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We consider design of a phase-locked loop (PLL) that runs in conjunction with a phase-compensating channel detector capable of
tracking and compensating for slow-varying phase errors. The main significance of this highly nontraditional timing recovery structure
is that unlike the traditional PLLs, the loop’s overall tracking ability and the steady-state jitter performance can be controlled more or
less separately. The effective bandwidth of the PLL is set much lower than the traditional PLL for given input phase error fluctuations.
As a result, the PLL jitter is made considerably smaller than traditional systems. On the other hand, the tracking ability of the overall
loop depends largely on the window parameter associated with the phase estimator operating inside the Viterbi-like trellis detector. The
window parameter has only a small effect on the loop jitter. The new PLL design is tested via tracking speed, timing jitter and error rate
performance comparisons against a timing recovery method based on traditional PLL design. Simulation results in a turbo equalizer
setting are also presented that validate the new PLL design methodology proposed.

Index Terms—Frequency-tracking, intersymbol interference, jitter, phase-locked loop, timing recovery.

I. INTRODUCTION

T RADITIONAL phase-locked loop (PLL) design focuses
on achieving the best tradeoff between timing jitter and

tracking ability. A small equivalent loop bandwidth indicates
small timing jitter but it also means inability to track fast timing
phase fluctuations. The traditional PLL loop bandwidth char-
acteristics are largely determined by the low pass filter (LPF)
that is typically placed between the phase detector (or timing
error detector, as is often called) and the voltage controlled os-
cillator (VCO). The usual first-order loop filter is controlled by
two gain parameters: and , known as the phase-path gain
and the frequency-path gain, respectively. The overall conven-
tional discrete-time PLL (DPLL) structure for small phase error
is shown in Fig. 1. The phase error between the phase offset

in the observation signal and its local estimate is ampli-
fied by the timing error detector (TED) gain and corrupted
by the effective noise . The TED output is then filtered
before driving the VCO, whose output is to track the incoming
phase . The additional loop latency models the TED latency
and/or pipeline delays in the implementation. The traditional
PLL design basically amounts to finding the best combination
of and values, given the jitter, tracking speed and stability
requirements.

The requirement for a proper damping ratio, which controls
the behavior of the PLL transient responses to a phase step or
a frequency step in the input phase error [1], makes consid-
erably smaller than . Thus, the effective loop bandwidth is
largely determined by . Accordingly, to make the loop band-
width small, needs to be small. However, small LPF gains in
PLL slow down the tracking speed of the loop.
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Fig. 1. Conventional discrete-time PLL model.

Another conflicting requirement that exists in traditional loop
design is related to the TED latency and its impact on loop’s
tracking speed. The TED output is typically constructed based
on the symbol decisions released by the detector. High-quality
but long-latency detector decisions lead to a good TED output
quality but a poor tracking speed for the loop. Low-latency de-
cisions, on the other hand, tend to be poor in quality but allows
the loop to react quickly to the incoming phase error fluctua-
tions. The designer of the traditional loop needs to strike a good
balance between the TED output quality and the tracking ability
of the loop.

In this paper, we present a PLL design that departs con-
siderably from the traditional guidelines discussed above.
Specifically, our PLL operates in conjunction with a channel
detector that is capable of tracking phase fluctuations as well as
compensating for a finite phase error in the symbol detection
process, as described elsewhere [2], [3]. The tracking ability
of our loop is largely dependent upon the window parameter

, the number of consecutive observation samples used in
estimating the phase. It is shown that can be set more or less
independent of the traditional loop bandwidth, which deter-
mines steady-state jitter of the PLL. Remarkably, in our loop,
the tracking ability and PLL jitter can be controlled almost
independently. Specifically, we set to be small enough to
maintain good tracking speed while using small filter gains to
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achieve a small jitter. We can also make the damping ratio very
large (i.e., make negligibly small compared to the already
small ). A large damping ratio creates very slow decay in the
residual phase error when there exists frequency mismatches
between the VCO output and the incoming signal. This does
not hurt our loop, however, because of the detector’s ability to
compensate for finite residual phase error. Our loop also can
maintain a good TED output quality with a small TED latency.

