
Systematic Design Approach of
Mastrovito Multipliers over

� � �������

Tong Zhang and Keshab K. Parhi
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN, USA
E-mail: 	 tzhang, parhi
 @ece.umn.edu �

Abstract —This paper considers the design of low-complexity bit-parallel dedicated
finite field multiplier. A systematic design approach of Mastrovito multiplier is pro-
posed, which is applicable to ��
�������� generated by an arbitrary irreducible polyno-
mial. This approach extensively exploits the spatial correlation of matrix elements in
Mastrovito multiplication to reduce the complexity. The developed general Mastrovito
multiplier is highly modular, which is desirable for VLSI hardware implementation.
Meanwhile, the presented approach can be used to develop efficient Mastrovito multi-
pliers for several special irreducible polynomials, such as trinomial and equally-spaced-
polynomial, and further find some other special irreducible polynomials which can also
lead to low-complexity multipliers.

1 INTRODUCTION

Finite fields ���������� have received a lot of attention because of their applications
in cryptography, error-control coding and computer algebra. A number of efficient
���������! multiplication approaches and architectures have been proposed, in which
different basis representations of field elements are used, such as standard basis,
dual basis, and normal basis. Standard basis is more efficient in the sense that
it gives designers more freedom on irreducible polynomial selection and hardware
optimization. In this paper, we are interested in the design of bit-parallel �����"�#�!
multiplier using standard basis.

The standard basis multiplication involves two steps: polynomial multiplica-
tion and modular reduction. An efficient dedicated bit-parallel multiplier was pro-
posed by Mastrovito [3], where a product matrix is introduced to combine these
two steps together. Mastrovito multipliers using two special irreducible polynomi-
als, trinomial and equally-spaced-polynomial (ESP), have been studied by many
researchers in order to reduce the space complexity [4]-[7]. It has been shown in
[4] that Mastrovito multiplier using irreducible trinomial $%�'&($*)+&-, only re-
quires ��.0/!12,3 XOR gates and .+/ AND gates. By generalizing the approach of
[4], [7] has found that the space complexity for Mastrovito multiplier using irre-
ducible ESP $4�(&2$65879&;:<:�:#&=$*7�&(, , where �8>?&@,3 BADCE. , can be reduced toF

This research was supported by the Army Research Office by grant number DA/DAAG55-98-1-0315.

Proc. of the 2000 IEEE Workshop on Signal Processing Systems (SiPS), c
G

IEEE 2000

�8.0/�1 A XOR gates and .+/ AND gates. Furthermore, [7] presents a new formula-
tion of the Mastrovito multiplication matrix for an arbitrary irreducible polynomial
$*� & $*) � &2:<:�: & $*) � & , , where the space complexity is given as . / AND gates
and ��. 1 , �8. & � &����	��
 �8. 1 , 1
� XOR gates, where ����������,��<:�:<:�� . 1 ��� .
However, [7] fails to find a method to compute the set � , which makes its result less
practicable.

In this paper, we generalize the approach of [4] in a different way compared with
[7]. We propose a theorem and algorithm (which can compute the � in [7]) about
the construction of reduction matrix R, based on which we develop an efficient de-
sign approach of Mastrovito multiplier for an arbitrary irreducible polynomial. This
approach exploits the spatial correlation of matrix elements in Mastrovito multipli-
cation to reduce the complexity. Explicit algorithm and architecture are presented
and the complexity analysis is given in detail. For irreducible trinomial and ESP, this
design approach provides alternative methods to those of [4] and [7] which give the
same complexity values. Furthermore, this proposed approach can be used to find
some other special irreducible polynomials which will also lead to low-complexity
multiplier, which is especially desirable when neither an irreducible trinomial nor an
irreducible ESP exists.

