
VLSI Implementation-Oriented
(
�����

)-Regular Low-Density
Parity-Check Codes

Tong Zhang and Keshab K. Parhi
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN, USA
E-mail: � tzhang, parhi � @ece.umn.edu �

Abstract —In the past few years, Gallager’s Low-Density Parity-Check (LDPC) codes
received a lot of attention and many efforts have been devoted to analyze and improve
their error-correcting performance. However, little consideration has been given to the
LDPC decoder VLSI implementation. The straightforward fully parallel decoder ar-
chitecture usually incurs too high complexity for many practical purposes and should
be transformed to a partly parallel realization. Unfortunately, due to the randomness
of LDPC codes, it’s nearly impossible to develop an effective transformation for an ar-
bitrary given LDPC code. In this paper, we propose a joint code and decoder design
approach to construct a class of ( �
	�� )-regular LDPC codes which exactly fit to a partly
parallel decoder implementation and have a very good performance. Moreover, for such
LDPC codes, we propose a systematic efficient encoding scheme by effectively exploiting
the sparseness of its parity check matrix.

1 INTRODUCTION

Gallager’s Low-Density Parity-Check (LDPC) codes [1] have recently received a
lot of attention because of their excellent performance and have been widely consid-
ered as a promising candidate error-correcting coding scheme for many real appli-
cations in telecommunications and magnetic storage.

However, little consideration has been given to the LDPC decoder hardware real-
ization which is required in many applications. Up to the authors’ best knowledge,
only two papers concerning this issue has been reported in the literatures, i.e., [2][3].
The authors of [2] implemented a 1024bit, rate-1/2 prototype fully parallel LDPC de-
coder with the maximum throughput of 1 Gbit/s. However, because of its apparent
high complexity, such a fully parallel implementation is not suitable for many prac-
tical purposes, even short code length (less than 10000 bits) is used, and an effective
design approach to reduce complexity is highly desirable.

To reduce the hardware complexity, we have to effectively transform the fully par-
allel architecture to partly parallel ones. However, due to the randomness of LDPC

This research was supported by the Army Research Office by grant number DA/DAAG55-98-1-0315.

Proc. of the 2001 IEEE Workshop on Signal Processing Systems (SiPS), c
�

IEEE 2001



codes, it’s nearly impossible to find an effective transformation for an arbitrary given
LDPC code. To solve this problem, Boutillon et al. [3] propose to reverse the code
design sequence: Instead of trying to obtain a partly parallel decoder from a given
LDPC code, we can use an available partly parallel decoder to define a constrained
random LDPC code, which leads to the decoder-first code design [3]. However, the
decoder obtained from this design approach contains many independent constrained
random number generators which will incur much complexity for real implementa-
tions and make the entire design process very complicated. Moreover, similar with
the fully random LDPC codes scenario, it’s difficult to develop an efficient encoding
scheme for those LDPC codes obtained from the decoder-first code design.

In this work we consider the efficient partly parallel decoder architecture design
for LDPC codes with short block length (less than 10000 bits) and we believe these
LDPC codes are of great interest from practical point of view. It’s well known that
the LDPC decoding algorithm works well if the corresponding Tanner graph (as ex-
plained later) does not contain too many short cycles. Inspired by the criteria for less
short cycles and the decoder-first code design methodology in [3], we propose a joint
code and decoder design approach to develop a class of implementation-oriented
( ����� )-regular LDPC codes which exactly fit to a partly parallel decoder architecture.
Compared with decoder-first code design, our proposed joint design approach leads
to a much more efficient decoder by eliminating those complicated random number
generators. The performance of such implementation-oriented ( ����� )-regular LDPC
code is nearly identical to the fully random LDPC codes as shown in two design
examples presented in this paper. Moreover, we propose a systematic efficient en-
coding scheme for the implementation-oriented ( ����� )-regular LDPC codes.

2 LOW-DENSITY PARITY-CHECK CODES

A LDPC code is defined as the null space of a very sparse ���
	 parity check
matrix � , and typically is represented by a bipartite graph, sometimes called Tanner
graph, between 	 nodes on one side called variable (or message) nodes and �
nodes on another side called check (or constraint) nodes, as illustrated in Fig. 1. We
say that a LDPC code is (���� )-regular if each variable node has a degree of � and
each check node has a degree of � . The construction of LDPC codes is typically
random under the constraint that the corresponding Tanner graph is 4-cycle free.

check nodes

variable nodes

variable−to−check message

check−to−variable message

Figure 1: Tanner graph representation of a LDPC code and the decoding message
flow.



