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Abstract— This paper advocates a lifetime-aware progressive
programming concept to improve single-level per cell NAND flash
memory write endurance. NAND flash memory program/erase
(P/E) cycling gradually degrades memory cell storage noise
margin, and sufficiently strong fault tolerance must be used
to ensure the memory P/E cycling endurance. As a result, the
relatively large cell storage noise margin in early memory lifetime
is essentially wasted in conventional design practice. This paper
proposes to always fully utilize the available cell storage noise
margin by adaptively adjusting the number of storage levels
per cell, and progressively use these levels to realize multiple
1-bit programming operations between two consecutive erase
operations. This simple progressive programming design concept
is realized by two different implementation strategies, which are
discussed and compared in detail. On the basis of an approximate
NAND flash memory device model, we carried out simulations
to quantitatively evaluate this design concept. The results show
that it can improve the write endurance by 35.9% and in the
meanwhile improve the average programming speed by 12%
without sacrificing read speed.

Index Terms— NAND flash memory, P/E cycling endurance,
progressive programming, single-level per cell (SLC).

I. INTRODUCTION

THE steady bit cost reduction of NAND flash memory
now makes it economically viable to implement solid-

state drive (SSD) using NAND flash memory. Nevertheless,
continuous technology scaling meanwhile degrades the pro-
gram/erase (P/E) cycling endurance of NAND flash mem-
ory [1]. Mainstream NAND flash memory can store either 1 bit
or 2 bits per memory cell, which are referred to single-level
per cell (SLC) and multilevel per cell (MLC), respectively.
Compared to its MLC counterpart, SLC NAND flash memory
has much higher P/E cycling endurance at the penalty of
higher cost. Although MLC NAND flash memory completely
dominates the consumer and low-end computing market, the
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write-intensive nature of high-end applications demands the
use of SLC NAND flash memory, e.g., SSDs built upon either
only SLC NAND flash memory or hybrid SLC/MLC NAND

flash memory [2]. Therefore, to enable high-end applications
to fully exploit the cost benefit of technology scaling, it is
highly desirable to develop techniques to effectively offset the
impact of technology scaling on SLC NAND flash memory P/E
cycling endurance.

This paper presents a simple progressive programming
concept that allows SLC memory to sustain more writes.
NAND flash memory P/E cycling causes memory cell wear-
out, which manifests as gradual memory cell operational noise
margin degradation, leading to cycling endurance limit. Mem-
ory manufacturers must fabricate enough number of redundant
memory cells to tolerate the worst case noise margin at the
end of memory P/E cycling lifetime. Clearly, the relatively
larger noise margin at the early lifetime of SLC memory is
more than enough to store two levels i.e., conventional SLC
memory essentially wastes the large noise margin during its
early lifetime. This leads to the simple idea of this work:
according to memory wear-out condition, we adaptively adjust
the number of storage levels per cell and progressively use
these more-than-two-level storage capacity to accommodate
more than one 1-bit programming operations between two
consecutive erase operations. Effective endurance is defined
as the total number of 1-bit programming operations that
one memory cell can survive. We can expect that progressive
programming SLC can achieve higher effective endurance than
conventional SLC memory.

This simple progressive programming SLC design concept
can be implemented using two different strategies. The first
implementation strategy is called constant-shift progressive
programming, which always use only two active storage levels
to represent logic 0 and 1, and the active storage levels
always shift upward by one level during each 1-bit pro-
gramming. The other implementation strategy is called fixed-
position progressive programming, where all the storage levels
alternatively represent logic 0 and 1, i.e., each storage level
associates with a fixed logic (either logic 1 or 0). Intuitively,
one may expect that progressive programming SLC memory
using these two similar and straightforward implementation
strategies should behave similarly with similar performance
metrics. Nevertheless, we show that this intuition is wrong,
and the constant-shift progressive programming can achieve
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higher effective endurance and realize higher programming
and read speed. This is mainly because these two different
implementation strategies cause different operational noise
characteristics and employ different programming and read
procedures.

This paper elaborates on these two progressive program-
ming implementation strategies, and discusses their essential
difference and its implications on effectiveness endurance, pro-
gramming, and read speed. We also discuss the corresponding
implementation overhead. To further quantitatively demon-
strate the effectiveness, based on extensive open literature from
device research community, we first developed an approximate
mathematical memory device model that captures major stor-
age distortion sources. Using this device model, we carried
out extensive Monte Carlo simulations to quantitatively study
and compare these two different implementation strategies and
conventional SLC memory. Results show that constant-shift
and fixed-position progressive programming SLC memory can
improve effective endurance by 35.9% and 29.4%, respec-
tively. Compared to its fixed-position counterpart, constant-
shift progressive programming achieves higher programming
speed and higher read speed. Compared to conventional SLC
memory, constant-shift progressive programming can improve
the average programming speed by 12% and maintain the same
read speed.

