
A 54 MBPS (3, 6)-REGULAR FPGA LDPC DECODER

Tong Zhang and Keshab K. Parhi

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455, USA

E-mail:{tzhang, parhi}@ece.umn.edu

ABSTRACT

Applying a joint code and decoder design methodology, we
develop a high-speed (3, k)-regular LDPC code partly par-
allel decoder architecture, based on which a9216-bit, rate-
1/2 (3, 6)-regular LDPC code decoder is implemented on
Xilinx FPGA device. When performing maximum18 iter-
ations for each code block decoding, this partly parallel de-
coder supports a maximum symbol throughput of54 Mbps
and achieves BER10−6 at2dB over AWGN channel.

1. INTRODUCTION

Thanks to its excellent performance, Low-Density Parity-
Check (LDPC) code [1][2] has been widely considered as
a next-generation error-correcting code for telecommunica-
tion and magnetic storage. Defined as the null space of a
very sparseM ×N parity check matrixH, an LDPC code
is typically represented by a bipartite graph, called Tanner
graph, in which one set ofN variablenodes corresponds to
the set of codeword, another set ofM checknodes corre-
sponds to the set of parity check constraints and each edge
corresponds to a non-zero entry in the parity check matrix
H. An LDPC code is known as (j, k)-regular LDPC code
if each column and each row in its parity check matrix have
j andk non-zero entries, respectively. The construction of
LDPC code is typically random. As illustrated in Fig. 1,
LDPC code is decoded by the iterative belief-propagation
(BP) algorithm [2] that directly matches its Tanner graph.

variable nodes

check nodes

information
check−to−variable

variable−to−check
information

Fig. 1. Tanner graph representation of a LDPC code and the
decoding message flow.

This research was supported by the Army Research Office by grant
number DA/DAAG19-01-1-0705.

A fully parallel decoder is realized by directly instantiat-
ing the BP decoding algorithm to hardware. Such fully par-
allel decoder could achieve extremely high decoding speed,
e.g.,a 1024-bit, rate-1/2 LDPC code fully parallel decoder
[4] with the maximum symbol throughput of1 Gbit/s has
been implemented using ASIC technology. However, the
primary disadvantage of fully parallel design is that with
the increase of code length the hardware complexity will
become more and more prohibitive for many practical pur-
poses,e.g., the ASIC LDPC decoder [4] with only1K-bit
code length consumes1.7M gates. Moreover, as pointed
out in [4], the routing overhead is quite formidable due to
the large code length and randomness of the Tanner graph.

A joint code and decoder design methodology [5] was
recently proposed for (3, k)-regular LDPC code and partly
parallel decoder design to achieve appropriate trade-offs be-
tween hardware complexity and decoding throughput. In
this paper, applying the proposed joint design methodology,
we develop an elaborate (3, k)-regular LDPC code high-
speed partly parallel decoder architecture based on which
we implement a9216-bit, rate-1/2 (3, 6)-regular LDPC code
decoder using Xilinx Virtex FPGA device. We significantly
modify the original decoder structure [5] to improve the de-
coding throughput and simplify the control logic design. We
propose a novelconcatenatedscheme to realize the ran-
dom connectivity by using two concatenated routing net-
works, where the random hardwire routings are localized
to significantly reduce the routing overhead. Based on the
post-routing static timing analysis, with the maximum18
decoding iterations, this decoder supports a maximum sym-
bol throughput of54 Mbps and achieves BER10−6 at 2dB
over AWGN channel.

2. JOINT CODE AND DECODER DESIGN

In this section we briefly describe the joint (3, k)-regular
LDPC code and decoder design methodology according to
[5]. The essential objective of this joint design approach
is to construct an LDPC code that not only fits to a high-
speed partly parallel decoder but also has large average cy-
cle length in its 4-cycle free Tanner graph. This joint de-

sign process is outlined as follows and the corresponding
schematic flow diagram is shown in Fig. 2.

1. Construct two matrices,H1 andH2, in such a way
that [HT

1 ,HT
2]T defines a (2, k)-regular LDPC code

whose Tanner graph has the girth1 of 12;
2. Develop a partly parallel decoder that is configured

by some constrained random parameters and defines
a (3, k)-regular LDPC code ensemble, in which each
code has the parity check matrixH = [HT

1 ,HT
2 ,HT

3]T ;
3. Select a good (3, k)-regular LDPC code from the code

ensemble.

