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Abstract—This paper presents a cross-layer design strategy to reduce SSD response time and its variation. The key is to cohesively
exploit system-level run-time data access workload variation and temporal locality and device-level NAND flash memory write latency
versus data retention time trade-off. The basic idea is simple: once write intensity of the workload increases and begins to degrade SSD
response time,wespeedupmemory programmingat the penalty of shorter data retention time, and rewrite these short-lifetimedata later, if
necessary, when workload write intensity drops. A scheduling solution is developed to effectively implement this design strategy.
Simulations over various workloads were carried out and the results demonstrate that the cross-layer design strategy can reduce the
average SSD response time by up to 52.3%.

Index Terms—Solid-state drive, data retention, workload variation, write latency, average response time

1 INTRODUCTION

THE steady bit cost reduction over the past decade has
enabled NAND flash memory enter increasingly diverse

applications. In particular, it is now economically viable to
implement solid-state drives (SSDs) usingNAND flashmem-
ory. Modern SSDs, especially high-end enterprise SSDs, can
deliver very high IOPS (Input/Output Operations per Sec-
ond), e.g., up to 1,180,000 IOPS of the latest Fusion-IO PCIe
SSDs [1]. This is realized by implementingmany internal SSD
channels and aggressively applying architectural techniques
such as interleaving and stripping. IOPS has become themost
widely citedmetric in advertising commercial SSDs. However,
as pointed out by recent studies (e.g., see [2]), it is at least
equally important to reduce SSD response time and its varia-
tion for enterprise applications. Unfortunately, with the tech-
nology scaling down, NAND flash memory programming
speed continues to drop, which tends to significantly degrade
SSD response time.

This paper presents a cross-layer design approach to re-
duce both SSD response time and its variation. First, it is well
known that most real-life workloads exhibit certain degree of
data access intensity variation, and write requests during
high-intensity period play a critical role in determining SSD
response time. Since it becomes increasingly infeasible to
make NAND flash memory chips provide a sustained high
programming speed, it can be highly desirable if NAND flash
memory chips can temporally boost programming speed once
write requests during high-intensity period begin to notice-
ably degrade system speed performance. Because of the
progressive nature of NAND flash memory programming

procedure, memory cell operational noise margin is propor-
tional to memory programming latency. Given the fixed
memory program/erase (P/E) cycling endurance target, a
smaller memory cell operational noise margin will directly
result in a shorter data retention time. Therefore, there is a
fundamental trade-off between NAND flash memory pro-
gramming speed and data retention time. This makes it
possible to temporally boost memory programming speed
at the cost of data retention time,which has already been used
in latest commercial products [3]. The above discussion sug-
gests an on-demand fast-write-and-rewrite design strategy:
Whenever necessary,we temporally boostNANDflashmem-
ory programming speed to ensure the desired SSD response
time. Since those fast-written data have very short data
retention time (e.g., few weeks or days instead of several
months or years), we should rewrite those data in time to
ensure data integrity. We develop a specific strategy to
efficiently implement this simple design concept, which can
further exploit workload temporal locality to reduce the
overhead. In summary, our contributions include:

1) We for the first time propose to cohesively exploit
system-level workload variation and device-level pro-
gramming speed vs. data retention time trade-off to
reduce SSD response time. This is realized by a simple
on-demand fast-write-and-rewrite design approach.

2) We present a practical strategy to implement the pro-
posed design concept, which can further effectively
exploit workload temporal locality. We also discuss
various incurred implementation overheads and ana-
lyze their impacts.

3) With the case study of real-world disk traces and using
2 bits/cell NAND flash memory, we demonstrate that
the proposed cross-layer design approach can reduce
the average SSD response time by up to 52.3%. We also
extensively evaluate the involved design trade-offs.

The rest of this paper is organized as follows: The basics of
NAND flash memory are presented in Section 2. Section 3
presents the key underlying motivations and basic concept,
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and proposes an implementation strategy. The effectiveness
and involved trade-offs are quantitatively evaluated by
extensive simulations, for which the simulation setup is
described in Section 4, and basic results and sensitivity anal-
ysis are presented in Section 5 and Section 6, respectively.
Related work are surveyed in Section 7, and conclusions are
drawn in Section 8.