II. BACKGROUND

To achieve sufficient memory cell operational noise mar-
gin, NAND flash memory programming must achieve a
tight memory cell threshold voltage control, which is typ-
ically realized using incremental step-pulse programming
(ISPP) [3], [4]. However, the noise margin can be seriously
degraded in practice, mainly due to P/E cycling effects and
cell-to-cell interference, which will be discussed in the remain-
der of this section.

A. Effects of P/E Cycling

Flash memory P/E cycling causes damage to the tunnel
oxide of floating gate transistors in the form of charge traps
in the oxide and interface states [5]–[7], which results in
memory cell threshold voltage shift and fluctuation and hence
degrades memory device noise margin. Let N denotes the
number of P/E cycles that memory cells have gone through and
�Ntrap denotes the density growth of either interface or oxide
traps. We can approximately quantify the relation between
interface/oxide traps generation and P/E cycles as

�Ntrap = A · Na (1)

where A is a constant factor fitted from measurements. Such
a power-law relationship is explained by the widely accepted
reaction–diffusion model (R–D) in negative bias tempera-
ture instability [8], [9] and the scattering-induced diffusion
model [10]. Those gradually accumulated traps result in two
major types of noises.

1) Electrons capture and emission events at charge trap
sites near the interface developed over P/E cycling

directly result in memory cell threshold voltage fluc-
tuation, which is referred to as random telegraph noise
(RTN) [11], [12].

2) Interface state trap recovery and electron detrap-
ping [10], [13] gradually reduce memory cell threshold
voltage, leading to the data retention limitation. This is
referred to as data retention noise.

As the significance of these noises grows with the trap density
and trap density grows with P/E cycling, NAND flash memory
cell noise margin monotonically degrades with P/E cycling.
This leads to the NAND flash memory P/E cycling endurance
limit beyond which memory cell noise margin degradation
can no longer be accommodated by the memory system fault
tolerance capability.

B. Cell-to-Cell Interference

In NAND flash memory, the threshold voltage shift of one
floating gate transistor can influence the threshold voltage
of its neighboring floating gate transistors through parasitic
capacitance-coupling effect [14]. This is referred to as cell-
to-cell interference, which has been well-recognized as the
one of major noise sources in NAND flash memory [15]–[17].
Threshold voltage shift of a victim cell caused by cell-to-cell
interference is estimated as [14]

F =
∑

k

(�V (k)
t · γ (k)) (2)

where �V (k)
t represents the threshold voltage shift of one

interfering cell which is programmed after the victim cell, and
γ (k) is coupling ratio.

III. LIFETIME-AWARE PROGRESSIVE PROGRAMMING

From the earlier discussions, it is clear that the raw storage
reliability of NAND flash memory cells gradually degrades
with P/E cycling. During the early lifetime of memory cells
(i.e., the P/E cycling number is relatively small), the oxide
damage is relatively small, which leads to a relatively large
memory cell noise margin and hence good raw storage reli-
ability. Because the oxide damage scales up with the P/E
cycling number in approximate power-law fashions, the raw
storage reliability of memory cells gradually degrades as the
P/E cycling number increases. Given the target P/E cycling
endurance limit (e.g., 10k P/E cycling), each memory word-
line must have enough redundant memory cells so that the
corresponding error correction code (ECC) ensures the storage
integrity as the P/E cycling reaches the endurance limit. As a
result, NAND flash memory cells have more-than-enough noise
margin for most of the time throughout the entire memory
lifetime, especially at its early lifetime.

In this paper, we are interested in leveraging such noise
margin dynamics to improve SLC NAND flash memory write
endurance. The basic idea is very simple: if the present
memory cell noise margin accommodates m > 2 storage
levels per cell, we progressively utilize these multiple storage
levels to enable multiple write-1-bit operations before we
have to erase this cell. This is referred to as progressive
programming, and each multiwrite-single-erase operation is
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After 300 cycles

After 4000 cycles

After 17000 cycles

Fig. 1. Illustration of using memory cell noise margin dynamics to
enable multiple storage levels per SLC NAND flash memory cell and hence
progressive programming.