H= H
H

Constrained Random
Parameters

deterministic
input

Selected Code
Construction of

(3,k)−regular LDPC code
ensemble defined by

H=

random input H

HH
H1

2
3

3

High−Speed Partly
 Parallel Decoder

Fig. 2. Joint design flow diagram.

Construction of H1 and H2: As illustrated in Fig. 3, both
H1 andH2 areL · k by L · k2 submatrices. Each block
matrixIx,y in H1 is anL×L identity matrix and each block
matrixPx,y in H2 is obtained by a cyclic shift of anL× L
identity matrix. LetT denote the right cyclic shift operator
whereTu(Q) represents right cyclic shifting matrixQ by u
columns, thenPx,y = Tu(I) whereu = ((x−1)·y) mod L
andI represents theL × L identity matrix. We can prove
that [HT

1 ,HT
2]T defines a (2, k)-regular LDPC code whose

Tanner graph has the girth of12.

H 2
H 3

H 1
P

H =
Pk,1

I 1,1

=
P1,1

Pk,2P1,2

k,k

I

k,k

I

P1,k

1,2I

k,1

1,k

k,2II

L 1

right−most columnleft−most column

2

h

(k,2)H

L

(k,2)
h

L k

(k,2)

L k

L k

L k

Fig. 3. The parity check matrix.

Partly Parallel Decoder: The authors presented a princi-
pal (3, k)-regular LDPC code partly parallel decoder struc-
ture in [5]. Configured by a set of constrained random pa-
rameters, this decoder defines a semi-random (3, k)-regular
LDPC code ensemble in which each code is 4-cycle free
and has the parity check matrix as shown in Fig. 3. For real

1Girth is the length of a shortest cycle in a graph.

applications, we can select a good code from this code en-
semble based on average cycle length comparison combined
with computer simulations. For the detailed description of
this joint design methodology and the principal partly par-
allel decoder structure, readers are referred to [5].

3. PARTLY PARALLEL DECODER
ARCHITECTURE

Applying the joint design methodology, we develop a high-
speed (3, k)-regular LDPC code partly parallel decoder ar-
chitecture and implement a9216-bit, rate-1/2 (3, 6)-regular
LDPC decoder using Xilinx Virtex FPGA device. Com-
pared with the structure presented in [5], this partly parallel
decoder architecture has the following distinct properties:

• A concatenatedconfigurable random 2-D shuffle net-
work implementation scheme is proposed to realize
the random-like connectivity with minimized routing
overhead, which is especially desirable for FPGA im-
plementations;

• To improve the decoding throughput, this decoder con-
tainsk2 Variable Node processor Units(VNU’s) and
3k Check Node processor Units(CNU’s);

• To simplify the control logic design and reduce the
memory bandwidth requirement, this decoder com-
pletes each iteration in2L clock cycles in which CNU’s
and VNU’s work in the1st and2nd L clock cycles,
alternatively.

This decoder defines a semi-random (3, k)-regular LDPC
code ensemble in which each code has the parity check ma-
trix as illustrated in Fig. 3. To facilitate the succeeding de-
scription, we introduce following definitions: Denote the
submatrix consisting of theL consecutive columns inH that
go throughIx,y asH(x,y), in which from left to right each

column is labeled ash(x,y)
i with i increasing from 1 toL, as

shown in Fig. 3. We label the variable node corresponding
to columnh

(x,y)
i asv

(x,y)
i and theL variable nodesv(x,y)

i

for i = 1, · · · , L constitute a variable node group VGx,y.
We arrange theL · k check nodes corresponding to all the
L · k rows of submatrixHi into check node group CGi.

Fig. 4 shows the partly parallel decoder principal struc-
ture. It mainly containsk2 PE Blocks PEx,y for 1 ≤ x, y ≤
k, 3 bi-directional shuffle networksπ1, π2 andπ3 and3 · k
CNU’s. Each PEx,y contains one memory bank RAMsx,y

that stores all the decoding information associated with all
theL variable nodes in the variable node group VGx,y, and
contains one VNU to perform the variable node computa-
tions for theseL variable nodes. Each bi-directional shuffle
networkπi realizes the decoding information exchange be-
tween all theL ·k2 variable nodes and theL ·k check nodes
in CGi. Thek CNUi,j ’s for j = 1, · · · , k perform the check
node computations for all theL · k check nodes in CGi.