LDPC codes can be effectively decoded by the iterative belief-propagation (BP)
(also known as sum-product) algorithm [4]. The structure of BP decoding algorithm
directly matches the Tanner graph: decoding message is computed on each vari-
able node and check node and iteratively communicated through the edges between
neighboring nodes. We can summarize BP algorithm as follows:

1. Initialize each variable node with the intrinsic (or channel) information ob-
tained from the received bit, based on this compute the variable-to-check mes-
sage;

2. Deliver the variable-to-check message from variable nodes to check nodes
along the edges of Tanner graph;

3. Each check node generates the check-to-variable message based on all incom-
ing message from connected variable nodes;

4. Deliver the check-to-variable message from check nodes to variable nodes
along the edges of Tanner graph;

5. Using the incoming message and intrinsic information, each variable node up-
dates the estimate of the corresponding bit and generates the outgoing variable-
to-check message;

6. Repeat steps ����� until: (a) current estimated decoded block �� is a valid
codeword ( ���	���
� ), or (b) a fixed number of iterations has occurred.

In the following, we denote both variable-to-check message and check-to-variable
message as extrinsic information. In this work we only consider the soft BP decoding
in which both intrinsic information and extrinsic information are soft (represented
by more than � bit).

3 IMPLEMENTATION-ORIENTED (
�����

)-REGULAR
LDPC CODES

In this section, based on a novel high-girth ( ����� )-regular LDPC code construc-
tion approach, we develop a partly parallel ( ����� )-regular LDPC decoder architecture
which defines an implementation-oriented ( � ��� )-regular LDPC code ensemble. As
shown later, we may consider that each code in this code ensemble is constructed
by letting the decoder insert certain random check nodes into the deterministic high-
girth ( ����� )-regular LDPC code. Thus it is reasonable to expect that the Tanner graph
doesn’t contain too many short cycles and the corresponding code may assume good
performance, which will be further illustrated by two design examples. We call
such a design approach as joint code and decoder design. Moreover, by exploiting
their special structures, we propose a systematic efficient encoding scheme for the
implementation-oriented ( ����� )-regular LDPC codes.

Before presenting the joint design approach, we introduce the definition of girth
average of a graph � [5]: Let ��� denote the length of the shortest cycle that passes
through node � in graph � , then � ����� ����� 	 is denoted as girth average of � ,
where 	 
 � � � is the total node number of � . As proposed in [5], we can use
girth average as an effective criterion for searching good LDPC code over one code
ensemble. The joint design approach is briefly described next and the corresponding
schematic diagram is shown in Fig. 2.



1. Explicitly construct the two matrices, ��� and ��� , so that
�
� 
�� ���� � ����
	 �

defines a ( ����� )-regular LDPC code denoted as �� ;
2. Obtain an elaborated ( ����� )-regular LDPC decoder architecture which defines

a random ( ����� )-regular LDPC code ensemble and each code in this ensemble
is a sub-code of � � ;

3. Use the decoder to randomly generate a certain number of ( � ��� )-regular LDPC
codes from which we select one code with good performance by girth average
comparison and computer simulations;

4. Let � denote the parity check matrix of the selected code. Introduce an ex-
plicit column permutation �
� to generate an approximate upper triangular
matrix ����� 
 �
��� ��� based on which we can obtain an efficient encoding
scheme.

0H   and H1

Construction of

H1H0 ,
H0
H1H=
H2

(3,k)−regular LDPC code 
ensemble defined by

Elaborated (3,k) LDPC
Decoder Architecture

H2

tx,y 1< x,y < k, x,yt    2. 0<       <L  ;

.0, ... , 2 −1
g

1. g independent permutations;

Random Construstion of:

3. f: 2L, ... , 3L−1

Computer Simulations
and

Girth Average Comparison

Transformation
Parity Check Matrix

input
deterministic 

random input

Selected Code

Efficient Encoding

Figure 2: Joint design flow diagram.