Whereas our previous papers discussed in detail the
phase-tracking/compensating channel detector and perfor-
mance of some example timing loops that use such a detector
[2], [3], the main contribution of the present paper is in pro-
viding loop analysis and a general design guideline for this
highly nontraditional PLL structure. In particular, we describe
how and the decision delay are chosen in our loop in
consideration of the overall tracking speed, jitter performance
and stability. The error rate, tracking speed and timing jitter
performances are compared with the traditional PLL in a
systematic fashion. Performance is tested in a turbo equalizer
setting as well, and simulation results are presented which
validate the proposed PLL and design methodology.

II. CHANNEL MODEL AND PLL WITH

PHASE-COMPENSATING DETECTOR

Assume that the baud-rate sampled observation sequence at
the receiver is given by

(1)

where is the transmitted symbol sequence, is the im-
pulse response (or dibit response for magnetic recording) of the
channel, is the symbol interval, represents the phase mis-
match between the arrived signal and the local sampling device
and denotes the additive white noise sequence. Assuming
is small and slow-varying compared to the symbol rate, , we
write

(2)

where denotes the symbol-rate samples of
and . The approximate channel

model in (2) is used to develop the timing algorithm but the
accurate model of (1) is used in actual performance analysis
and simulation runs.

We now provide a quick review on the joint phase estima-
tion and symbol detection algorithm based on Viterbi-like trellis
path search [2], [3]. Assume a trellis diagram based on state
description where a state-transition gathers enough consecutive
symbols so that both and are completely specified given
a branch that connects two successive states (note is typi-
cally longer than so that our trellis is larger than the stan-
dard trellis based only on ). See Fig. 2. In the th stage of
the trellis diagram, consider two competing paths (assuming bi-
nary input symbols) and leaving two states and , re-
spectively, on the left side and arriving at a given state on the

Fig. 2. Trellis diagram at �th stage.

right side. Assume that at the beginning of the processing stage,
there already exist phase estimates, and ,
associated with the respective paths leading to and , in
addition to the usual path metrics, and .
In fact, assume a sequence of phase estimates exists for each
survivor path leading to . As will be discussed shortly, the
new phase estimate associated with branch or 2, is
obtained as a function of and other branch- and
path-specific variables. For now, let us just call the new esti-
mates and . The branch metrics are then computed
as for . Path
arbitration follows as usual, by performing the add, compare and
select (ACS) operations on the updates path metrics.

The difference here relative to the usual Viterbi operation
[4] is that the phase estimate sequence associated with the path
leading to state gets updated by appending to the phase
estimate sequence specific to . In this way, we maintain a
phase estimate trajectory as well as a symbol decision sequence
associated with each survivor path in every processing stage.
A symbol decision is released with a delay of from the best
survivor path to date whereas a phase estimate is released to
the feedback timing loop with a delay of . This method can be
viewed as running a separate TED for each survivor path. Also
see [5] for a timing recovery method based on running an entire
PLL for each survivor path.

Now we describe how the phase estimate is obtained
for the current symbol stage. Assuming the phase error
is constant within a window of sample periods, the
value of that minimizes the accumulated branch metrics

can be written in a recursive form
[3]:

(3)

with , where and .
Note that is branch-specific and is path-spe-
cific (assuming the latest values of are stored for each
survivor path); it is easy to see how the phase estimation can
be done for each branch separately, i.e.,

for .

III. WINDOW PARAMETER SELECTION

A major design issue is how to choose the window size
for the phase estimator. The variance of the phase estimate is
given by , which tends to zero
as increases to infinity. However, reducing does not re-
ally play a key role in decreasing the jitter in sampling-phase

or phase-mismatch because the low pass filtering effect
of the PLL smoothes out the noise in the phase estimator output
anyway. Reducing is useful for a different reason in our PLL;
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it enhances the quality of the decisions in the detector and im-
proves the phase tracking performance within the joint phase
estimator/trellis detector.