RAMsRAMsRAMs

active during

active during
variable node processing

1,1

check node processing

3,k2,k

VNU VNU

k,k

k,k

32

PE1,1

1

VNU

CNU1,1

π(regular & fixed)π

CNU

PE

(regular & fixed)π

CNU2,1 3,1

2,1

CNU

PE2,1

configurable)
(random−like &

1,k CNU CNU

Fig. 4. The principal (3, k)-regular LDPC code partly parallel decoder structure.

This decoder completes each decoding iteration in2L
clock cycles. During the1st and 2nd L clock cycles, it
works in check node processing(CNP) mode andvariable
node processing(VNP) mode, respectively. In the CNP
mode, the decoder performs both the computations of all
the check nodes and the decoding information exchange be-
tween neighboring nodes. In the VNP mode, the decoder
only performs the computations of all the variable nodes.

All the intrinsic, check-to-variable and variable-to-check
information are quantized to5 bits. The iterative decoding
datapath is illustrated in Fig. 5, where the datapath in CNP
mode and VPN mode are represented by solid lines and
dash dot lines, respectively. As shown in Fig. 5, each PE
Block PEx,y contains five RAM blocks: EXTRAM i for
i = 1, 2, 3, INT RAM and DECRAM. Each EXTRAM i
hasL memory locations and the location with the address
d − 1 (1 ≤ d ≤ L) contains the decoding information
exchanged between the variable nodev

(x,y)
d in VGx,y and

its neighboring check node in CGi. The INT RAM and
DEC RAM store the intrinsic information and hard decision
associated with nodev(x,y)

d at the memory location with the
addressd − 1 (1 ≤ d ≤ L). As we will see later, such
decoding information storage strategy greatly simplifies the
control logic for generating the memory access address.

3.1. Check node processing

In the CNP mode, decoder performs the computations of
all the check nodes and decoding information exchange be-
tween neighboring nodes. At the beginning, in each PEx,y

the memory location with addressd−1 in EXT RAM i con-
tains6-bit hybrid data consisting of 1-bit hard decision and
5-bit variable-to-check information associated with the vari-
able nodev(x,y)

d . Each clock cycle this decoder performs
the read-shuffle-modify-unshuffle-writeoperations tocon-
vertone variable-to-check information in each EXTRAM i

to its check-to-variable counterpart. We outline the datap-
ath loop in CNP mode as follows: 1.Read: One6-bit hy-
brid datah

(i)
x,y is read from each EXTRAM i; 2. Shuffle:

Eachh
(i)
x,y goes through the shuffle networkπi and arrives

CNUi,j ; 3. Modify: Each CNUi,j performs the parity check
on the6 input hard decision bits and generates the6 out-
put 5-bit check-to-variable informationα(i)

x,y; 4. Unshuffle:

Send eachα(i)
x,y back to the PE Block via the same path as

its variable-to-check counterpart; 5.Write: Write check-to-
variable informationα(i)

x,y to the same memory location in
EXT RAM i as its variable-to-check counterpart.

We implement each bi-directional I/O connection in the
3 shuffle networks by two distinct sets of wires with op-
posite directions so that the hybrid data from PE Blocks to
CNU’s and the check-to-variable information from CNU’s
to PE Blocks are carried on distinct set of wires. Compared
with sharing one set of wires in time-multiplexed fashion,
this approach has higher wire routing overhead but elimi-
nates the logic gate overhead due to the realization of time-
multiplex and, more importantly, make it feasible to directly
pipeline the datapath loop for higher decoding throughput.

Each EXTRAM i associates with one address genera-
tor AG(i)

x,y that provides the read address in each clock cy-
cle. The write address for writting the check-to-variable in-
formation is obtained via delaying the read address by the
pipelining stages of the datapath loop. The connectivity
among all the variable nodes and check nodes realized by
this decoder is jointly specified by all the address generators
and the3 shuffle networks. Moreover, fori = 1, 2, 3, sub-
matrixHi or the connectivity among all the variable nodes
and the check nodes in CGi is completely determined by all
AG(i)

x,y ’s andπi.