3.1 Construction of ��� and ���
In the following, we propose a novel method to construct matrix

�
� 
�� ���� � ���� 	 �

which defines a ( � ��� )-regular LDPC code with girth of 12. Although 12 is not a
very large girth value, our simulations show that it is sufficient for generating good
implementation-oriented ( � ��� )-regular LDPC codes for short code lengths (less than
10000 bits) which are of interest. More important, such construction method will
lead to a very simple decoder architecture and provide more freedom on the selection
of code length: Given � , any code length that could be factored as � � � � is permitted,
where � can not be factored as � 
�� � � , ! � �"�#%$ � � � � � ��� � �'& .

The structures of � � and � � are shown in Fig. 3. Each block matrix (*),+ - in � �
is an � �.� identity matrix and each block matrix / )'+ - in �0� is obtained by a cyclic
shift of an � �1� identity matrix. Let 2 denote the right cyclic shift operator where2435�761� represents right cyclic shifting matrix 6 by 8 columns, then / ),+ - 
 2 � �9(:�
where � 
 �;�7< ��� � �,=>�@?BADC1� and ( represents the � �%� identity matrix. For
example, let � 
 � , < 
 � and = 
FE , we have � 
 �G< � ��� � =?BADC4� 
IH ?BADC � 
 � ,
then

/KJL+ M 
 2 J �9(:� 

NOOOO
P
� � � � �� � � � �� � � � �� � � � �� � � � �

QSRRRR
T�U



2,k1,k

k,21,2

k,12,1

P P Pk,k

P P P2,2

P PP1,1

2,k

1,k

k,2k,1

2,1

1,2

1H = 0
0 0

0

2,2
0

0

0

0
0

H =
0

I

k,k

1,1

0

I

I

I
I

I

I
I

I

2

L

N=L k

Figure 3: Structure of submatrices ��� and �0�
Clearly, matrix

�
� 
 � ���� � ����
	 � defines a ( ����� )-regular LDPC code with �� � �

variable nodes and �'� ��� check nodes. Let � denote the corresponding Tanner
graph, we have the following theorem pertaining to the girth of � :

Theorem 3.1 If � can not be factored as � 
 � �,� , where � � �B#F$ � � � � � ��� � �'& ,
then the girth of � is 12 and there is at least one 12-cycle passing each check node.

3.2 Elaborated (
�����

)-regular LDPC decoder architecture

Denote the ( ����� )-regular LDPC code defined by
�
� 
 � ���� ������ 	 � as � � . In

the following, we present an elaborated ( ����� )-regular LDPC decoder architecture as
shown in Fig. 4. It will be shown that this decoder defines a ( � ��� )-regular LDPC
code ensemble in which each code has � � � � variable nodes and � � � � check nodes
and is a sub-code of � � .

This decoder contains � � memory banks, the 8��	� memory bank is represented as
MEM BANK-( < �5= ), where < 
 �;�G8 � � � ?BA C �>��
 � and = 
� 3�� ���� 
 � , and
each one stores all the intrinsic information (in RAM � ), extrinsic information (in
two-port RAM � � , � � and � � ) and estimated decoded bits (in RAM � ) associ-
ated with � variable nodes; a � -layer shuffle network ( � � � or Id); a � -layer shuffle
network; � Check Node processor Units (CNU’s) and � � Variable Node processor
Units (VNU’s). One Address Generator (AG) is associated with each memory bank
to provide the access address. The � -layer shuffle network consists of � � -layer
shuffle networks, each one is configured by a single control bit � 3 leading to a given
permutation � 3 if � 3 
 � ( � �3 ), or to the identity permutation (Id= � �3 ) otherwise.
Thus, configured by the � -bit word � 
 �	��� � � � � � � ��� ���;� , the overall permutation
pattern � is the product of � permutations: � 
 � �������� � � � � � � � � �"!� . The control word
� is generated by Random Permutation Generator (RPG). Here we note that � can
not be factored as � 
I� ��� , where � � �4#0$ � � � � � ��� � �,& .