Increasing , on the other hand, hampers tracking perfor-
mance of the joint phase estimator/symbol detector because of
the inherent lag associated with the averaging operation im-
plied in (3). A rough rule of thumb in setting the upper limit
on can be established by comparing the path metric com-
putations performed in the presence of a phase error with and
without phase estimation and phase error compensation during
the branch metric computation. Assume the simple noiseless
case. The conventional Viterbi detector is unaware of any phase
error and computes the path metric based on

(4)

where the source of errors in computing the path metric along
the correct path is the unexpected phase error sequence. In con-
trast, the joint scheme computes

(5)

where the source of inaccuracy is due to miss-estimation of the
phase error sequence. It obviously makes sense to ensure that
the estimation error is small enough so that is closer to the
true value than is. The ideal value of the path metric in the
absence of noise is zero, so this leads to a requirement .
Both and are data-dependent as is data-dependent. If
we consider averaging over data, however, the data-dependency
disappears, and we arrive at the equivalent condition:

(6)

In the absence of any additive noise, it is easy to see that is
essentially a moving average of with window , or roughly
a delayed version of by sample intervals. Now assume
a sinusoidal phase error with normalized frequency with
some unknown timing :

(7)

The phase estimate can then be expressed as

(8)

Here we assume there is no DC component (i.e., any frequency
offset between the incoming signal and local clock has been
removed). Taking expectations on both sides of (6) with respect
to , which is assumed to be uniformly distributed over ,
it is straightforward to show

(9)

which leads to roughly

(10)

It is worthwhile at this point to mention that the traditional
PLL design sets the effective loop bandwidth, commonly de-

Fig. 3. Proposed discrete-time PLL model.

noted as , above the frequency component of the phase
error the PLL intends to track down, i.e.,

(11)

The comparison of (10) and (11) indicate that acts like
the effective loop bandwidth of the traditional PLL, as far as the
tracking speed is concerned. In traditional PLL design, the same

also affects jitter in (and thus in ) so that the
value must be chosen judiciously to balance between tracking
ability and jitter performance.

As we shall show below, in our PLL design the tracking speed
and the timing jitter can be separately controlled, avoiding the
traditional tradeoff limitations. Namely, controls jitter in
our loop just as in traditional PLL, while the window size
largely determines the tracking ability of the overall loop in our
PLL, as argued above.

IV. PLL LOOP ANALYSIS

In this section, we try to understand the impact of the new
parameter on stability and jitter performance of the PLL. In
steady state, our PLL can be modeled as shown in Fig. 3. The
TED is again represented by a linear equation:

(12)

Notice that when , the PLL reduces to the traditional
PLL of Fig. 1. The phase estimator of (3) can be viewed as a
windowed-average operation acting on plus noise. This
operation has a transfer function

. The transfer function of the loop from the incoming phase
error to the remaining phase error at the sampler output
is given by

(13)

With and , this expression reduces to that
of the classical second-order discrete-time PLL.

A. Stability Versus Window Size and Decision Delay

The stability region can be expressed as the values of and
that make the transfer function (13) stable (i.e., keep the poles

inside the unit circle in Z-domain). In [6], the effect of the deci-
sion delay on stability has been investigated and it was shown
that increasing decision delay has an effect of shrinking the sta-
bility region. It has been shown in [3] that increasing also
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Fig. 4. Stable regions with respect to � when � � �.