2 BASICS OF NAND FLASH MEMORY

Each NAND flash memory cell is a floating gate transistor
whose threshold voltage can be programmed by injecting
certain amount of charges into the floating gate. Hence, flash
memory data storage is realized by programming the thresh-
old voltage of each memory cell into two or more non-
overlapping voltage windows. Before one memory cell can
be programmed, it must be erased (i.e., remove the charges in
thefloating gate,which sets its threshold voltage to the lowest
voltagewindow). NAND flashmemory cells are organized in
an hierarchy, as illustrated in Fig. 1,
where one memory array is partitioned into blocks, and each
block contains a certain number of pages. Within one block,
each memory cell string typically contains 16 to 64 memory
cells, and all the memory cells driven by the same word-line
are programmedand sensed at the same time.All thememory
cells within the same block must be erased at the same time.
Data are programmed and fetched in the unit of page, where
the page size ranges from 512B to 8KB user data.

Regarding memory programming, threshold voltage con-
trol is typically realized by using incremental step pulse
program (ISPP) [4], [5], i.e., all the memory cells on the same
word-line are recursively programmed using a program-and-
verify approach with a stair case program voltage with a
step increment of , as illustrated in Fig. 2. Such a recursive
program-and-verify strategy is necessary to accommodate the
inevitable fabrication process variation thatmakes the thresh-
old voltage of different memory cells increments differently
even under the same amount of programming voltage. Under
such a recursive program-and-verify strategy, each pro-
grammed state associates with a verify voltage that is used
in the verify operation and determines the target position of

each programmed state threshold voltage window. Denote
the verify voltage of the target programmed state as .
During each program-and-verify cycle, the threshold voltage
of each memory cell is first boosted by up to and then
compared with the corresponding verify voltage . If the
memory cell threshold voltage is lower than , the program-
and-verify recursionwill continue, otherwise the correspond-
ing bit-line will be configured so that further programming of
this memory cell is disabled.

3 PROPOSED DESIGN STRATEGY

3.1 Motivation and Basic Concept
Our proposed on-demand fast-write-and-rewrite design
strategy aims to reduce SSD response time, especially for
applications with high write intensities. The basic idea is
simple and directly motivated by the following three well-
known facts:

3.1.1 NAND Flash Memory Programming Speed vs.
Data Retention Time Trade-Off
As discussed in Section 2, NAND flash memory program-
ming employs a recursive program-and-verify procedure that
sweeps the entirememory cell threshold voltage regionwith a
step increment . As we increase , the flash memory
programmingwill incur a less number of program-and-verify
cycles, leading to a higher programming speed. Nevertheless,
a bigger will increase the width of each programmed
level and hence reduce the noise margin between adjacent
programmed levels, leading to data retention time degrada-
tion. Modern flash memory chips can support dynamic con-
figuration of the programming speed vs. data retention time
trade-off [3].

3.1.2 Data Access Intensity Variation
Most real-world workloads exhibit noticeable variability in
terms of data access intensity. During the period with work-
load intensity, many write I/O transactions can overlap and
hencemust be buffered in awrite request queue. The response
time of those overlapped transactions has bigger impacts on
overall system performance than the response time of those
non-overlapped transactions, which can be illustrated by a
simple example shown inFig. 3.On the other hand, during the
period with low workload intensity, the storage systems
become largely idle and its bandwidth is largely under-
utilized.

Fig. 1. Illustration of NAND flash memory array structure.

Fig. 2. Illustration of the incremental step pulse program (ISPP) scheme
being used to realize programming in NAND flash memory.
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3.1.3 Data Access Temporal Locality
Most real-world workloads exhibit a certain degree of data
access temporal locality,which has been extensively exploited
in modern computing systems. Clearly, due to such temporal
locality, lifetime of somedatamaybe (much) less than the SSD
system data retention time in current practice (e.g., several
months and longer). This naturallymakes it favorable to trade
data retention time for programming speed.

Motivated by the above three facts, the proposed design
strategy can be described as follows: In normal operations of
SSDs, all the NAND flash memory chips employ a normal
program step voltage that can guarantee the system
specified data retention time . Once the write request
queue contains too many overlapped write transactions, the
SSD controller will make NAND flash memory chips use a
bigger program step voltage ( ), which
can increasememoryprogramming speed butmeanwhile can
only ensure a (much) shorter data retention time
( ). Because those fast-written data cannot meet the
system specified data retention time, they must be rewritten
within to prevent data loss. Due to the data access
intensity variation, the data rewrite operationsmay be carried
out during SSD idle time. In addition, repeated datawrite due
to data access temporal locality may obviate the rewrite
operations for some fast-written data.