In this decoder, the check-to-variable message and variable-to-check message de-
livered along the same edge in Tanner graph are stored in the same memory location



RPG

AG

Intrinsic

Extrinsic

Intrinsic

Extrinsic

MEM BANK−

CNU CNU

Intrinsic

Extrinsic

VNU

MEM BANK−MEM BANK−

g−layer Shuffle Network

AG

1

VNU

r=0 ... 3L−1

VNU

k

AG

bits

L    1 
C

Hard Decision

L    p ( )
I

bits ( ))
C

Hard Decision

( )
I

bitsL    p 

(( )bitsL    1 
C

Hard Decision

bits

π−1 or Id

L    p bits
I

)(

L    1 

g

c−1

r=0, L, 2L

Counter k,k

k,k

D Counterx,y

bits)(

1,1D D

1,1 x,y

0=(c   , ..., c )g−1c
2

r=0, L, 2L

Counter
q+1

(1,1)

E2

E1
L    q 

E3
L    q bits

r=0, L, 2L

Comparator

)

L

q 1

(

1

( )bits
E1

L    q 

( )bitsL    q 
E2

( )bitsL    q 
E3

L    q 

q+1

q 1

bits)

( )bits
E1

L    q 

( )bitsL    q 
E2

( )bitsL    q 
E3

(

q+1

(x,y) (k,k)

q

Figure 4: Elaborated ( � ��� )-regular LDPC decoder architecture.

alternatively, and � extrinsic information (check-to-variable message or variable-to-
check message) associated with the same variable node are stored in the � different
RAMs, ��� , � � and � � , respectively, with the same address. As shown in Fig. 4,
intrinsic and extrinsic information are represented using � and � bits, respectively.
This decoder completes each decoding iteration in � � clock cycles, and in each clock
cycle it performs:

1. In each memory bank, if all the check-to-variable message associated with
one variable node become available after previous clock cycle, then

(a) Retrieve � intrinsic information and � check-to-variable message asso-
ciated with this variable node;

(b) VNU computes � variable-to-check message and updates the corre-
sponding estimated decoded bit;

(c) Store the � variable-to-check message back to RAM ��� , � � and � �
and estimated decoded bit to RAM � .

2. Retrieve � � variable-to-check message and the corresponding estimated de-
coded bits from the � � memory banks at the addresses provided by AG 3 ’s;

3. Shuffle the � � variable-to-check message and estimated decoded bits accord-
ing to � � � and � provided by the comparator and RPG, respectively;

4. Each CNU 3 computes � check-to-variable message and performs the parity
check on the corresponding � estimated decoded bits;

5. Unshuffle the � � check-to-variable message and store them back into the � �
memory banks at the initial location.

Since � � ��� ����� � are two-port RAMs, we can perform the step � in the above
decoding process in parallel with all other steps. Moreover, this decoder has the
following properties:

� Each Address Generator (AG) associated with MEM BANK-( < �5= ), denoted
as AG )'+ - , is realized by a simple modulo- � binary counter. Each counter is



preset with initial value � ),+ - every � clock cycles, i.e., at � 
 � �5� � �'� , and

� ),+ - 

�� � � � � 
 ��;�7< � ��� �L=>� ? ADC.� ��� 
 �� )'+ - � � 
 �,� � (1)

where each
� )'+ - is chosen in random with the following constraints:

1. Given < , we have
� ),+ - ���
 � ),+ -
	 , ! = � �;=,� #�$�� � � � � ���
& ;

2. Given = , we have
� ) � + - � � )�	 + - �� �;�7<
� � < �*� �,=D� ?BADC � , !
<
� �5< �0#$�� � � � � ��� & .

� Provided with the address from each AG, the RAMS � � , � � and � � are
accessed by the CNU array in the �� � , �'��� and ���
�K� clock cycles, respec-
tively. Thus in one iteration, the variable-to-check message will be computed
by VNU only in the last ( ���
� ) � clock cycles;

� The 1-bit output of comparator � � � 
 � if ��� � , � � � 
� otherwise ;
� The 1-layer shuffle network performs the permutation � � ���� � . � � � permutes an

input data sequence $*< � � � � � �5< � 	 � � & to $�<�� ���
� �
� � � � � �;<�� ����� � 	 � ��� & , where

� � � �78�� 
 �G8 ?BADC � � � � 
 � 8� � U (2)