Implementations of AG(i)
x,y and πi for i = 1, 2: Recall that

nodev
(x,y)
d corresponds to the columnh(x,y)

i as illustrated
in Fig. 3 and the decoding information associated with node

18 bits

18 bits INT_RAM

DEC_RAM

1 bit

VNU

5 bits

15 bits

h(1)
x,y

x,yh(i) }{

x,yh(i) }{

x,y
(i) }{α

x,y
(i) }{α

5 bits

15 bits

6 bits

6 bits

6 bits

5 bits

3
5 bits

EXT_RAM_1

EXT_RAM_2

EXT_RAM_3

PEx,y

π (regular & fixed)

π (regular & fixed)

configurable)
(random−like &π

22,j

1CNU1,j

CNU

CNU3,j

hx,y

hx,y

(2)

(3)

Fig. 5. Iterative decoding datapath.

v
(x,y)
d is always stored at addressd − 1. Exploiting the ex-

plicit structure ofH1 andH2, we have

• Each AG(1)
x,y is realized as adlog2 Le-bit binary counter

that is cleared to zero at the beginning of CNP mode;
• The shuffle networkπ1 connects thek PEx,y ’s with

the samex-index to the same CNU;
• AG(2)

x,y as adlog2 Le-bit binary counter that only counts
up to the valueL − 1 and is loaded with the value of
((x− 1) · y) mod L at the beginning of CNP mode;

• The shuffle networkπ2 connects thek PEx,y ’s with
the samey-index to the same CNU.

Notice that the counter load value for each AG(2)
x,y comes

from the construction of each block matrixPx,y in H2.

Implementations of AG(3)
x,y andπ3: The bi-directional shuf-

fle networkπ3 and AG(3)
x,y ’s jointly define the connectivity

between all the variable ndoes and check nodes in CG3,
which is represented byH3. The design of each AG(3)x,y and
π3 are not trivial because of the following requirements:

• The parity check matrixH = [HT
1 ,HT

2 ,HT
3]T should

correspond to a 4-cycle freeTanner graph;
• To makeH be random to some extent,H3 should be

random-like.
To simplify the design process, weseparatelyconceive

AG(3)
x,y ’s andπ3 so that the design of AG(3)x,y ’s andπ3 accom-

plish the above1st and2nd requirement, respectively.

Implementations of AG(3)
x,y: We implement each AG(3)x,y

as adlog2 Le-bit binary counter that counts up to the value
L − 1 and loads a constant valuetx,y at the beginning of
CNP mode. Eachtx,y is generated in random under the
following two constraints:

1. Givenx, we havetx,y1 6= tx,y2 , ∀y1, y2 ∈ {1, · · · , k};
2. Giveny, we havetx1,y−tx2,y 6≡ ((x1−x2)·y) mod L,
∀x1, x2 ∈ {1, · · · , k}.

We can prove that the above constrains are sufficient to
makeH always correspond to a 4-cycle free Tanner graph
no matter how we implementπ3.

Implementation of π3: We develop a novel concate-
nated configurable random shuffle network implementation
scheme forπ3 as described in the following.

Fig. 6 shows the forward path (from PEx,y to CNU3,j)
of the bi-directional shuffle networkπ3. In each clock cy-
cle, it realizes the data shuffle fromax,y to cx,y by two con-
catenated stages:intra-row shuffle andintra-columnshuf-
fle. First, theax,y data block, where eachax,y comes from
PEx,y, passes anintra-row shuffle network array in which

each shuffle networkΨ(r)
x shuffles thek input dataax,y to

bx,y for 1 ≤ y ≤ k. EachΨ(r)
x is configured by 1-bit con-

trol signals(r)
x leading to the fixed random permutationRx

if s
(r)
x = 1, or to the identity permutation (Id) otherwise.

Thek-bit configuration words(r) changes every clock cy-
cle and all theL k-bit control words are stored in ROM
R. Next, thebx,y data block goes through anintra-column

shuffle network array in which eachΨ(c)
y is configured by 1-

bit control signals(c)
y and shuffles thek databx,y to cx,y for

1 ≤ x ≤ k. Thek-bit configuration words(c)
y changes every

clock cycle and all theL k-bit control words are stored in
ROM C. As the output of forward path, thek cx,y ’s with the
samex-index are delivered to the same CNU3,j . To realize
the bi-directional shuffle, we only need to implement each
configurable shuffle networkΨ(r)

x andΨ(c)
y as bi-directional

so thatπ3 canunshufflethek2 data backward from CNU3,j

to PEx,y along the same route as the forward path on distinct
sets of wire.

To make the connectivity realized byπ3 be random-like
and change each clock cycle, we randomly generate the con-
trol words

(r)
x ands

(c)
y for each clock cycle and eachRx and

Cy. Since most modern FPGA devices have multiple metal
layers, the implementations of the two shuffle arrays can be
overlapped from the bird’s-eye view. Therefore, such con-
catenated implementation scheme confines all the routing
wires to small area (in one row or one column), which will
significantly reduce the routing overhead.