called a super P/E cycle. Throughout the entire lifetime of
SLC NAND flash memory cells, we can adaptively adjust the
number of available storage levels per cell, which corresponds
to different degree of progressive programming. This is shown
in Fig. 1, where the same ISPP program step-voltage is
used and the threshold voltage distribution becomes wider
because of more significant P/E cycling effects. To gracefully
exploit the gradual noise margin degradation over P/E cycling,
the achievable number of storage levels per cell may not
necessarily be the power of two and can be gradually reduced
one by one as the number of P/E cycles increase. The cycling-
induced damage of NAND flash memory cells is mainly due
to the voltage applied across oxide (referred to as voltage
stress) and electron tunneling current flowing through the
oxide (see [18], [19]). Under the same overall memory cell
threshold voltage window and the same ISPP program step-
voltage, during each super cycle, progressive-programming
SLC memory cells experience the same voltage stress and
same electron tunneling current as their conventional SLC
counterparts during each P/E cycle. This means that each
super P/E cycle tends to induce similar device wear-out as
each P/E cycle in conventional SLC memory. Therefore, it
is reasonable to expect that progressive-programming SLC
memory can sustain the same amount of super P/E cycles
as the amount of P/E cycle in conventional SLC memory,
which implies more write operations (and hence higher write
endurance) compared to conventional SLC memory.

In practice, this simple progressive programming concept
can be implemented using two different strategies. In the
remainder of this section, we will describe these two different
implementation strategies and compare them in terms of
various memory performance metrics. The effectiveness of
this progressive programming concept and difference of these
two different implementation strategies will be quantitatively
evaluated through simulations in Section IV.

0 1

0 1

0 1

The 1st program

The 2nd program

The 3rd program

Fig. 2. Illustration of constant-shift progressive programming. The solid
levels are active to represent logic 0 and 1, while those dashed levels are
inactive.

A. Constant-Shift Progressive Programming

The first implementation strategy is called constant-shift
progressive programming. As illustrated in Fig. 2, it always
uses only two active storage levels to represent logic 0 and 1,
and the active storage levels always shift upward by one level
during each 1-bit programming, i.e., during the first 1-bit
programming within each super cycle, the lowest two storage
levels are active, representing logic 0 and 1. During the second
1-bit programming, the first storage level becomes inactive and
the second and third storage levels become active instead and
represent logic 0 and 1. This process repeats until the highest
storage level is reached, after which the cell needs to be erased.

Fig. 3 shows the operational flow diagram of constant-shift
progressive programming. During each 1-bit programming
operation, based on the input bit and the number of 1-bit pro-
gramming operations that are elapsed within the current super
cycle, we can determine the target storage level. Meanwhile,
we sense the memory cell threshold voltage to determine its
present storage level. If the present storage level is not the
target storage level, we apply the ISPP operations to move the
memory cell threshold voltage into the target storage level.
Because there are only two active storage levels associated
with each 1-bit programming, the verify operation within each
program–verify iteration in ISPP operation only involves two
verify reference voltages, except in the first 1-bit programming
operation, in which only one verify reference voltage is needed
as conventional 1-bit programming. Hence, as illustrated in
Fig. 4, each program–verify iteration contains only two verify
pulses with two verify reference voltages.

B. Fixed-Position Progressive Programming

The second implementation strategy is called fixed-position
progressive programming, where all the storage levels alter-
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Fig. 3. Operational flow diagram of constant-shift progressive programming.

2 verify pulses

One program 
cycle

read pulse before 
programming

Program pulse

Fig. 4. Illustration of program process of 1-bit constant-shift progressive
programming except the first programming within one super P/E cycle.
Because only two levels are active, two verify pulses are needed in every
program-and-verify iteration.

natively represent logic 0 and 1, i.e., each storage level is
always bound with the same fixed logic (either logic 1 or 0).
Therefore, the number of active storage levels in fixed-position
progressive programming monotonically increases with the
write-1-bit operations, i.e., during the first 1-bit programming
within each super cycle, the lowest two storage levels are
active, representing logic 0 and 1. During the second 1-bit
programming, the lowest three storage levels become active.
This is shown in Fig. 5.

Fig. 6 shows the operational flow diagram of fixed-position
progressive programming. During each 1-bit programming
operation, we first sense the memory cell threshold volt-
age to determine its present storage level and hence its
storage logic value (either 1 or 0). If the present storage
logic value does not equal to the input bit, we apply the
ISPP operations to move the memory cell threshold voltage
into the target storage level. Suppose one memory cell can

0 1

0 1

0 1

The 1st program

The 2nd program

The 3rd program

0

0 1

Fig. 5. Illustration of fixed-position progressive programming. Storage levels
in solid lines are active levels.