� During the first �'� clock cycles, the output of RPG is a zero vector so that the� -layer shuffle network performs the identity permutation, and during the last� clock cycles, RPG performs as a hash function � : $ �,� � � � � ���,� � �'& ���$ � � � � � � � � � �,& .
We can easily verify that the above presented decoder architecture defines a ( � ��� )-

regular LDPC code ensemble in which each code has a Tanner graph with � � � �
variable nodes and � � �,� check nodes and the corresponding parity check matrix
can be divided into � submatrices: each one is � � � by ����� � and corresponds to the
interconnections among all the � � � � variable and � �5� check nodes realized by this
decoder in the �� � , �'��� or ���
� � clock cycles in each decoding iteration.

It can be proved that the first two submatrices of each code are always identical to
matrix �1� and �0� presented in last section. The third submatrix, denoted as ��� , of
each code is jointly specified by all

� )'+ - ’s, the hash function � and the � -layer shuffle
network. Recall that we denote the high-girth ( � ��� )-regular LDPC code specified by�
� 
�� ���� ������ 	 � as � � , we know that each code in this code ensemble is actually a
sub-code of � � . Moreover, we may consider that each code is constructed by using
the decoder to introduce extra � � � check nodes into �� .

We can prove that if we construct the hash function � and the � -layer shuffle
network in a fully random manner and generate the value of each

� ),+ - in random
with the constraints as described above, the code ensemble defined by this decoder
only contains 4-cycle free codes which is desirable in practice. Furthermore, from
its special structure, it can be proved that the parity check matrix of each code at
least contains 2 redundant checks, which just means that the actual code rate may be
slightly higher than what the parity check matrix indicates, i.e., � � � � � .

For real applications, we must select a good code from the implementation-
oriented ( � ��� )-regular LDPC code ensemble. In this work, we propose to combine



the girth average comparison and computer simulations together to find a good code:
first randomly generate a certain number of implementation-oriented ( ����� )-regular
LDPC codes, then pick several codes with high girth averages and select the one
leading to the best simulation result in extensive computer simulations.

3.3 Design Examples

Before presenting the efficient encoding scheme for the implementation-oriented
( ����� )-regular LDPC codes, to illustrate the above design methodology, we develop
two implementation-oriented ( � ��� )-regular LDPC codes with different code length.

Let � � 
 � E and � � 
 � � H . Then, using the above presented decoder architec-
ture, we may obtain two code ensembles with different code length: 	 � 
 � ��� � � 
� � �'E and 	 � 
 � ���� � 
 E � � H . In both cases, we set � 
 � and independently
generate 500 groups of hash function � , 3-layer shuffle network and all

� ),+ - in ran-
dom with the above two constraints on

� ),+ - . Then we feed these parameters to the
( ����� )-regular LDPC decoder as shown in Fig. 4 and obtain two code ensembles,
each one contains 500 codes. The histograms of the girth averages of these two code
ensembles are shown in Fig. 5 (b) and (d). In each ensemble, we choose 5 codes
with relatively high girth averages and select the one leading to the best perfor-
mance based on the extensive computer simulations. In the computer simulation, we
assume that the LDPC codes are modulated by BPSK and transmitted over AWGN
channel.

We denote the selected implementation-oriented ( ����� )-regular LDPC codes with
	 � 
 � � �'E and 	.� 
 E � �,H as � �� and � �� , respectively. Since the parity check
matrices of both � �� and � �� contain 2 redundant checks, � �� and � �� are ( �� �'E � ��� � E )
and ( E � �,H � �� � � ) codes, respectively. Moreover, we randomly generate two fully
random 4-cycle free ( ����� )-regular LDPC code ensembles with code length 	 � 
� � �'E and 	.� 
 E � �,H , respectively. Each code ensemble contains 500 codes and
the histogram of the girth averages is shown in Fig. 5. In each ensemble, we also
choose 5 codes with relatively high girth averages and select the one leading to the
best performance. We denote the selected fully random LDPC codes with 	 � 
� � �'E and 	 � 
 E � �,H as � �� and � �� , respectively. In this work, � �� and � �� are
( � � �,E � ��� ��� ) and ( E � � H � �� �,E ) code, respectively.