This paper is organized as follows. We introduce the fundamentals of finite field
and Mastrovito multiplier and the notation of this paper in Section 2. Section 3 pro-
poses a theorem and algorithm about the computation of reduction matrix R, based
on which a systematic design approach of Mastrovito multiplier and corresponding
architecture are developed in Section 4. Applying the proposed algorithm, Section 5
presents two new special irreducible polynomials which also lead to low-complexity
multipliers.

2 PRELIMINARIES AND NOTATION

Finite field �����"� �� contains � � elements and can be viewed as an . -dimensional
vector space over �����"�� , which has elements 0 and 1. With the standard basis
� ,���������/���:<:<: �����"!$#�� , the elements of the finite field �����"���� can be represented
as polynomials of degree . 1 , as follows:

������� � C%�'&)(& C*& �+!$# � �"!$# &,& �+! / � �"! / &=:<:<: &-& # �0&-&/.��0&�1320������� 4�
where � is the root of irreducible polynomial 5 ��$4 of degree . over ������� �� . Fi-
nite field addition is carried out as polynomial addition over �����"� � using bit-
independent XOR operation.

Let &4�6�� 	�87 �6�� �22������� � , and 5 �8$ be the irreducible polynomial generating���������! . In order to compute the multiplication 9 �6�� ?C(�:& �6�� �: 7 �6�� mod 5 �8$4 , we
first compute the product polynomial ;*�6�� ?C�& �:� :67 �6�� and then reduce ;4�:� using

5 �8$ to get result 9 �:� . We can compute coefficients of ;*�6�� as follows:���������������

������
...� �	� �� �� ��
 �
...�
� �	� �

� ��������������
�
�����������������

� � � ����� � �� � � � ����� � �
...

...
. . .

...
...� ��� � � ����� ����� � � �� ��� � � ��� ������� � � � �� � ��� ������� � � � �

...
...

. . .
...

...� � ����� � �	� � � ��� �� � ����� � � ��� �

� ����������������

�������
� �� ����
...� ��� �
� ������ (1)

where the ��� . 1 ,3 ��0. matrix in (1) is denoted by A. Then we perform modular
reduction on ;4�:� to get 9 �:� . We can prove that this reduction can be expressed
as � C � :"! , where c and d represent the coefficient vectors of 9��:� and ;4�:� ,
respectively. The .#�D��� . 1 ,3 matrix R is called reduction matrix and its entries
are solely dependent on the coefficients of irreducible polynomial 5 �8$. Thus we can
get the result 9 �6�� via product � C$�':&%;:�' . The product of R and A is just the so-
called Mastrovito multiplication matrix M. Therefore, by introducing (C)� :*% ,
the �����"� �� multiplication can be done as � C+(:,' .

In what follows, column vector and matrix are represented by small and capital
boldfaced characters, respectively. Matlab notations of matrix and vector are used,
e.g., Z(i,:), Z(:,j) and Z(i,j) represent the - -th row vector, � -th column vector and the
entry with position (i,j) in matrix Z, respectively, and v(i) represents - -th entry in
vector v. The operations of shift by feeding zero are represented by corresponding
arrows, e.g., .	/ 0 �21 and 34/65 ,71 represent down shift of vector v by 2 positions and
right shift of matrix 3 by 1 column, respectively, which are explicitly given as:.	/ 0 �*1 C / � ��� �8. � ,3 ���:<:�:	�8. �:901 � ;1=<3>/ 5 ,&1 C / ? �@3 �BA �<, ���:<:<: �@3 �BA � . 1 ,3 C1
where o represents the zero column vector.

Finally, we note that the AND and XOR gates considered in this paper are all
2-input, whose delays are denoted as DFE and DHG , respectively.