Fig. 5. � of stable region.

reduces the stability region (See Fig. 4). The practical values of
are usually orders of magnitude smaller than . Thus, the sta-

bility region in practice depends mainly on . Thus, to observe
how the stability region changes as or changes, we make a
note of the maximum value of that still retains loop stability
with the value set to zero. In Fig. 5, we show this as
a function of with set to zero as well as a
function of with fixed to 1. The constant 0.6 was chosen
empirically to create a good match between the two curves. The
observation that the two curves are nearly identical suggests that
as far as the stability is concerned, we can define an effective
delay , and assume that acts like

of the traditional DPLL, regardless of specific combination of
and . In fact, although not shown, the contour plots of

as functions of and are near-straight lines,
indicating that and have nearly the same ef-
fect on . Fig. 6 shows the relationship between and

, with set to yield a damping factor of 1; this plot can be
used to quickly check for the stability condition, once the PLL
parameters and are chosen.

B. Loop Bandwidth and Jitter

The parameters and also have a detrimental effect (albeit
small) on the timing jitter of the loop. It is straightforward to
show that the transfer function of the loop from the effective

Fig. 6. Relationship between � and � with � � �.

additive noise to the residual phase error , with set to
zero, is given by

(14)
The normalized loop bandwidth is defined as [7]

(15)

Denoting as the power spectral density of , the vari-
ance of the jitter in is obtained as

(16)

where the last equality results from the assumption that
. The jitter variance is proportional to ,

and we need to make small to maintain low jitter. The
loop bandwidth is clearly a function of .
For continuous-time PLL, which obviously has no dependency
on and , it is well-known that [8].
Assuming the typical scenario of , the continuous-time
PLL’s bandwidth is then . We observe that the nu-
merically computed of a discrete-time PLL as a function
of also exhibits a clear linear behavior.

Now to understand the impact of and on , we plot
as a function of (with fixed to 0) as

well as of (with fixed to 1) in Fig. 7 while setting
and . The coefficient 0.8 was found empirically. The
two curves roughly match, indicating that has
a similar impact on jitter as has. The contours of values
plotted against and indicate that is
indeed proportional to .

Based on the contour plots of given as functions of
and , we found the following empirical relationship:

(17)
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Fig. 7. � � of a discrete-time PLL.

with , where depends mostly on but also is a
function (albeit weaker) of .

Note that the empirically found constants in (17) and in the
expressions for and (the former of which led to the
plot in Fig. 6) depend on , which in turn is a function of the
channel-dependent parameter . This implies that
the set of constants would be different in general for different
channel responses. The particular set of constants obtained
thus far reflect the extended partial response class IV (EPR4)
channel, as will be revisited in Section VI.

V. NEW PLL DESIGN GUIDELINE

Based on the above analysis and observations, we now put
together an overall design guideline for our PLL. Assume that
we know the normalized target frequency component we
want our PLL to track in the incoming phase error. We first set

such that (10) is satisfied. At the same time, in order to ensure
a good phase tracking capability of the detector, should also
be reasonably larger than 1. Our experience indicates should
be well above 10.

Once is determined, we set to be a fairly small value. Un-
like in traditional DPLL, where must be large enough to guar-
antee high quality decisions, in our scheme a very small value
(e.g., ) provides adequate quality of the phase estimate that
drives the loop filter. This is because the delayed-phase estimate
chosen out of the best up-to-date path provides reliable phase es-
timates even with small delays. Once and are both chosen,
compute the effective decision delays
and , which will later be used to check
the stability condition and jitter performance, respectively.

Now we discuss selecting that will mainly control the
jitter performance. It is clear that we should choose as small
as possible to minimize jitter. Again we emphasize that se-
lecting a very small value of is possible in our case, as we can
control the tracking speed largely based on the parameter .
This would not be possible in traditional PLL design. The lower
bound on comes into the picture from the stability standpoint.
Obviously setting will make the PLL unstable. Thus,
we choose close to zero with some safety margin. In our
numerical examples, we often set to be one-tenth of the
value chosen in the standard DPLL.