(C
 or Id)

(C
 or Id)

a1,1

Output DataInput Data

from PE Blocks

ss

s

s

k

(r)

(r)

1,1b b1,k

bk,1 bk,k

a1,k

a1,1

3,j

(c)(c)
a1,k

1

1

Stage II: Intra−Column ShuffleStage I: Intra−Row Shuffle

k
k

ψ
k
(r)ψ

C
ROM

a ak,1 k,k

(c)
c

c

c

c b1,1 1,1

k,1k,1bk,1

1,1

r=0 ... L−1

R

k,1 k,k

1,1 1,kc c

c c

1,1b

bk,1

π 3

ψ 11
(r)

(R or Id)

(R or Id)k

ψ
1 (c)

1

ROM

1 bit
to CNU ’s

1 bit

1 bit

1 bit

k,k

k

k,1a a

r=0 ... L−1

Fig. 6. Forward path ofπ3.

3.2. Variable node processing

The operations performed in the variable node processing
is quite simple since the decoder only performs all the vari-
able node computations. At the beginning of variable node
processing, the3 5-bit check-to-variable information asso-
ciated with each variable nodev(x,y)

d are stored at the ad-
dressd−1 of the3 EXT RAM i’s in PEx,y. The5-bit intrin-

sic information associated with variable nodev
(x,y)
d is also

stored at the addressd− 1 of INT RAM in PEx,y. As illus-
trated in Fig. 5, in each clock cycle, this decoder performs
the read-modify-writeoperations toconvertthe3 check-to-
variable information associated with the same variable node
to 3 hybrid data consisting of variable-to-check information
and hard decision.

3.3. Data Input/Output

This decoder works simultaneously on3 consecutive code
frames in two-stage pipelining mode: while one frame is
being iteratively decoded, the next frame is loaded into the
decoder and the hard decisions of the previous frame are
read out from the decoder. Thus each INTRAM contains
two RAM blocks to store the intrinsic information of both
current and next frames. Similarly, each DECRAM con-
tains two RAM blocks to store the hard decisions of both
current and previous frames.

The intrinsic information input and hard decision output
schemes are heavily dependent on the floor planning of the
k2 PE Blocks. To minimize the routing overhead, we de-
velop a square-shaped floor planning as illustrated in Fig. 7
and the data I/O scheme is described in the following:

Intrinsic Data Input : The intrinsic information of next
frame is loaded1 symbol per clock cycle. As shown in
Fig. 7, the memory location of each input intrinsic data is
determined by the input load address that has the width of
(dlog2 Le + dlog2 k2e) bits in whichdlog2 k2e bits specify

2
k

Read
Address

PE Block
Select

Intrinsic

PEk,2

PE2,k

DataAddress
Load

5

Output
Decoding

k−1

k−1

k−1 k

k,k

2log L

2log L 2log k2+

2log k2

2log L

Binary decoder

k 2

PE

k

PE
k

1,kPE
2

1,1

PE2,2

2

PE1,2

PE2,1

1

1 2

PEk,1

1

Fig. 7. Data Input/Output structure.

which PE Block is being accessed and the otherdlog2 Le
bits represent the memory location in the INTRAM. The
primary intrinsic data and load address input directly con-
nect to thek PE Blocks PE1,y for 1 ≤ y ≤ k, and from each
PEx,y the intrinsic data and load address are delivered to the
adjacent PE Block PEx+1,y in pipelined fashion.

Decoded Data Output: As shown in Fig. 7, the pri-
mary dlog2 Le-bit read address input directly connects to
thek PE Blocks PEx,1 for 1 ≤ x ≤ k, and from each PEx,y

the read address are delivered to the adjacent block PEx,y+1

in pipelined fashion. Each PE Block outputs1-bit hard de-
cision per clock cycle. Therefore, as illustrated in Fig. 7,
the width of pipelined decoded data bus increases by 1 after
going through one PE Block, and at the rightmost side, we
obtaink k-bit decoded output that are combined together as
thek2-bit primary data output.

