As we can
intuitively expect, the configuration with larger set number has a
relatively better performance.With the increase of randomwrite
error rate, average IPC performance of all the five configuration

2350 IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 8, AUGUST 2012

Fig. 6. Normalized IPC performance for proposed STT-RAM L2 cache that is
protected by error storage cache (ESC).

reduces. However, two of five configurations, i.e. ESC(4K,128)
and ESC(2K,128) have a much better performance that even
at the error rate of 2% the performance degradation is only
less than 1.1% with respect to that at the error rate of 0.01%.
This means that these two configurations are considerably ef-
fective on reducing the performance degradation induced by
write-read-verify recursions at very high random write error
rates. We then manipulate the simulated data in Fig. 5 and draw
a fitted curve by varying the set number according to the error
rate. The fitted curve and four worst case benchmarks are shown
in Fig. 6. As illustrated in Fig. 6, as the error rate increases from
0.01% to 2%, the IPC performance remains almost constant. At
the error rate of 2%, ESC(2K,128) improves the performance
from about 93% to 97.1% on average compared with the case
when H(71,64) code is being used as shown in Fig. 1. For those
benchmarks with heavy L2 cache access workload, the perfor-
mance improvement can be even higher. Take “art” for example,
its normalized IPC performance is improved from 83.8% to
93.9% when using error storage cache instead of ECC to realize
memory fault tolerance, representing almost 10% improvement.
We then compare the area and energy overhead when using

either error storage cache or ECC to realize memory fault toler-
ance. We consider the normalized area overhead and dynamic
read energy overhead per block regarding to the ideal L2 cache
for both error storage cache and Hamming code. The modeling
results of error storage cache is listed in Table I and the com-
parison results are illustrated in Fig. 7 and Fig. 8. As shown in
Fig. 7, the area overhead of using error storage cache is much
smaller than using ECC when the error rate is below 0.5%. And
their area overhead becomes similar when the error rate further
increases. However, as shown in Fig. 8, the dynamic energy
overhead of using error storage cache is much higher than using
ECC, e.g., at the error rate of 2%, its energy overhead reaches
up to 20%, while that of using ECC is only 6%.
The above comparison between using error storage cache or

ECC to realize memory fault tolerance may suggest that, in
spite of the advantage of much better performance, using error
storage cache tends to incur a considerable energy dissipation
penalty. However, the dynamic energy consumption of L2 cache
is actually not as significant as we may intuitively expect. As
shown in Fig. 9, for the great majority of benchmarks, the en-
ergy consumption of L2 cache only occupies less than 5% with

Fig. 7. Normalized area overhead comparison between proposed error storage
cache (ESC) and error correction code (ECC) technique.

Fig. 8. Normalized dynamic energy overhead comparison between proposed
error storage cache (ESC) and error correction code (ECC) technique.

Fig. 9. Normalized dynamic power consumption comparison among L1 in-
struction cache, L1 data cache and L2 cache.

respect to the whole cache hierarchy. Hence the energy con-
sumption of using error storage cache is relatively insignificant,
especially when taking into consideration that using STT-RAM
cache will save a considerable percentage of leakage power.
In addition, we conduct experiments to examine the sensi-

tivity of the proposed architecture to different configuration pa-
rameters. Table II shows the normalized IPC performance on
average with the associativity size of L2 cache varying from
8-way to 32-way and error storage cache varying from 64-way

SUN et al.: ARCHITECTURAL EXPLORATION TO ENABLE SUFFICIENT MTJ DEVICE WRITE MARGIN 2351

TABLE II
THE ESC’S SENSITIVITY TO SET ASSOCIATIVITY

to 256-way, respectively. As the cache set associativity size in-
creases, the average performance almost stays constantly. The
above results indicate that the proposed approach of using error
storage cache is robust to different cache system parameters.

IV. CONCLUSION

The newly discovered backhopping and low probability
bifurcated switching phenomena make it a grand challenge to
maintain sufficient MTJ device write margin and meanwhile
ensure very low random MTJ write errors for future highly
scaled STT-RAM. This seriously threatens the scalability and
the practical promise of STT-RAM. In parallel to on-going
material/device research that investigates to reduce MTJ write
error rate while still maintaining sufficient margin, this paper
aims to address this grand challenge from the architecture
and application perspective. Focusing on using STT-RAM
to implement low level on-chip cache, we present a fault
tolerance cache architecture design that can tolerate relatively
high random MTJ write error rates. As the simulation results
demonstrate, these design approaches can tolerate up to 2%
of random write error rate in STT-RAM based L2 cache and
meanwhile maintain very good processor speed performance at
small implementation overhead.

ACKNOWLEDGMENT

This research was funded in part by grants from the National
Natural Science Foundation of China (No. 61103048) and the
National Science and Technology Major Project of China (No.
2010ZX01032-001-001-5).