As for choosing , while forcing does not cause a
stability issue, it is not desirable in standard PLL design. This is
because setting will hamper the PLL’s ability to drive the

phase error (the TED output) to zero, when there is a frequency
mismatch between the incoming signal and the local clock. In
our PLL, however, this does not cause a difficulty in principle,
since any finite phase error can be dealt with in the joint phase
estimator and symbol detector. When the residual phase error
is large enough in practice, however, it can make the first-order
approximation in (2) we use in modeling the phase-error effect
on the signal amplitude less accurate. For this reason, it is still
beneficial to try to eliminate phase error in the presence of a
frequency-step in the incoming signal. This means we would
still want to maintain a small positive value for . Making
increasingly smaller relative to has an effect of increasing
the damping ratio. In terms of the transient phase response of
the loop to a step-frequency input, a very large damping ratio
is manifested as a phase error that may be small but dies out
very slowly. Since any residual phase error in the PLL degrades
the decision quality of the detector, this is not acceptable in a
conventional PLL. In our PLL, however, the damping ratio can
be allowed very large, because of the phase-tracking ability of
our detector.

To summarize the new PLL design guidelines given above, let
be the loop bandwidth of the traditional PLL, which

is typically chosen to be above the highest targeted frequency
component of . We then choose and values of our loop
such that

(18)

In this way, we have higher tracking speed while our jitter is
lower, relative to the traditional PLL. We then make much
smaller than . For example, if , then setting

gives a damping ratio of . The
choice yields . Note that in traditional
PLL design, the damping ratio is typically kept between 0.5 and
1. Once is chosen, select to be something small, say, .
As a final step, check the stability condition and the overall jitter
amount against the chosen value of
and , using the stability plot of Fig. 6
and the in (17).

VI. NUMERICAL RESULTS

For the numerical results, the channel impulse response is
assumed to be EPR4, modeling the high density tape channel,
where
with denoting a zero-ISI pulse with 0% excess band. The
length of the “derivative” response used to construct the
expanded trellis, which is needed for applying the branch-spe-
cific phase-estimating scheme, is six, counting only significant
terms. This means the size of our trellis is 32 as opposed to 8
in the normal Viterbi detector matched to the EPR4 channel.
There are also extra computation (see (3)) and storage required
for branch-specific phase estimation but this effect is minimal.
The main issue is the increased size of the trellis, which repre-
sents roughly a increase in the detector complexity. This is
basically the price that is paid in return for the excellent perfor-
mance and robustness against timing errors. We note, however,
that standard trellis-reduction strategies like local decision feed-
back [9] can help reduce complexity. Using the design guideline
developed above, we present numerical examples based on two
different phase error models.
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A. Ramp Plus Sinusoid Phase Error

Assume that the incoming phase error is modeled as

(19)

where represents the normalized constant frequency offset,
is the normalized peak phase fluctuation and is the

normalized frequency of the phase fluctuation. While there is no
explicit random noise component in (19), the additive channel
noise effectively injects via a random noise component in
the phase-domain model of the loop.

Assume and . For
traditional PLL, we set the loop bandwidth to (so
that is roughly 0.004 or ). Increasing beyond
this value improves the tracking speed but results in a larger
jitter. Choosing a smaller value makes tracking difficult within
a few thousand bits. This choice of sets the guideline for
our loop parameters:

(20)

We try for our loop, one-half the value for the
traditional PLL, which sets . We also set
so that is roughly twice as large as the traditional loop’s

of 0.004. We subsequently fix , which gives .
With , we get the damping ratio of .

For the traditional PLL based on Mueller-Muller (MM) TED
[10] and a standard Viterbi detector, we set the decision delay
to and . To achieve the popular damping ratio
of , we choose .

Fig. 8 shows a simulated tracking speed comparison of the
two systems. Our loop achieves a zero-frequency error much
earlier than the traditional loop. The residual phase error in the
traditional loop goes to zero after 1200 samples, but the phase
error in the proposed loop decays very slowly due to the large
damping ratio. However, the residual phase error does not matter
in the proposed loop because the joint detector can compensate
for the finite residual phase error during data detection. We can
reduce the tracking time in the traditional loop by increasing
the loop bandwidth, but this also increases the bit-error and the
cycle-slip probabilities as well as jitter.