4. FPGA IMPLEMENTATION

Based on the above architecture, we implemented a (3, 6)-
regular LDPC code partly parallel decoder forL = 256
using Xilinx Virtex-E XCV2600E device. The LDPC code
length isN = L · k2 = 256 · 62 = 9216 and code rate is
1/2. The target XCV2600E FPGA device contains184 on-
chip block RAMs, each one is a dual-port4K-bit RAM. We
configure each dual-port4K-bit RAM as two independent
single-port256×8-bit RAM blocks so that each EXTRAM i
can be realized by one single-port256× 8-bit RAM block.
Since each INTRAM contains two RAM blocks for stor-
ing the intrinsic information of both current and next code
frame, we use two single-port256 × 8-bit RAM blocks to
implement one INTRAM. The DECRAM is realized by
distributed RAM that provides shallow RAM structures im-
plemented in CLBs. Because all the RAM blocks have fixed
locations, the placement of the decoder is primarily carried
out based on the RAM block locations and we manually
configured the placement of each PE Block according to the
floor planning scheme as shown in Fig. 7. Notice that such
placement scheme exactly matches the structure of the con-
figurable shuffle networkπ3.

Table 1. FPGA resources utilization statistics.
Resource Number Utilization rate
Slices 11,792 46%
Slices Reg. 10,105 19%
4 input LUTs 15,933 31%
IOBs 68 8%
Block RAMs 90 48%

This decoder is described in VHDL and SYNOPSYS
FPGA Express was used to synthesize the VHDL imple-
mentation. The Xilinx Development System tool suite was
used to place and route the synthesized implementation for
the target XCV2600E device with the speed option−7. The
resource utilization statistics are listed in Table 1. Notice
that74% of the total utilized slices, or 8691 slices, are used
for implementing all the CNU’s and VNU’s.

The post-routing static timing analysis results suggest
that the maximum decoder clock frequency can be 56 MHz.
If this decoder performss decoding iterations for each code
frame, the total clock cycles for decoding one frame will
be2s · L + L where the extraL clock cycles is due to the
initialization process, and the maximum symbol decoding
throughput will be56 ·k2 ·L/(2s ·L+L) = 56 ·36/(2s+1)
Mbps. If we sets = 18, the maximum symbol decoding
throughput is 54 Mbps. Fig. 8 shows the corresponding per-
formance over AWGN channel withs = 18, including the
BER (Bit Error Rate), FER (Frame Error Rate) and the av-
erage iteration numbers.

1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R
/F

E
R

E
b
/N

0
(dB)

BER
FER

1 1.5 2 2.5 3 3.5
4

6

8

10

12

14

16

18

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

E
b
/N

0
(dB)

Fig. 8. Simulation results on BER (Bit Error Rate), FER
(Frame Error Rate) and the average iteration numbers.

5. CONCLUSION

Following a joint design methodology, we develop a (3, k)-
regular LDPC code high-speed partly parallel decoder ar-
chitecture and implement a9216-bit, rate-1/2 (3, 6)-regular
LDPC decoder on the Xilinx XCV2600E FPGA device. The
detailed decoder architecture has been presented. With the
maximum 18 decoding iterations, this decoder can achieve
upto54Mbps symbol decoding throughput and the BER10−6

at 2dB over AWGN channel.

6. REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check
Codes, M.I.T Press, 1963. available at
http://justice.mit.edu/people/gallager.html.

[2] D. J. C. MacKay, “Good error-correcting codes based on very
sparse matrices,”IEEE Transactions on Information Theory,
vol. 45, pp. 399–431, Mar. 1999.

[3] T. Zhang, Z. Wang, and K. K. Parhi, “On fi-
nite precision implementation of low-density parity-check
codes decoder,” inProc. of 2001 IEEE Int. Symp. on
Circuits and Systems, Sydney, May 2001. available at
http://www.ece.umn.edu/groups/ddp/turbo/.

[4] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-
b, rate-1/2 low-density parity-check code decoder,”IEEE
Journal of Solid-State Circuits, vol. 37, no. 3, pp. 404–412,
March 2002.

[5] T. Zhang and K. K. Parhi, “VLSI implementation-oriented
(3, k)-regular low-density parity-check codes,” IEEE Work-
shop on Signal Processing Systems (SiPS), Sept. 2001. avail-
able at http://www.ece.umn.edu/groups/ddp/turbo/.

[6] T. Zhang and K. K. Parhi, “Joint code and decoder design for
implementation-oriented (3, k)-regular ldpc codes,” inProc.
of IEEE Asilomar Conference, Nov. 2001, pp. 1232–1236.