Fig. 6. Operational flow of fixed-position progressive programming.

accommodate m storage levels. Because we need to move
the threshold voltage of one memory cell only when its
present storage value does not equal to the bit being pro-
grammed, the number of 1-bit programming operations that
one memory cell can sustain during each super cycle is lower
bounded by m − 1. This is in contrast to the earlier constant-
shift progressive programming, in which the number of
1-bit programming operations that one memory cell can sus-
tain during each super cycle is exactly equal to m−1. However,
as each page in NAND flash memory covers a large amount
of cells (e.g., 512 B to 4 kB) and the number of 1-bit fixed-
position progressive programming that each page can sustain
during each super cycle is limited by the covered worst case
cell, it is reasonable to expect that this number (almost) always
equals m − 1.

During the kth 1-bit fixed-position progressive programming
within each super cycle, each one of the lowest k + 1 storage
levels will be used by some memory cells among the large
number of memory cells in each page. Hence, the word-
line voltage must sweep through all the k verify reference
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Fig. 7. Illustration for program process of the kth 1-bit fixed-position
progressive programming within one super P/E cycle.

voltage during each program–verify cycle in ISPP operation,
as illustrated in Fig. 7.

C. Discussions and Comparisons

This subsection discusses and compares the conventional
SLC memory and progressive-programming SLC with the
above-mentioned two different implementation strategies in
terms of major memory system metrics. For a fair compar-
ison, we assume that all the scenarios use the same ISPP
programming step-voltage �Vpp, and have the same overall
threshold voltage window (i.e., the highest storage level in
progressive programming is the same as the high storage level
in conventional SLC).

1) Programming Speed and Cell-to-Cell Interference: Both
programming speed and cell-to-cell interference depend on
the ratio of the largest memory cell threshold voltage shift
during each programming operation over the programming
step-voltage �Vpp. If �Vpp is fixed, as we reduce the largest
memory cell threshold voltage shift, the memory program-
ming speed increases and worst case cell-to-cell interference
reduces. In conventional SLC memory, the largest memory
cell threshold voltage shift is from the erased state (i.e., the
lowest storage level) to the programmed state (i.e., the highest
storage level). In constant-shift progressive programming, as
shown in Fig. 2, the largest memory cell threshold voltage
shift is from the erased state (i.e., the first storage level) to
the third storage level, because the erased state tends to have
a much wider distribution than the other programmed storage
levels. In fixed-position progressive programming, as shown
in Fig. 5, the largest memory cell threshold voltage shift is
from the erased state to the second storage level. Clearly,
both progressive-programming implementation strategies can
reduce the largest memory cell threshold voltage shift, which
leads to higher programming speed and less worst case cell-
to-cell interference than conventional SLC.

We then further discuss the comparison between the two
different progressive programming implementation strategies.
Comparing Fig. 2 and Fig. 5, both implementation strategies
have the same programming speed of the first 1-bit progressive
programming within each super cycle. For the second 1-bit

progressive programming, the fixed-position strategy has a
higher programming speed because the constant-shift strat-
egy results in a larger memory cell threshold voltage shift
(i.e., from the erased state to the third storage level). Never-
theless, starting from the third 1-bit progressive programming,
the constant-shift strategy tends to have a higher programming
speed for two reasons.

1) In fixed-position progressive programming, during each
1-bit progressive programming, there are always some
memory cells whose threshold voltage shifts from the
erased state to the second storage level, leading to
a relatively large shift. In constant-shift progressive
programming, starting from the third 1-bit progressive
programming, memory cell threshold voltage always
shifts from the i th programmed level to the (i + 2)th
programmed level (i > 1), which may lead to a shift less
than that of fixed-position progressive programming, as
programmed states are narrower than the erased state.

2) In fixed-position progressive programming, the
number of verify pulses during each program–verify
iteration gradually increases, whereas constant-shift pro-
gressive programming always involves only two verify
pulses except the first 1-bit constant-shift progressive
programming.