3 PROPOSED THEOREM AND ALGORITHM

In this section, we will propose a theorem and algorithm about the construction
of reduction matrix R:

Theorem 3.1 Let 5 �8$ C $4�(& 5 �+!)# $4�"!$#9&;:�:<: & 5 # $ &@, be the irreducible
polynomial generating ������� �� . We can generate a set � � �'����,���:<:<:�� . 1 ��� ,
and construct the reduction matrix R as� C IKJ �ML � �HN

) ��
PO /65#9Q1SR (2)

where J �ML � represents . � . identity matrix, O C / � � � / 0�,&1 �<:<:�:	� � / 0�.'1 �*1S1 and� C / ,��85 # �<:<:�: �45 �+!)# 1 < is the coefficient vector of 5 �8$.
Let the irreducible polynomial be 5 ��$4 C $ �(& $���� &':�:<: & $�� � &;, , where

.�� �	� � :�:<:
� �
� , , the set � in Theorem 3.1 can be obtained by the

following algorithm:

Algorithm 3.1
Input: The parameters of irreducible polynomial: . ,

�
�<:�:<: �

�	�
;

Output: set � �*�����<,��<:�:<:�� . 1 � � .
Procedure:

1. Generate a weighted tree D which has the following properties:� Each node ; � in D has at most � child nodes, and each edge has the
weight
%2 � ��. 1 � 1" ���,�� -������ ;� Let ; # denote the root and � �6; # ��; � denote the weight of path from ; # to
; � , where � �6; # �8; # C*� , we have � ; � , if � A 2 � ��. 1 � 1 ���,�� -������
and ��� �6; # �8; � �& A ��2. 1 , , then ; � always has a child node ;�� and
the weight of edge between ; � and ;�� is A ;� � ; � 2�� , � �6; # ��; � �� . 1 , .

2. Construct set � C ��� �6; # ��; � �� � ; � 2!� � and � C �#" � ;

3. For �$� �%� . 1D� , do

(a) create & � C �#" � ;

(b) �%� 2'� , if � C,� , then insert � into & � ;

(c) if �8(& � (.!(; �� C@, , then insert � into the set � .

Here (& � (stands for the order of set & � . From above algorithm, we know that the
least two elements in � are always � and (. 1 �)�

), and we have (� (*� ���
.

Example 3.1 Consider the construction of R when the irreducible polynomial 5 �8$ C$,+�&D$,-�& $,. & $ / &=, is being used. We have � ��. 1 � 1 ���,/� -0�1����C � ,�� ���32�� .
Applying Algorithm 3.1, we first generate the tree � as shown in Fig. 1 and get the
set � C%�'� �<,�� � � � �32 �32 �32��42 � . Thus we have&$.�C �'���05 (&$. (�C@, ; & # C � ,��05 (& # (C , ;& / C � ��� � �05 (& / (�C2� ; & . C �62 �32��42��42 ��5 (& . (�C�7 .
Since (& / (.!(; ��C (& . (.!(; � C � , we get � C �'� �<,�� . Therefore matrix R can
be computed as

8 � 9;:4<�=�<6>@?A�BDC!EGF HJI@KML �
������
N ��� ��� NON ���� N � ��� � NPN ���� N ��� NONPNON����� N � N � NON����� � NQN � � N

� �����

where

 �
������
N ��� �� N � �N � N �NON � NNONON �

� �����

1

2

1

1
3

2

1

Figure 1: Tree structure

4 GENERAL IRREDUCIBLE POLYNOMIALS

Given a general irreducible polynomial 5 �8$ �C-$ �2& $ � � &(:<:�: & $�� � & , , its
coefficient vector can be expressed as

� C �
& � � ��� # & :<:�:�& � � � � # , where � 1 is

the . -dimensional - -th canonical vector:� 1 C /�� �<:<:�:	���� ��� �
1 !)#

�<,��8����:<:<: ���� �	� �
�+! 1

1=<
Define
 � C I � � � � � / 0 ,71 ��:<:�: � � � / 0�. 1 �21 R�� (3)

We can write the matrix F in Theorem 3.1 as �
�
1�
).
 ��� � # , where

� . C � , and
have

N
) ��
 O C

�N
1�
). N) ��

 � � � # /65#9Q1 � (4)

Moreover, from (1), we can write A in block matrix form as% C / % < � �@% <5 1K< (5)

where % � is an . � . lower-triangular Toeplitz matrix and % 5 is an �8. 1 , �� .
upper-triangular Toeplitz matrix:

% � C
����
�

&/. � :<:�: �
& # & . :<:�: �
...