Table I shows simulated jitter variances as a function of SNR,
after both schemes track down the initial frequency offset. The
SNR is defined as , where denotes the channel re-
sponse and the noise variance. The jitter variance of the pro-
posed loop is consistently better than that of the traditional loop.
We safely conclude that for a given conventional PLL setting,
our loop can be set so that the latter has a better tracking speed
while at the same time yielding a smaller steady-state jitter.

B. Random Walk Phase Error

We now use a random walk phase error model in comparing
frame error rates (FERs):

(21)

Fig. 8. Tracking speed comparison. (a) Traditional loop. (b) Proposed loop.

TABLE I
JITTER VARIANCE COMPARISON ���� �

where is a unit-variance white Gaussian noise process and
is an adjustable parameter that controls the overall phase

error variance. For our simulation, we fix .
For the traditional PLL, we set the decision delay to

and , which corre-
spond to the lowest FER at dB. For our loop, we
set and . We subsequently fix ,
which gives . With , we get the
damping ratio of . Fig. 9 compares the FER performance
between the two loops. Each frame contains 4096 bits, and a
frame error is declared if the number of bit errors in a frame
is greater than 40 bits (assuming a reasonable error correction
coding capability). As can be seen in the FER comparison, the
proposed loop shows a significant performance improvement
over the traditional loop. The conventional loop suffers from fre-
quent cycle-slips and many bit errors due to the large loop band-
width and inaccurate decisions in the Viterbi detector. Making
the bandwidth smaller does not help either because in that case
the reduced tracking ability starts to create issues.

C. Turbo Equalizer Setting and Performance

The new PLL structure can be applied to turbo equalization
by incorporating the joint timing and data estimator into the
BCJR algorithm of [11]. One possible way to incorporate the
joint timing and data recovery scheme in the BCJR algorithm is
to compute the phase estimate according to (3) for each
branch in the beginning of every cycle during forward recursion.
To use the phase update equation of (3), then a “survivor” path
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Fig. 9. FER comparison with random walk phase error.

Fig. 10. Block diagram of the turbo equalizer setting.

needs to be maintained for each state, as in the standard Viterbi
detector. This can be achieved by performing, during the for-
ward recursion, an additional Viterbi-like path arbitration via
path metric updates and selection of one path per state.

The block diagram of a turbo equalizer setting is shown in
Fig. 10, where the global timing recovery loop is composed of
an interpolator, a joint timing and data recovery block, a loop
filter, and a numerically-controlled oscillator (NCO), operating
on the over-sampled channel output and soft information

generated from a low density parity check (LDPC) code de-
coder. For the LDPC, the quasi-cyclic low density parity check
(QC-LDPC) code of [12] is chosen with parameters: code length

, code rate , row weight 3 and column
weight 36. The message-passing LDPC decoder runs with soft
information from the BCJR detector and then passes back
its outputs to the BCJR algorithm; this iterative process con-
tinues until the number of iterations reaches a certain number (5
being chosen for the BER simulations). We run LDPC internal
iterations up to 25.

The normalized phase fluctuation model of (19) is used. The
peak phase is set to 0.2, and the period to 0.001. The
frequency offset is set to 0 to avoid the need for initial
tracking. The loop parameters are adjusted to best track the
phase fluctuation

, and . The BER simulation results are shown
in Fig. 11. Our loop achieves the performance of ideal timing
within a fraction of dB.

VII. CONCLUSION

We provided analytical tools to systematically design the re-
cently proposed PLL that incorporates the phase-tracking de-
tector of [2], [3]. A design guideline has been constructed for
this PLL so that it can achieve both good tracking and low jitter,

Fig. 11. BER performance under turbo equalizer setting.

a feat that is not possible with traditional PLLs. Tracking speed
simulation and error rate simulation under traditional hard-de-
cision processing as well as a turbo equalization environment
validate the new PLL and the design guideline presented in this
paper.
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