Compared to constant-shift progressive programming, fixed-
position progressive programming is subject to more severe
cell-to-cell interference. In fixed-position progressive pro-
gramming, if one memory cell stores the same value over
several consecutive 1-bit programming operations, this cell
will not be programmed (i.e., its threshold voltage should
stay in the same level). As a result, the effects of cell-to-cell
interference from its neighboring memory cells accumulate
over those consecutive 1-bit programming operations, leading
to gradually reduced noise margin. In the worst case, the
victim cell stays in the erased state throughout the entire
super cycle while the threshold voltages of all its neighboring
cells always move up, and the overall cell-to-cell interference
experienced by the victim cell is same as the conventional
SLC memory. Therefore, large noise margin is required to
accommodate such worst case cell-to-cell interference in fixed-
position progressive programming. On the other hand, in
constant-shift progressive programming, the threshold voltage
of one memory cell at most stays only at the same storage
level over two consecutive 1-bit programming operations,
leading to less accumulated cell-to-cell interference effect. The
worse case cell-to-cell interference in fixed-position progres-
sive programming directly degrades certain memory system
performance metrics such as endurance and retention.

2) Read Latency: Flash memory read latency is approx-
imately proportional to the number of active storage levels
per cell that must be distinguished during the read operation.
To distinguish among s storage levels for all cells within one
page, NAND flash memory has to carry out s − 1 sensing
iterations, and each sensing iteration targets at one sensing
threshold between two adjacent active storage levels and
involves bit-line/word-line charging and discharging opera-
tions. In conventional SLC and the constant-shift progressive
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programming SLC flash memory, there are always only two
active storage levels per cell, hence both have a similar read
latency.

However, when using fixed-position progressive program-
ming, the number of active storage levels monotonically
increases within each super P/E cycle. As a result, the read
latency also increases as more 1-bit progressive programming
operations arecarried out within each super P/E cycle. Let
the maximum number of storage levels per cell is m. In the
worst case, after the last 1-bit progressive programming, we
have to carry out (m − 1) sensing iterations to read the entire
page, which results in (m − 1) times longer read latency than
fixed-position progressive programming and conventional SLC
memory. Clearly, the average read latency of 1-bit constant-
shift progressive programming is m − 1/2 times longer than
the other two scenarios.

3) Implementation Overhead: Although the proposed pro-
gressive programming improves the effective endurance of
SLC NAND flash memory, in the meanwhile, it incurs certain
implementation overheads. First, NAND flash memory con-
troller must keep record of sufficient run-time information
in support of the progressive programming, leading to extra
storage overhead. We note that the flash memory controller
already needs to track the number of erase cycles for the
purpose of wear-leveling and garbage collection [20], [21].
Therefore, as all the pages in each block must be programmed
consecutively, we only need to keep record of: 1) the number
of 1-bit progressive programming operations that are elapsed
during present super P/E cycle and 2) the index of the page that
is most recently programmed. As these run-time information
is on a block-by-block basis, and the information associated
with each block needs at most few bytes only, the total
capacity of these run-time information is largely negligible.
For example, let us consider a 16 GB SLC NAND flash
memory chip with 4 kB page size, which contains 4000 blocks
and each block contains 128 pages. Hence, we need 7 bits
to record the index of the most recently programmed page
within each block. Suppose the maximum number of 1-bit
progressive programming operations within one super P/E
cycle is represented with 3 bits. Then we need to store 10
extra bits for each block, resulting in only 5 kB data for all
the 4000 blocks in total. Hence, the incurred extra storage
overhead is not significant. In addition, as the controller can
use embedded SRAM or an off-chip DRAM to store and
update these 5 kB data during the run time, they will be
written to NAND flash memory only when the storage system
is powered off. During write operations, except the page data,
the flash memory controller needs to transfer these 10-bit
information and the number of erased operations undergone
by the block to the flash memory. Compared to the large page
data size that ranges from 512 B to 4 kB, the transfer of these
extra few bytes do not incur noticeable data transfer overhead.

Second, progressive programming SLC NAND flash memory
chips must be able to support run-time dynamic configuration
of the number of storage levels per cell and the position of
each storage level, which clearly complicates the memory
peripheral circuit design. Because the memory still behaves
as SLC, the page buffer size will not increase. During each

programming operation, the 1-bit per cell page buffer contains
the bit to be programmed into each cell, and the bit-line
inhibition will be enabled once the verify cycle shows the
match between current threshold voltage level and the bit to be
programmed. During write operations, based on the received
extra information sent from the controller as discussed earlier,
the flash memory decides the number of allowable 1-bit write
operations within each super cycle and the corresponding
storage level locations. Regarding the peripheral circuits, on-
chip charge pump and voltage regulator generates more dif-
ferent reference voltage values to support the different storage
level locations. Because the maximum number of storage
levels should not be too large (at most 5 or 6), the on-
chip charge pump and voltage regulator should not be much
more complicated than that in existing multibit per cell NAND

flash memory. Hence, we expect that the impact on peripheral
circuit complexity may not be significant.