The finite precision simulation results of each � 3� and � 3� are shown in Fig. 6. In
the finite precision simulations, we adopt the quantization scheme developed in [6]:
received data is quantized with 4 bits and all intrinsic and extrinsic information are
represented with 6 bits. In order to guarantee the simulation accuracy, especially at
high SNR, each point in the simulation results is obtained under the condition that
the block error number at least exceeds 100. As shown in Fig. 6, the performance
of the ( � ��� )-regular LDPC codes developed by these two different approaches are
almost identical, but we note that it’s nearly impossible to develop a partly parallel
decoder for those fully random LDPC codes.



7.1 7.2 7.3 7.4 7.5 7.6
0

0.02

0.04

0.06

0.08

0.1
(a) Random N=2304

7 7.5 8
0

0.02

0.04

0.06

0.08

0.1
(b) Implementation_Oriented N=2304

7.6 7.7 7.8 7.9 8
0

0.02

0.04

0.06

0.08

0.1
(c) Random N=4608

7.4 7.6 7.8 8 8.2 8.4
0

0.02

0.04

0.06

0.08

0.1
(d) Implementation_Oriented N=4608

Selected 
  Code 

Selected
  Code 

Selected
  Code 

Selected
  Code 

Figure 5: Histograms of girth average for (a)(c) fully random codes, and (b)(d)
implementation-oriented codes.

1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a) N=2304

B
E

R

E
b
/N

0
(dB)

Max_Iteration=5 
Max_Iteration=10
Max_Iteration=20

1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(b) N=4608

B
E

R

E
b
/N

0
(dB)

Max_Iteration=5 
Max_Iteration=10
Max_Iteration=20

Figure 6: Finite precision simulation results where solid lines and dash lines corre-
spond to � 3� and � 3� , respectively.



3.4 Efficient Encoding Scheme

The straightforward encoding scheme for LDPC codes, using the generator ma-
trix which is usually a dense matrix, has quadratic complexity in the block length.
It is suggested in [7] and [8] that using an approximate upper triangular parity
check matrix to construct LDPC code can reduce the encoding complexity signif-
icantly without performance degradation. In this section, we show that the above
idea can be easily applied to develop an efficient encoding scheme for our proposed
implementation-oriented ( ����� )-regular LDPC codes.

In [8] the greedy algorithms are used to construct approximate upper triangu-
lar LDPC parity check matrix for efficient encoding. Different with that approach,
based on the specific structure of the parity check matrix of implementation-oriented
( ����� )-regular LDPC codes, we propose a systematic approach for its efficient en-
coding. The basic idea is: First we obtain an approximate upper triangular ma-
trix ��� � 
 � � � ��� by introducing an explicit column permutation � � , then obtain�� by performing efficient encoding based on ����� , and finally get the codeword� 
 � � �� � �� � .
Construction of ��� � : We have known that the parity check matrix of implementation-
oriented ( � ��� )-regular LDPC code has the form: � 
 � �0�� ������ ������ 	 � , where �1�
and � � are shown in Fig. 3. We denote the submatrix consisting of all the columns
of H which go through the block matrix (*)'+ - in � � as � � ),+ - � , e.g., � � � + �
� as shown
in Fig. 7. We introduce a column permutation � � to move each � � � + ) � forward to the
position just right to � � � + � � where < increases from � to � successively. From the
construction of / ),+ - presented in section 3.1, we know that each / � + - is actually an
identity matrix. Therefore we know that the matrix �%��� 
 � ��� ��� has the structure
as shown in Fig. 7, based on which we can write matrix ����� in block matrix form
as:

� ��� 
 ��� � �� � �	� U (3)

P1,2

k,1

1,2

Pk,2

I

0

0

0

I
0

P1,k k,kP

0

0

0

I 1,2

k,kII k,2

I 1,k

0

0

0

0

1,1I

I k,1

I

0

0

P1,1Pk,11,1P

0

0

I

1,k

P

I

k,1

I 1,1

πc (H)=H  =
en

c

(1,2)H

π

T D

E

B

H =

A C

Figure 7: Structure of matrix ����� .