Very intuitively, this simple design approach can reduce
the average SSD response time, which will be quantitatively
demonstrated in Section 5. Nevertheless, this design concept
could increase write amplification, which further degrades
P/E cycling endurance and potentially invokes garbage col-
lection (GC) more frequently. At the first glance, one may
expect that every fast write operation will increase the write
amplification. Fortunately, it is not necessarily true. In fact,
under the ideal case, those operations may not increase write
amplification at all. Let us consider an example as shown in
Fig. 4, although there are six fast-writes and two rewrites, the
total numberofwriteswith orwithout fastwrite are same.The
reason that the rewrite operations on logical page number 3 &
4 do not increase the write amplification is that no further
requests with logical page number 3 & 4 occur between
rewrite operations and GC. The reason that the fast-write
operations on logical page number 7 & 8 do not increase the
write amplification is that they are rewritten by subsequent

requests, therefore there are no extra rewrite operations trig-
gered. This example suggests that we should try to utilize
workload temporal locality and GC to reduce the write
amplification. Accordingly, we develop the following two
techniques: (i) In order to increase the utilization of workload
temporal locality,we trigger rewrite operations onlywhen the
number of requests in the rewrite queue reaches a threshold
value. (ii) We give fast-write blocks higher priority to be
recollected in the garbage collection.Wewill further elaborate
on these two techniques in Section 3.2 and their effectiveness
will be quantitatively demonstrated in Section 5.

3.2 Implementation Strategy
This subsection presents a strategy to practically implement
the above proposed design concept to reduce SSD system
response time with minimized cycling endurance overhead.
Fig. 5 shows the operational flow of the proposed implemen-
tation strategy. The SSD controller contains two buffer queues
to handle write requests, including (i) write queue that stores
the data of write requests from the host and (ii) rewrite queue
that stores the information regarding data to be rewritten. In
order to reducememory consumption, the rewrite queue only
holds the logical and physical address of those fast-written
pages.When a data page should be rewritten, according to its
location, we first read the data page from NAND flash
memory and then rewrite it to another physical location
with normal memory programming speed. Since the read
latency of NAND flash memory is much less than its write
latency, this design approach will not incur noticeable extra

Fig. 3. An illustrative example that shows the impacts of overlapped
requests on average response time. Assume every a write request
arrives and the normal flash memory programming latency is . As
shown in theupper part of the figure, theaverage response time for total 11
requests is . For simplicity, we ignore all the other factors in the
response time (e.g., data transfer time, ECC delay, etc.). If the flash
programming latency is reduced to , the average response time for
total 11 requestswill be reduced to as shown in the lower part of the
figure, which is only 8.3% of the original average response time.

Fig. 4. An illustrative example of the ideal case under which rewrite
operations do not increase write amplification.
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latency and meanwhile can significantly reduce the memory
resources used by the rewrite queue.

As shown in Fig. 5,whenever the lifetime of the top entry in
the rewrite queue exceeds a pre-set threshold value, the SSD
controller interrupts all the other operations and start the
rewrite operation (i.e., fetch this rewrite queue top entry, read
the corresponding page data from the NAND flash memory,
and rewrite this data page back with normal memory pro-
gramming speed). Otherwise, when the SSD is idle, the
controller first checks that whether the number of entries in
the rewrite queue is bigger than a pre-set threshold value, and
if yes it will execute a rewrite operation. When we fetch one
host write request from the write queue, if the target logical
page location of this write request also resides in the rewrite
queue, this is referred to as rewrite queue hit. A rewrite queue
hit suggests that the corresponding data page could have a
higher probability of experiencing temporal locality. There-
fore, when rewrite queue hit occurs, wewrite the correspond-
ing data pagewith the fast memory programming speed, and
meanwhile add the corresponding entry in the rewrite queue
to the bottomof the rewrite queue. The old entry in the rewrite
queue corresponding to this logical page does not need to
move. When the number of write requests being held in the
write queue is bigger than a pre-set threshold value, we
always processwrite requestswith the fastmemory program-
ming speed, regardless ofwhether rewrite queue hit occurs or
not.When thenumber ofwrite requests beingheld in thewrite
queue is less than the pre-set threshold value and rewrite

queue hit does not occur, we simply process write requests
with normal memory programming speed.