IV. SIMULATIONS

For the purpose of quantitative evaluation, we develop a
quantitative NAND flash memory device model that captures
the major threshold voltage distortion sources described in
Section II. On the basis of this model, we carry out simula-
tions to evaluate the proposed progressive programming SLC
memory design strategy and compare the above-mentioned
two different implementation strategies.

A. NAND Flash Memory Device Model

1) Erase and Programming Operations: The threshold volt-
age of erased memory cells tends to have a wide Gaussian-
like distribution [22]. Hence, we approximately model the
threshold voltage distribution of erased state as

pe(x) = 1

σe
√

2π
e
− (x−μe)2

2σ2
e (3)

where μe and σe are the mean and standard deviation of
the erased state. During each program-and-verify cycle, the
floating gate transistor threshold voltage is first boosted up
to �Vpp and then compared to the verify reference voltage.
If its threshold voltage is lower than the verify voltage,
the program-and-verify recursion will continue, otherwise,
the corresponding bit-line will be configured so that further
programming of this cell is inhibited. At older technology
nodes (e.g., 90-nm node), the threshold voltage of programmed
states tends to have a uniform distribution with the width
of �Vpp [12]. Nevertheless, for highly scaled technology
nodes (e.g., 65 nm and below), the electron injection statistical
spread [23] becomes significant, which tends to make the
threshold voltage of programmed states approximately follows
a Gaussian distribution. Hence, in this paper, we model the
ideal distribution of each programmed state as

pp(x) = 1

σp
√

2π
e
− (x−μp)2

2σ2
p (4)

where μp and σp are the mean and standard deviation of
the programmed state. As discussed in Section II, such ideal
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Fig. 8. Illustration of the approximate NAND flash memory device model to incorporate major threshold voltage distortion sources.

threshold voltage distribution is largely distorted mainly due
to RTN, data retention, and cell-to-cell interference. Modeling
of these noises is described as follows.

2) Random Telegraph Noise: RTN causes random fluctua-
tion of memory cell threshold voltage, and we can model the
probability density function pr (x) of RTN-induced threshold
voltage fluctuation as a symmetric exponential function [12]

pr (x) = 1

2λr
e− |x |

λr . (5)

As the significance of RTN is proportional to the interface
state trap density, we set the mean of RTN, i.e., μRTN = 1

λr
,

approximately follows:

μRTN = ARTN · NaI T (6)

where aI T is the exponent a in (1) for interface state traps.
3) Retention Noise: Memory cell threshold voltage reduc-

tion during data retention is mainly due to interface state
trap recovery and electron detrapping, especially for technol-
ogy nodes below 90 nm. Because of their Poisson statistics
nature [7], we can approximately model the threshold voltage
reduction as a Gaussian distribution, i.e., pt (x) = N (μd , σ 2

d ).
Both mean and variation are proportional to the sum of
interface state traps and oxide traps (i.e., At · NaI T + Bt · NaOT ,
where the first item and second items correspond to interface
state traps and oxide traps, respectively), and also proportional
to the logarithm of data retention time [7], [24].

In addition, the significance of threshold voltage reduction
during data retention tends to be proportional to the initial
threshold voltage magnitude also [25], i.e., the higher the
initial threshold voltage, the faster is the memory cell threshold
voltage to reduce. Hence, we set that the generated retention
noise approximately scale Ks(x − x0), where x is the initial
threshold voltage, and x0 and Ks are constants.

4) Cell-to-Cell Interference: Different NAND flash memory
bit-line structures lead to different modeling of cell-to-cell
interference. In current design practice, there are two different
bit-line structures, including conventional even/odd bit-line
structure [26], [27] and all-bit-line structure [28], [29]. In
even/odd bit-line structure, memory cells on one word-line
are alternatively connected to even and odd bit-lines and they
are programmed at different time. As a result, an even cell is
mainly interfered by five neighboring cells and an odd cell
is interfered by only three neighboring cells. Cells in all-
bit-line structure suffers less cell-to-cell inference than even
cells in odd/even structure, and the all-bit-line structure most
effectively supports high-speed current sensing to improve the
memory read and verify speed. Therefore, in this paper, we

only consider SLC NAND flash memory with the all-bit-line
structure.

To capture inevitable process variability, we set both the
vertical coupling ratio γy and diagonal coupling ratio γxy as
random variables with bounded Gaussian distribution

pc(x) =
⎧
⎨

⎩
cc

σc
√

2π
· e

− (x−μc)2

2σ2
c , if |x − μc| ≤ wc

0, else
(7)

where μc and σc are the mean and standard deviation, and cc

is chosen to ensure the integration of this bounded Gaussian
distribution equals one.