Let � 
 � ���,� and suppose matrix � has � redundant checks, the left � by



� � � � � submatrix of �0��� is � � �� � � � (4)

in which
�

is a � �� � ��� �*� by � �� � ��� �*� upper triangular submatrix.
Encoding Process: In the following, we describe how the efficient encoding is ac-
tually carried out based on the matrix �0� � . Let �� 
 � �� � � ���� ���� � � be a tentative
codeword decomposed according to (3), where �� � is the information bits with the
length of 	 � � 
 � , redundant bits �� � and ���� have the length of � � � � ��� �:� and� � 
 ��� �*� � � , respectively.

Procedure 3.1
1. Compute � � 
 � � �� � and � � 
 � � �� � , which is efficient because both

�
and
�

are
sparse;

2. Solve
� � ����� 
 � � . Since

�
has the form as shown in Fig. 7, we can prove that� � � 
 � . Thus we have �� � � 
 � �'= � , which can be easily computed since 2 is

sparse;
3. Evaluate �� 
 � � �� � � 
	� � , which is also efficient since

�
is sparse;

4. Compute ���� 
�
 � �� , where 
 
 � � � � � � 
 � � � � . In this step, the complexity is
scaled by �;� � 
� � �*� � � � � ;

5. Finally we can obtain �� � by solving
� � �� � 
 � � �� � 
�� � . Since

� � � 
 � ,�� � 
 � � � � � �� � 
� � � . This is efficient since both
�

and
�

are sparse.

We note that the above encoding process is similar with that in [8]. However, in
[8], �� � � and �� � have to be solved using the very inefficient back-substitution method
since

� � � �
 � in general cases. Finally, we obtain the real codeword � 
 � � �� � �� � .
It’s clear that � is a valid implementation-oriented ( � ��� )-regular LDPC codeword
and the information bits on the decoder side can be easily obtained by performing
the column permutation � � on the decoder output.

4 CONCLUSIONS

In this paper, based on a novel method of constructing deterministic high-girth
( � ��� )-regular LDPC code, we present a partly parallel ( � ��� )-regular LDPC decoder
architecture which defines an implementation-oriented ( � ��� )-regular LDPC code en-
semble. Each code in this ensemble is actually constructed by inserting certain check
nodes into the high-girth ( ����� )-regular LDPC code, thus it’s reasonable to expect a
good performance for such codes which is illustrated by the two design examples.
Compared with the decoder-first code design approach, this joint design approach
eliminates the implementations of those random number generators in the decoder
so that the complexity is much lower and the entire design process is more sim-
ple. Moreover, we present how to effectively exploit the sparseness of the parity
check matrix to achieve an efficient encoding scheme for such LDPC codes. We
believe such joint design approach should be a key for practical LDPC coding sys-
tem implementations and future research work will be directed towards extending



this joint design methodology to the more general(� ��� )-regular LDPC codes and
irregular LDPC codes.

References

[1] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T Press, 1963. available at

http://justice.mit.edu/people/gallager.html.

[2] C. Howland and A. Blanksby, “Parallel decoding architectures for low density parity

check codes”, in Proc. of 2001 IEEE Int. Symp. on Circuits and Systems, Sydney, May

2001.

[3] E. Boutillon, J. Castura, and F. R. Kschischang, “Decoder-first code design”,

in Proceedings of the 2nd International Symposium on Turbo Codes and Re-

lated Topics, pp. 459–462, Brest, France, Sept. 2000. available at http://lester.univ-

ubs.fr:8080/˜boutillon/publications.html.

[4] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices”, IEEE

Transactions on Information Theory, vol. 45, pp. 399–431, Mar. 1999.

[5] Y. Mao and A. Banihashemi, “Design of good LDPC codes using girth distribution”, in

IEEE International Symposium on Information Theory, Italy, June 2000.

[6] T. Zhang, Z. Wang, and K. K. Parhi, “On finite precision implementation of low-density

parity-check codes decoder”, in Proc. of 2001 IEEE Int. Symp. on Circuits and Systems,

Sydney, May 2001. available at http://www.ece.umn.edu/groups/ddp/turbo/.

[7] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of constructions of

irregular gallager codes”, IEEE Transactions on Communications, vol. 47, pp. 1449–

1454, Oct. 1999.

[8] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes”,

IEEE Transactions on Information Theory, vol. 47, pp. 638–656, Feb. 2001.