Compared with current design practice, the rewrite queue
is an unique hardware component demanded by implement-
ing this proposed on-demand fast-write-and-rewrite design
concept. Hence, we further elaborate on the rewrite queue
management as follows. We propose to use the simple least
recently used (LRU) replacement algorithm in the rewrite
queue management for two main reasons: (i) LRU-based
queue management can ensure that the entries in the
rewrite queue are still ordered based on their lifetime, i.e.,
the entry on the top of the rewrite queue always corresponds
to the data page with the longest lifetime. Since we need to
ensure that those fast-written data pages cannot exceed their
short data retention time limit, such an ordered queue makes
it easy tomeet this requirement. (ii) The entries corresponding
to those relatively hot data pages could have a bigger proba-
bility to be kept in the rewrite queue. This can further reduce
the actual number of rewritten operations. In order to avoid
expensive rewrite queue search, both the logical page number
and physical page number need to be put into the rewrite
queue. We also need to add a flag bit in the mapping table to
indicate whether the logical page accessed by the incoming
write request is in the rewrite queue. If any write request hits
the rewrite queue, we will do fast-write on this request. At
the same time, the logical page number and its new physical
page number will be put into the bottom of the rewrite queue.
The old entry in the rewrite queue corresponding to this

Fig. 5. Illustration of the fast-write strategy.
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logical page does not need to bemoved.When the old entry is
flushed from the rewrite queue, we will compare its physical
page number with the physical page number of the same
logical page number in the mapping table. If they are same,
this physical page needs to be rewritten. Otherwise,we do not
need to rewrite this physical page since it is rewritten already.
Therefore, the only cost is the mapping table lookup which is
also needed even without fast-write. Fig. 6 shows the process
discussed above.

In MLC SSDs, pages are divided into most significant bit
(MSB) pages and least significant bit (LSB) pages. The use of a
higher programstep voltage indeedwill lead to a shorter
retention time of both MSB page and LSB page on the same
word-line. Therefore, when using the proposed design
method to MLC NAND flash memory, the MSB and LSB
pages written to the same word-line should be both normal-
write or fast-write. Therefore, we categorize all the flash
memory blocks into fast-write blocks and normal-write
blocks. The fast-write pages are always written to the fast-
write blocks and the normal-write pages are alwayswritten to
the normal-write blocks. The garbage collection will always
proceedwithnormal-writes, since garbage collectedpages are
most likely cold pages. In order to reduce the degradation of
effective P/E cycling endurance, the garbage collection algo-
rithm should give fast-write blocks a higher priority than
normal-write blocks to be recollected.

Finally, we note that, as shown in Fig. 5 and discussed
above, if the number of entries in the rewrite queue is less than
the pre-set threshold value, the SSD controller does not exe-
cute a rewrite operation evenwhen the SSD is idle. At the first
glance, one may suggest that a better alternative is to remove
this pre-set threshold constraint and rewrite fast-written data
pages as early as possible. Although this alternative can better
prevent rewrite queue overflow for highly intensive work-
loads, it may significantly reduce the rewrite queue hit rate
and increase the actual number of rewrite operations. In
another word, this alternative tends to under-utilize the
temporal locality in real-life workloads. Therefore, we choose
to add a threshold constraint on the number of entries in the
rewrite queue before a rewrite operation can be executed. The
impact of such a threshold will be quantitatively evaluated in
Section 6.

3.3 Data Protection during Power Shutdown
Since fast-write pages have much shorter retention time, data
may be lost without proper protection during power shut-
down period. There are two different scenarios of power
shutdown, one is graceful power shutdown and the other
one is power failure (or sudden power loss). Graceful power
shutdown is an under-control event during which the power
source is still providing the power to the system. Under this
circumstance, the fast-write pages will be rewritten using
normal programming speed before system shutdown. For
example, if the rewrite queue depth is 64 K, at the worst case
256 MB data need to be rewritten. It can be finished with
around 1 second using latest SSDs.