...
. . .

...
& �+!)# & �+!4/ :<:�: & .

�����
� � % 5 C

����
�

� & �+!$# :<:<: & #� � :<:<: & /
...

...
. . .

...
� � :<:<: & �+!$#

�����
� (6)

Substituting (2), (4) and (5) into (C$�-:,% , we get

(C$% � & �N
1�
). N) ��
��
 ��� � # /65 9Q1*:7% 5�� � (7)

Based on the definition of

 � in (3), it can be proved that
 � / 5#9Q1*:,% 5 C ���% 5 / 5#9Q1 � / 0 � � 1 ,3 C1

where �% 5 C / % <5 � ? 1 < and o is an . -dimensional zero column vector. Thus, if we

denote �) ��
 ���% 5 / 5#9Q1 � as S, (7) can be rewritten as

(C % � & �N
1�
). � N) ��
 �% 5 /65#9Q1 � / 0 � 1 1 C$% � &�� &

�N
1�
 # � �	/ 0 � 1:1 � � (8)

Because each �% 5 /65 9Q1 is an upper-triangular Toeplitz matrix, from [8], we easily
know that matrix � is also an upper-triangular Toeplitz matrix, and computing

� � ,��,A C N
) ��
 � �% 5 � ,��,A 7/ 5 9Q1 � C N) ��
 � % 5 � ,��7A &/65#9Q1 � (9)

is sufficient to construct matrix � which has the following form

� C

����
�
� � �+!)# :�:<: � #...

...
. . .

...
� � :�:<: � �+!)#� � :�:<: �

�����
� � (10)

Since the first entry of % 5 � ,��7A is zero, the first 9�& , entries of % 5 � ,��7A &/65#9Q1 are
also zeroes. Recall that 9+C*� is the least element in � , we get the XOR complexity
of computing (9) isN�) ��

	�� �)�

). 	 �8. 1>901 , C N

) ��

�8. 149 1 , �1 ��. 1 ,3

and if binary tree structure is used, the delay will be ������� / (� (�,DHG .
After having obtained � , we can use (8) to compute the product matrix M. From

(6) and (10), we know that the addition of % � and S does not need any XOR gates
and the matrix % � &�� , denoted by T, is a Toeplitz matrix. Therefore, (8) can be
rewritten as (C��2&��	/ 0 � # 1 &=:�:<:3&��	/ 0 ��� 1 � (11)

In order to compute (11) efficiently, we first introduce the following theorem:

Theorem 4.1 Given an upper-triangular matrix S and . � . matrix � whose last
�8. 1��� rows form a Toeplitz sub-matrix. If . � ����� , then computing the sum of
vector ��� �!&=,��,A and � � ,��7A is sufficient to construct the sum of � and �	/ 0"��1 , and
the last ��. 1 �# rows of the sum matrix still form a Toeplitz sub-matrix.

Applying Theorem 4.1, (11) can be computed using linear tree structure as fol-
lows:

Algorithm 4.1

1. Initially, set � .9C�� ;

2. For ,�� - �1� , construct ��1 C�� 1 !$# &��	/ 0 � 1:1 by computing:
� 1 � � 1 & ,��7A C�� 1 !$# �

� 14&=,��,A &�� � ,��,A ;
3. Finally, set (C�� �
In above algorithm, for each - , ��1 !)# �

� 14&2,��,A �& � � ,��7A requires ��. 1 ,3 XOR
gates, so we need � �8. 1 ,3 XOR gates to compute (with the delay of �,D G . To find
the result 9 �:� via the product � C (:S' , we also need .+/ AND gates and . ��. 1�,
XOR gates. The delay of this matrix-vector multiplication will be D E�&�������� / . �,DHG
if binary tree structure is used.