REFERENCES
[1] Semiconductor Industry Association, The International Tech-

nology Roadmap for Semiconductors (ITRS) [Online]. Available:
http://www.itrs.net/reports.html

[2] K. Kim and G. Jeong, “Memory technologies for sub-40nm node,” in
Proceedings of IEEE International Electron Devices Meeting (IEDM),
Dec. 2007, pp. 27–30.

[3] G.W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-
class memory,” IBM J. Res. Develop., vol. 52, no. 4/5, pp. 449–464,
2008.

[4] E. Chen and D. Apalkov et al., “Advances and future prospects of spin-
transfer torque random access memory,” IEEE Trans. Magn., vol. 46,
no. 6, pp. 1873–1878, Jun. 2010.

[5] W. Zhu, H. Li, Y. Chen, and X. Wang, “Current switching in MgO-
based magnetic tunneling junctions,” IEEE Trans. Magn., vol. 47, no.
1, pp. 156–160, Jan. 2011.

[6] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of
the 3D stacked MRAM L2 cache for CMPs,” in Proc. IEEE Int. Symp.
High Performance Computer Architecture, Jun. 2009, pp. 239–249.

[7] W. Xu, H. Sun, X. Wang, Y. Chen, and T. Zhang, “Design of last-level
on-chip cache using spin-torque transfer RAM (STT RAM),” IEEE
Trans. Very Large Scale Integr. Syst., vol. 19, no. 3, pp. 483–493, 2011.

[8] K. Lee and S. H. Kang, “Development of embedded STT-MRAM
for mobile system-on-chips,” IEEE Trans. Magn., vol. 47, no. 1, pp.
131–136, Jan. 2011.

[9] T. Min et al., “A study of write margin of spin torque transfer magnetic
random access memory technology,” IEEE Trans. Magn., vol. 46, no.
6, pp. 2322–2327, Jun. 2010.

[10] T. Min, J. Z. Sun, R. Beach, D. Tang, and P. Wang, “Back-hopping
after spin torque transfer induced magnetization switching in magnetic
tunneling junction cells,” J. Appl. Phys., vol. 105, no. 07D126, 2009.

[11] S.-C. Oh et al., “Bias-voltage dependence of perpendicular
spin-transfer torque in asymmetric MgO-based magnetic tunnel
junctions,” Nature Phys., vol. 5, pp. 898–902, 2009.

[12] J. Z. Sun and M. C. Gaidis et al., “High-bias backhopping in
nanosecond time-domain spin-torque switches of MgO-based mag-
netic tunnel junctions,” J. Appl. Phys., vol. 109, no. 07D109, Apr.
2009.

[13] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microar-
chitecture simulator,” in Proc. IEEE Int. Symp. Performance Analysis
of System and Software, Apr. 2007.

[14] CACTI: An integrated cache andmemory access time, cycle time, area,
leakage, and dynamic power model [Online]. Available: http://www.
hpl.hp.com/research/cacti/.

[15] H. Sun, C. Liu, N. Zheng, T. Min, and T. Zhang, “Design techniques
to improve the device write margin for MRAM-based cache memory,”
in Proc. ACM Great Lakes Symp. VLSI, May 2011, pp. 97–102.

[16] R. Heindl, W. H. Rippard, S. E. Russek, M. R. Pufall, and A. B.
Kos, “Validity of the thermal activation model for spin-transfer torque
switching in magnetic tunnel junctions,” J. Appl. Phys., vol. 109, no.
073910, 2011.

[17] R. Heindl, W. H. Rippard, S. E. Russek, and A. B. Kos, “Physical limi-
tations to efficient high-speed spin-torque switching in magnetic tunnel
junctions,” Phys. Rev. B, vol. 83, no. 054430, pp. 1–4, 2011.

[18] S. Ikeda, K. Miura, and H. Yamamoto et al., “A perpendic-
ular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater.,
vol. 9, pp. 721–724, 2010.

[19] D. C. Worledge, G. Hu, D. W. Abraham, and J. Z. Sun et al., “Spin
torque switching of perpendicular TaCoFeBMgO-based magnetic
tunnel junctions,” Appl. Phys. Lett., vol. 98, no. 022501, 2011.

[20] J. J. Nowak, R. R. Robertazzi, and J. J. Sun et al., “Demonstration of ul-
tralow bit error rates for spin-torque magnetic random-access memory
with perpendicular magnetic anisotropy,” IEEE Magn. Lett., vol. 2, no.
3000204, 2011.

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture a Quanti-
tative Approach, 4th ed. San Mateo, CA: Morgan Kaufmann, 2006.

[22] Standard Performance Evaluation Corporation [Online]. Available:
http://www.spec.org, 2000/2006