Power failuremeans that the systemsuddenly loses power.
Under this circumstance, the system usually has a backup
power source (e.g., super capacitor) for saving critical infor-
mation to non-volatile memory. Usually, the backup power
cannot last for a very long time, therefore the information can
be saved using backup power is very limited. As a result, it
may not be always feasible to rewrite all the fast-write pages.
However, at least for our interested enterprise applications, it
is reasonable to expect that the main power will resume in a
short time after a power failure. Therefore, as long as the data
retention time of the fast-write pages (e.g., 4 days in our case
study presented later on) is significantly longer than power
downtime, the fast-write page data will not be lost. However,
we still need to save rewrite queue fromvolatilememory (e.g.,
DRAM) to non-volatile memory or simply use non-volatile
memory to implement rewrite queue. The designer should
determine the rewrite queue depth according to the stable
power period provided by backup power resources if the
rewrite queue is implemented by volatile memory.

4 SIMULATION SETUP

Quantitative evaluation of the proposed design strategy
demands a simulation environment that can quantitatively
model the flash memory cell device characteristics and SSD
system performance. This section discusses this simulation
environment and associated configurations.

4.1 Modeling of Memory Device Characteristics
We use the model presented in [6] to simulate the flash
memory device characteristics including memory cell pro-
gramming and erase behavior, RTN and Data Retention, and
cell-to-cell interference.

4.1.1 Memory Erase and Programming
NAND flash memory uses Fowler-Nordheim tunneling (FN)
to realize both erase and program, and the threshold voltage
of FN-erasedmemory cells tends to have awideGaussian-like
distribution. Hence, we can approximately model the thresh-
old voltage distribution of erased state as

where and are the mean and standard deviation of the
erased state threshold voltage.

Fig. 6. Rewrite queue operation scheme.
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Regarding ISPP memory programming, the threshold
voltage of the programmed state tends to have a uniform
distribution over [ , ] with the width of :

4.1.2 RTN and Data Retention
RTN causes random fluctuation of memory cell threshold
voltage, and we can model the probability density function

of RTN-induced threshold voltage fluctuation as a
symmetric exponential function:

Interface state trap generation grows with the P/E cycle
number in a power law fashion, with the exponent as
0.62. In this work, we set the mean of RTN follows

, where the constant 1.80E-4 and we use
another constant to incorporate the effects of
electron injection statistics.

Memory cell threshold voltage reduction during data
retention is mainly due to interface state trap recovery and
electron detrapping, which approximately follow Poisson
statistics. Hence, the threshold voltage reduction during data
retention can be approximately modeled as a Gaussian dis-
tributionN . Themean value of threshold voltage shift
is proportional to the mean of sum of interface state traps and
oxide traps, i.e., . We set

, , and in our simula-
tion based on the results presented in [7]. Moreover, the
significance of threshold voltage reduction during data reten-
tion is also proportional to the initial threshold voltage mag-
nitude. We set that the threshold voltage reduction during
data retention approximately scales with , where
is the initial threshold voltage, and the constant and are
set as 1.4 and 0.38 respectively in our simulation based on the
results presented in [8].

4.1.3 Cell-to-Cell Interference
Threshold voltage shift of a victim cell caused by cell-to-cell
interference can be estimated as

where represents the threshold voltage shift of one
interfering cell which is programmed after the victim cell, and
the coupling ratio is defined as

where is the parasitic capacitance between the inter-
fering cell and the victim cell, and is the total capacitance
of the victim cell.

4.1.4 An Approximate Memory Device Model
Based on the above discussions, we can approximatelymodel
NANDflashmemorydevice characteristics as shown inFig. 7,
using which we can simulate memory cell threshold voltage
distribution and hence obtain memory cell raw storage reli-
ability. Based upon (1) and (2), we can obtain the distortion-
less threshold voltage distribution function . Recall that

denotes the RTN distribution function (see (3)), and let
denote the threshold voltage distribution after incor-

porating RTN, which is obtained by convoluting and
:

Cell-to-cell interference is further incorporated based
on (4). To capture inevitable process variability, we set both
the vertical coupling ratio and diagonal coupling
ratio as random variables with bounded Gaussian dis-
tributions:

where and are themean and standarddeviation, and is
chosen to ensure the integration of this bounded Gaussian
distribution equals to 1. In this study, we set and

, and set the mean of and as 0.096 and
0.0072, respectively.