S(1,:)0[a ,S(1,2:m)]T(1,:)=

m

 Multiplication
Vector-Vector

m
m

n1 >>

N=|N |

n2

nj N

nN

Array

XOR
m

 >>

 >>

&

m

jc

j

am-1

P1

V
m

b V
m

b V
m

b V
m

b

c1 cm-10c

A (1,:)t

U=[a ,x(1), ... ,x(m-1)]

j
jP

j
m

1

m
 >> 1

B1

(

m
m

 >> 1

B2

m

1 XOR

{k }i {k }i

aj

Matrix-Vector Multiplication Module

 >> n

righ shift by n

aj

right shift X by 1 and feed a from left j

 >> 1
m

1
U

j

X

)

V

a0

S(1,:) m mm

1

m

M1

M2

m

a
P P

m-1

Product Matrix Module

m m

Figure 2: General Mastrovito Multiplier Architecture

Based on above computation approach, we develop the architecture of the dedi-
cated Mastrovito multiplier as shown in Fig. 2. Set � is computed using Algorithm
3.1. Product Matrix Module computes matrix M and consists of two blocks: � , and

�(� . Block � , generates the vector � � ,��,A by computing �) ��
 � % 5 � ,��7A &/65#9Q1 � .

Supplied with � � ,��7A , Block �(� computes the product matrix (using Algorithm
4.1. �(� contains (.E1=,) � � blocks, each one generates one row vector of (. If
� 2 � � 1 �<, � -������ then � � is identical with block � � , otherwise it is identical with
block � , . The Matrix-Vector Multiplication Module computes (: ' and consists
of . identical � blocks. The block � computes the inner-product of two vectors of
length . . The total complexities of the proposed Mastrovito multiplier for general
underlying irreducible polynomial are given as:� XOR Complexity: �8. & � 1 , �8. 1 , & �) ��
 ��. 1>9 1 ,3 ;� AND Complexity: .0/ ;� Delay: D E & � � & � � � � / (� (��& � � � � / . � � D G .

It needs to be pointed out that for given irreducible polynomial, there likely exist
some common items in the computation of (9) and (11). By sharing these common
items, we may further optimize the hardware architecture of product matrix module
to some extent. Thus the multiplier architecture shown in Fig. 2 may need some
corresponding modifications. Therefore, above XOR complexity value is actually
an upper bound for general cases.

5 SPECIAL IRRIDUCIBLE POLYNOMIALS

For Mastrovito multiplier using special irreducible polynomial, such as trinomial
and ESP, the corresponding � usually has a very simple or regular form which will
lead to a low-complexity multiplier architecture. For example, applying Algorithm
3.1, we have

� C � � �8. 1>9 ��8�
��� ��� . 1D�
. 1>9 � �

if trinomial is used, and � C ����� A/� if ESP is used. Based on the form of � and
the design approach developed in last section, we can easily derive the same low-
complexity multiplier architectures as proposed in [4] and [7]. Moreover, for those
cases where neither an irreducible trinomial nor an irreducible ESP exists, using
Algorithm 3.1 we can find some other special irreducible polynomials which will
also lead to a low-complexity multiplier architecture. Below we briefly describe two
such special irreducible polynomials as examples:

Example 5.1

For the irreducible polynomial 5 �8$ C-$ � & $ � � & :<:�: & $ � � &(, , if � � / � � � �
,

applying Algorithm 3.1, we immediately have

� C ����� . 1 ��� � . 1 ���
!)# �<:�:<:�� . 1 �

�
and (� (C���& , . Thus (9) can be simplified as

� � ,��7A C % 5 � ,��,A &
�N

1�
 # � % 5 � ,��7A &/65 ��. 1 � 1 ;1 � � (12)

If we first compute (12) using linear tree structure and then compute matrix M using
Algorithm 4.1, we can prove that the XOR complexity of computing matrix M can
be reduced significantly by sharing common items which are generated during the
computation of (12), and the complexity of result multiplier will reduce to:� XOR Complexity: ��. & �3 <�8. 1 , ;� AND Complexity: .0/ ;� Delay: DFE & � ���?& � � � � / . � � DHG .