5) Overall NAND Flash Model: On the basis of the earlier
discussions, we can approximately model NAND flash memory
device characteristics as shown in Fig. 8, based on which we
can simulate memory cell threshold voltage distribution and
hence obtain memory cell raw storage reliability. According
to (3) and (4), we obtain the ideal threshold voltage distri-
bution function pp(x) right after programming. Recall that
ppr(x) denotes the RTN distribution function [see (5)], and let
par(x) denotes the threshold voltage distribution after incor-
porating RTN, which is obtained by convoluting pp(x) and
pr (x), i.e.,

par(x) = pp(x)
⊗

pr (x). (8)

The cell-to-cell interference is further incorporated based
on (2). Let pac denotes the threshold voltage distribution
after incorporating cell-to-cell interference and retention noise
distribution is denoted as pt (x). The final threshold voltage
distribution p f is obtained as

p f (x) = pac(x)
⊗

pt(x). (9)

The above-presented approximate mathematical model for
simulating NAND flash memory cell threshold voltage is fur-
ther demonstrated using the following example.

Example 1: Let us consider single-bit per cell NAND flash
memory. We set normalized σe and μe of the erased state
as 0.35 and 1.4, respectively. For programmed state, we set
the normalized program step-voltage �Vpp as 0.2, and its
deviation as 0.05, with mean as 4.3. According to [10], the
exponent a in (1) for interface state and oxide traps generation
is aI T = 0.62 and aOT = 0.3, respectively. For RTN, we
set ARTN = 1.81 × 10−4. Regarding retention noise, we set
σd = 0.3|μd |, and At = 3.5 × 10−5 and Bt = 2.35 ×
10−4 (these parameters are chosen to match the measurement
results [10] that show the ratio of threshold voltage reduction
due to interface state trap recovery and electron detrapping is
0.7:0.3). Regarding the influence of initial threshold voltage on
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Fig. 9. Simulated results to show the effects of RTN, cell-to-cell interference,
and retention on memory cell threshold voltage distribution under 10k P/E
cycling with 10-year storage period.
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Fig. 10. Simulated threshold voltage distribution after 10 k P/E cycling
with 10 years storage period and 100 k P/E cycling with 10-year storage
period, which clearly shows the dynamics inherent in NAND flash memory
characteristics.

retention noise, we set x0 = 1.4 and Ks = 0.333. According
to [16], [30], we set the means of γy and γxy as 0.12 and 0.009,
respectively. For the modeling of coupling capacitance, we set
wc = 0.1 μc and σc = 0.4 μc. We carry out Monte Carlo
simulations to obtain the cell threshold voltage distribution
at different stages of the whole NAND flash model under
10k P/E cycling and after 10-year storage limit, as shown in
Fig. 9. The final threshold voltage distributions under 100 P/E
cycling with a one month storage period and 10k P/E cycling
with 10-year storage period are both shown in Fig. 10. These
results clearly show the dynamic characteristics of NAND

flash memory.
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Fig. 11. The allowable number K p of 1-bit progressive programming
operations within one super P/E cycle for two progressive programming
schemes under various erase cycles.
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Fig. 12. Effective endurance comparison of conventional SLC, 1-bit
constant-shift progressive programming and 1-bit fixed-position progressive
programming.

B. Simulation Results

We use the approximate NAND flash memory device model
described earlier with the same parameters used in Exam-
ple 4.1 in the following simulations. In addition, we assume
that the controller or flash memory chip employs the simple
postcompensation [31] technique to mitigate the effect of cell-
to-cell interference. To ensure a fair comparison, we assume
that all the scenarios use the same programming step-voltage
and have the same overall threshold voltage window. We set
the page size as 4 kB and the target page failure rate as 10−15

after ECC decoding, and set the target P/E cycling endurance
as 100 k with the data retention of 10 years. On the basis
of the simulations, a binary BCH code with the code rate
of 94% could achieve the target page error rate. Under such
memory system configuration, we carry out extensive Monte
Carlo simulations to estimate the allowable number of storage
levels per cell under various P/E cycling conditions in support
of progressive programming. As discussed earlier, the two
different progressive programming implementation strategies
subject to different worst case cell-to-cell interference. Hence,
even after the use of postcompensation for mitigating cell-to-
cell interference, these two different implementation strategies
subject to different noise characteristics under the same P/E
cycling condition, which leads to different allowable number
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Fig. 13. Simulated threshold voltage distributions over four consecutive
constant-shift progressive programming operations within one super P/E cycle,
when the allowable number of storage levels is five.
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Fig. 14. Simulated threshold voltage distributions over three consecutive
fixed-position progressive programming operations within one super P/E
cycle, when the allowable number of storage levels is four.