Let denote the threshold voltage distribution after
incorporating cell-to-cell interference and denote the
distribution of threshold voltage reduction during data
retention, we have the threshold voltage distribution after
incorporating major distortion sources as

Finally, we use the post-compensation technique [9] to
partially mitigate the cell-to-cell interference. In our simu-
lation, we assume usingMLC flash and set its memory read
access time as and program time as [10] for
normal speed write with retention time is 10 years. We set
the data retention time for fast-write as 4 days. According

Fig. 7. Illustration of the approximate NAND flashmemory device model that incorporates major threshold voltage distortion sources and applies post-
compensation to partially mitigate cell-to-cell interference.
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to the simulation based on our flash device model, the
could be reduced half when the data retention time
requirement decreases from 10 years to 4 days. Therefore,
we set flash memory programming time for fast-write as

.

4.2 SSD System Performance Modeling
We carry out SSD system performance simulation using the
DiskSim Simulator [11] with the SSD model patch [12] from
MicrosoftResearchLab. TheSSDconfiguration is described as
follows. Each chip contains 2 dies that share an 8-bit I/O bus
and a number of common control signals, each die contains 2
planes, and each plane contains 2048 blocks. Each block
contains 64 pages, each of which consists of eight 512-byte
sectors. The SSD contains 2 channels (gangs), and each chan-
nel harbors 16 flash memory chips. We also configure the
simulator to support data stripping over 2 channels. Follow-
ing the version 2.0 of the Open NAND Flash Interface (ONFI)
[13], we set the bus bandwidth as 133 MB/s. It employs a
modified greedy strategy GC which keeps tracking the
remaining lifetime of any block and gives them different GC
rates so as to delay the expire time of any single block. The
details of this algorithm can be found in [12]. Aswe discussed
earlier, we modify the GC algorithm used in the simulation
tool in order to give the fast-write blocks a higher priority than
the normal-write blocks to be recollected. In our simulation,
GC will be triggered if the number of free blocks is less than
20% of the number of total physical blocks. The unit size of
data that corresponds to one entry on the logical-to-physical
address translation table (mapping table) is 4KBand thepages
in the write queue is sequentially written to available free
blocks, and meanwhile the mapping table is accordingly
updated. We set the system provisioning as 28%, which
means the logical volume is 50 GB on a physical volume of
64 GB SSD, in order to reduce the write amplification and
improve the garbage collection efficiency.

In order to evaluate our proposed design approach, we
also modify the original DiskSim to support fast-write and
rewrite operations as shown in Fig. 8.We use 10 different I/O
traces including Iozone and Postmark from [12], Finance1,
and Finance2 from [14], and Trace 1-6 from [15]. In our
simulation, those benchmarks are run hundreds of times in
order to invoke enough GC operations.

5 BASIC SIMULATION RESULTS

Before presenting the simulation results, we define the fol-
lowing abbreviations:

1) : the threshold value of the number of requests in
the rewrite queue for triggering rewrite;

2) : the threshold value of the number of requests in
the write queue for triggering fast-write;

3) : the rewrite queue depth.
Fig. 9 shows the SSD response time standard deviation,

which is normalized to the SSD response time standard
deviation without using the proposed design approach. The
average SSD response time standard deviation reduction is
39.9% over the 10 traces. Reduction of response time standard
deviation comes from the average SSD response time reduc-
tion as shown inFig. 10a.As shown inFig. 10a,most traces can
achieve a significant average response time reduction except
traces Financial1 and Financial2. The average response time
reduction after using the proposed design approach over the
10 different traces is 52.3%. Fig. 10b shows the number of total
rewrite pages normalized to the number of total requested
pages in the original trace files. The average normalized
number of total rewrite pages is 14.1% over the 10 traces.
Fig. 10b only shows the total rewrite operations. However, as
we discussed in Section 3.1, not every rewrite will result in an

Fig. 8. Illustration of SSD structure when using the proposed design approach.

Fig. 9. SSD response time standard deviation normalized to the SSD
response time standard deviation without using the proposed design
approach. , , and are set to 128, 128, and 64 K
respectively.

2506 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 10, OCTOBER 2014



extra write operation to the SSD compared to the scenario
without using the proposed design approach. Hence, Fig. 11
shows the normalized number of extra write pages when GC
is taken into consideration. The average number of extrawrite
pages is 6.1% over the 10 traces. Compared with 52.3%
average response time reduction and 39.9% average response
time standard deviation reduction, 6.1% extra write pages
appears to be justifiable. In addition, the number of extrawrite
pages can be further reduced using the trade-off between the
average response time reduction and the number of total
rewrite pages, which can be adjusted by changing ,

, and/or . We will further quantitatively illus-
trate these trade-offs in Section 6.