Example 5.2

For irreducible pentanomial 5 �8$ C=$4� & $���� & $�� � & $ � � & , , if . 1 � . C � . 1 �
/ C�

/ 1
�
C=A , let � �+!4/7

� C ; , the set � is obtained as:

� C
� 9+C17�� : A �@9+C;� 7 � & , : A � �$��� � � ;7 ���

So (9) can be simplified as

� � ,��7A C ���
	�
N ��
). �
� <	/65 7 �*:�A 1 � (13)

where � < C+% 5 � ,��,A *& % 5 � ,��,A 7/ 5 A,1 and can be computed using �8. 1 A 1 ,3 XOR
gates with the delay of 1 D G . Applying the result in [4], we can compute (13) using
�8.-1 7 A�1 ,3 XOR gates with the delay of �
�- � D G . Furthermore, we need 26��.-1D,3
XOR gates to compute M using Algorithm 4.1, with the delay of 3 D G . Therefore, in
this case, the total complexity of Mastrovito multiplier is� XOR Complexity: ��. & 2 ��. 1 ,3 &2��� . 1�� A91D�� ;� AND Complexity: .0/ ;� Delay: D E & � ���- � & 79&�������� / . � � D G .

6 CONCLUSIONS

In this paper, we present a systematic design approach of Mastrovito multiplier.
The result architecture of Mastrovito multiplier for general irreducible polynomial is
highly modular and requires .+/ AND gates and at most �) ��
 �8. 1 9 1 , 31 ��. 1 ,3 XOR gates. It’s noted that although the complexity results appear the same as those
achieved in [7], the presented design uses an entirely different construction approach
compared with [7], and more important, an explicit algorithm has been proposed to
compute set � which makes our design really practicable. Meanwhile, the presented
approach can be used for special irreducible polynomial cases, such as trinomial and
ESP, and the complexity results can match the results achieved in [4] and [7]. We
also use this approach to find two new special irreducible polynomials which will
lead to low-complexity multipliers. In addition, with the explicit algorithms and
design procedures, this proposed approach can be easily used in VLSI automation
design tools for dedicated bit-parallel �����"� �� multiplier design.

References
[1] A. J. Menezes et. al, Applications of Finite Fields, Kluwer, 1993.

[2] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 2 edition, 1997.

[3] E. D. Mastrovito, “VLSI designs for multiplication over finite fields GF(� �)”, in
Proc. 6th International Conference on Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes (AAECC-6), pp. 297–309, Rome, July 1988.

[4] B. Sunar and Ç. K. Koç, “Mastrovito multiplier for all trinomials”, IEEE Trans. on
Computers, vol. 48, pp. 522–527, May 1999.

[5] M. A. Hasan, M. Z. Wang, and V. K. Bhargava, “Modular construction of low complexity
parallel multipliers for a class of finite fields GF(� �)”, IEEE Trans. on Computers, vol.
41, pp. 962–971, Aug. 1992.

[6] Ç. K. Koç and B. Sunar, “Low-complexity bit-parallel canonical and normal basis multi-
pliers for a class of finite fields”, IEEE Trans. on Computers, vol. 47, pp. 353–356, March
1998.

[7] A. Halbutoǧulları and Ç. K. Koç, “Mastrovito multiplier for general irreducible polyno-
mials”, IEEE Trans. on Computers, vol. 49, pp. 503–518, May 2000.

[8] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
3rd edition, 1996.

[9] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John
Wiley & Sons, 1999.