of storage levels per cell. Let Ne denote the number of erase
cycles that are elapsed, and K p denote the allowable number
of 1-bit progressive programming operations within one super
P/E cycle. On the basis of our simulation, for constant-shift
progressive programming implementation strategy, we have

K p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4, if Ne ≤ 3, 200

3, if 3, 200 < Ne ≤ 8, 500

2, if 8500 < Ne ≤ 24, 200

1, if 24, 200 < Ne ≤ 100, 000.

For fixed-position progressive programming implementation
strategy, we have

K p =

⎧
⎪⎨

⎪⎩

3, if Ne ≤ 6, 900

2, if 6, 900 < Ne ≤ 22, 500

1, if 22, 500 < Ne ≤ 100, 000.

Fig. 11 shows how the value of K p changes with the
number of erase cycles under these two different progressive
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Fig. 15. Programming speed comparison of conventional SLC, constant-shift
progressive programming SLC, and fixed-position progressive programming
SLC under various erase cycles. The programming speed of conventional SLC
is normalized as one.
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Fig. 16. Read speed comparison of conventional SLC, constant-shift
progressive programming SLC, and fixed-position progressive programming
SLC under various erase cycles. The read speed of conventional SLC is
normalized as one.

programming implementation strategies. Fig. 12 further illus-
trates the comparison among conventional SLC and these
two progressive programming implementation strategies with
respect to effective endurance. It shows that the constant-
shift and fixed-position progressive programming improve the
effective endurance by 35.9% and 29.4%, respectively.

To further illustrate the difference between constant-shift
and fixed-position progressive programming implementation
strategies, Fig. 13 shows the simulated threshold voltage
distributions (after the use of post-compensation for cell-to-
cell interference mitigation) over four consecutive constant-
shift progressive programming operations within one super
P/E cycle, where the allowable number of storage levels
is five. Fig. 14 shows simulated threshold voltage distributions
(after the use of postcompensation for cell-to-cell interference
mitigation) over three consecutive fixed-position progressive
programming operations within one super P/E cycle, where
the allowable number of storage levels is four.

On the basis of the simulation results, we further estimate
and compare programming speed and read speed of the three
scenarios. According to [3], [32], [33], the program pulse and
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verify pulse are set to last 20 and 8μs, respectively. Fig. 15
shows the programming speed comparison under various erase
cycles, where the programming speed of conventional SLC
is normalized as one and remains unchanged over the entire
memory lifetime. The ratio of overall average programming
speed of conventional SLC, constant-shift scheme, and fixed-
position scheme is 1:1.12:1.10.

Fig. 16 shows the read speed comparison. As discussed in
Section III-C2, conventional SLC and constant-shift progres-
sive programming SLC have the same read speed over the
entire memory lifetime, which is normalized as one in Fig. 16.
Fixed-position progressive programming has lower read speed
than the other two. The ratio of the average read speed of these
three scenarios is 1:1:0.78. The above-mentioned simulations
results suggest that progressive programming improves SLC
memory endurance and meanwhile increase programming
speed, and the constant-shift progressive programming imple-
mentation strategy should be preferred over its fixed-position
counterpart.

V. CONCLUSION

This paper presented a simple design approach for improv-
ing SLC NAND flash memory effective endurance. As mem-
ory P/E cycling increased, NAND flash memory cell storage
noise margin and hence raw storage reliability accordingly
degraded. To ensure the system storage integrity, sufficiently
strong memory fault tolerance must be employed to handle
worst case cell storage noise margin at the end of mem-
ory P/E cycling lifetime. This made the cell storage noise
margins at the early memory P/E cycling lifetime essen-
tially under-utilized. This paper presented a progressive pro-
gramming design concept to trade such under-utilized cell
storage noise margin to improve effective endurance. We
further present and compare two strategies for practically
implementing this simple progressive programming design
concept. On the basis of a flash memory device model, we
carry out extensive simulations to evaluate the effectiveness
of this progressive programming design approach and com-
pare these two different implementation strategies. Results
suggested that this simple progressive programming design
approach is an attractive option to improve SLC NAND flash
memory endurance and meanwhile improve programming
speed.
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