Intuitively, the extra rewrite operationsmay have negative
impacts on the average response time.However, all the above
real workloads do not reveal this effect. Therefore, we use six
synthetic workloads generated in DiskSim to more clearly
illustrate this effect. These six synthetic traces are all com-
posed of 10 billion random write (RW10B) I/O requests with
the mean of inter-arrival time varying from 10 ms to 0.02 ms
and the deviation is fixed at 0. Simulation results shown in
Fig. 12a suggest that, when the inter-arrival time is long (e.g.,
10ms, 5ms, and 1ms), the average response time degradation
is negligible. This is because very few rewrite operations are
triggered, since the number of requests in the write queue is
always very small. On the other hand, when the inter-arrival

time is very short and the requests are evenly distributed
(deviation of inter-arrival time is set to 0), the average re-
sponse timemarginally increases due to the negative impacts
of the rewrite operations. Nevertheless, the read response
time degradation is so small that it is almost negligible. The
reason is that the rewrite queue is only 64 K, therefore, after
rewrite queue is full no more rewrite operations will be
triggered until the rewrite queue is forced cleaned after the
retention time limit (i.e., 4 days) is approaching.

6 SENSITIVITY ANALYSIS

Theprevioussectionshowsthesimulationresultswithasingle
set of configurations, i.e., is 64 K, is 128, and

is 128. Clearly, the average response time reduction
and number of total rewrite pages could vary with different
configurations. In order to show the impact and involved
trade-offs, we present sensitivity analysis in this section.

6.1 Rewrite Queue Depth
Aswe discussed in Section 3.1, the rewrite queue depth could
affect the trade-off between the average response time reduc-
tion and the number of total rewrite pages. A bigger rewrite
queue depth may bring more fast-write operations and
potentially improve the rewrite queue hit rate. Therefore, a
bigger results in more average response time reduction
as shown in Fig. 13. At the same time, a bigger also
generates more extra write operations as shown in Fig. 14. All
the traces except traces Financial1 and Financial2 show this
trade-off whenwe vary .We also notice that the average
response time of trace1 cannot be further reduced when

is bigger than 20 K. The reason is that the dynamic page
numbers of rewrite queue for traces1 never exceed 20 K
according to our simulation results.We further notice that the
impact of rewrite operations on response time is not signifi-
cant, since most of the rewrite operations occur when the SSD
is idle.

6.2 Fast-Write Trigger Threshold
As shown in Fig. 10a, the proposed design approach fails to
noticeably reduce the average response time for traces Finan-
cial1 and Financial2. The reason is that , which is set to

Fig. 10. (a) Average response timenormalized to the average response timewithout using theproposeddesignapproachand (b) number of total rewrite
pages normalized to the number of total request pages in the trace files. , , and are set to 128, 128, and 64 K respectively.

Fig. 11. Normalized number of extra write pages when GC is taken into
consideration. , , and are set to 128, 128, and 64 K
respectively.
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128 in the above simulations, is too high for those two traces.
Hence,we re-run these two traces under very small , and
the results are shown in Fig. 15. Now we can observe notice-
able average response time reduction for these two traces,
which is up to 16.3% and 8%with 6% and 1.2% extra number
of rewrite pages for Financial1 and Financial2, respectively.

Fig. 16 shows the normalized average response time when
varies from 32 to 2048 for all the traces. A smaller
generates more fast-write operations, which tends to

result in a larger average response time reduction as shown in
the results of traces1 . However, the traces Iozone and
Postmark showopposite results. The reason is that the rewrite

Fig. 12. (a)Average response timenormalized to theaverage response timewithout using theproposeddesignapproachand (b)Number of total rewrite
pages normalized to the number of total request pages in the trace files. , , and are set to 128, 128, and 64 K respectively.

Fig. 13. Normalized average response time under different rewrite queue depth under different trace files. is set to 128. is set to 128.

Fig. 14. Normalized number of total extra write pages with different rewrite queue depth under different trace files. is set to 128. is
set to 128.
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queue is already full when running these two traces. There-
fore, a bigger can postpone the overflow of rewrite
queue, which can potentially improve the SSD average re-
sponse time reduction as shown by the traces Iozone and
Postmark in Fig. 16. The number of total extra write pages, as
shown in Fig. 17, continuously drops as increases from
32 to 2048, since less rewrite operations are generated as

increases.

6.3 Rewrite Trigger Threshold
Fig. 18a shows the rewrite queue hit rate for different traces,
for which we assume that the SSD controller can have a page
to rewrite whenever a SSD channel is idle. As we discussed in

Section 3.2, this could lead to a low rewrite queue hit rate for
the traces which are very unbalanced or intensive. As shown
in Fig. 18a, only trace Iozone has a high hit rate since it is very
intensive and does not have much idle time. Therefore, its
rewrite queue cannot be flushed frequently. If we add a new
constraint (i.e., read a page location from rewrite queue only
when the length of rewrite queue is bigger than a threshold),
the rewritequeuehit rate could improve.As shown inFig. 18b,
the hit rate of those trace significantly improves by setting the
rewrite trigger threshold value as 2k. Consequently, the
number of total extra write pages can be reduced as shown
in Fig. 20. The average response time of traces1 , as shown
in Fig. 19, does not have noticeable change as the threshold

Fig. 15. (a) Average response time normalized to the average response time without using the proposed design approach and (b) number of total extra
write pages normalized to the number of total request pages in the trace files. is set to 128. is set to 64K and is varied from 128 to 8.

Fig. 16. Normalized average response time under different . is set to 128. is set to 64 K.

Fig. 17. Normalized number of total extra write pages under different . is set to 128. is set to 64 K.
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value varies, since most rewrite operations occur during the
SSD idle time. The response time of Iozone and Postmark
drops as threshold value decreases, which is due to rewrite
queue overflow as we discussed in Section 6.2.

7 RELATED WORK

There have been many studies [16]-[27] in the open literature
aiming to improve the SSD write performance. Prior work

[16]-[21] focused on using a RAM based write buffer to boost
SSD write performance. Write requests are first stored in a
write buffer. If the write buffer is full, a page selected through
a replacement algorithm in the write buffer will be replaced
and written to the flash memory. These prior work proposed
different buffer management schemes, e.g., different replace-
ment algorithms, to improve the performance of write buffer.
Our work is completely orthogonal to their approaches and
can be combined together to further improve the SSD write

Fig. 18. (a)Rewrite queuehit ratewhen theSSDcontroller gets a pagenumber from rewrite queuewhenever aSSDchannel is idle and (b) rewrite queue
hit rate when the SSD controller gets a page number from rewrite queuewhen a SSD channel is idle and the number of entries in rewrite queue is bigger
than 128. is set to 64 K and the threshold value of is set to 128.

Fig. 19. Normalized average response time under different . is set to 64 K. is set to 128.

Fig. 20. Normalized number of total extra write pages under different . is set to 64 K. is set to 128.
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performance. Of course, if the write buffer is large enough to
always absorb all thewrite traffic and there are no overlapped
requests to the flash memory, our proposed approach should
not be used.

Some prior work [22]-[27] focused on using hybrid SLC/
MLCflashmemory to improve SSDwrite performance.Write
requests are first stored in SLC region at a higher speed and
thenmigrated toMLC region later on if necessary. Prior work
proposed different region partition and data migration strat-
egies. Our work is also completely orthogonal to their ap-
proaches and canbe combined together to further improve the
SSD write performance.

Pan et al. [6] proposed to dynamically adjust flash pro-
gramming speed according to the run-time P/E cycling num-
ber in such away that thememory raw storage bit error rate is
always close to what can be maximally tolerated by the
existing redundancy. Our approach also aims to dynamically
adjust flash memory programming speed. However, we
change the programming speed according to the workload
dynamic characteristic instead of run-time P/E cycling
number.

8 CONCLUSION

This paper presents a design approach to improve the SSD
write performance by exploiting run-time data access work-
load variation and temporal locality at the system level and
NAND flash memory write latency vs. data retention time
trade-off at the device level. The basic idea is to perform
unconventional fastwrite at the penalty of data retention time
when the run-time workload is intensive and rewrite those
fast-written pages when the SSD is idle. We develop various
techniques to facilitate the practical implementation of this
design concept to reduce the impact on cycling endurance.
The effects of various design parameters in this design ap-
proach are also discussed. The simulation and analysis results
based on detailed flash memory cell models and SSD system
simulator suggest that up to 52.3%SSDaverage response time
reduction can be achieved.
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