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Abstract

Targeting on the future fault-prone hybrid
CMOS/nanodevice digital memories, this paper presents
two fault tolerance design approaches that integrally
address the tolerance for defects and transient faults. The
first approach is straightforward and easy to implement but
suffers from a rapid drop of achievable storage capacity as
defect densities and/or transient fault rates increase, while
the second approach can achieve much higher storage
capacity under high defect densities and/or transient fault
rates at the cost of higher implementation complexity and
longer memory access latency. With the use of BCH codes
as ECC, we carried out simulations to demonstrate the
effectiveness of the presented approaches under a wide
range of defect densities and transient fault rates, while
taking into account of the fault tolerance storage overhead
in CMOS domain.

1 Introduction

Although many emerging nanoscale devices show sig-
nificant future promise to sustain the Moore’s Law beyond
the CMOS scaling limit, there is a growing consensus [1,8]
that, at least in the short term, they cannot completely re-
place CMOS technology. As a result, there is substan-
tial demand to explore the opportunities for CMOS and
molecular/nano-technologies to enhance and complement
each other. This naturally leads to the paradigm of hybrid
CMOS/nanodevice nanoelectronics [2, 4–6, 9, 11], where
an array of nanowire crossbars, with wires connected by
simple nanodevices at each crosspoint, sits on the top of
a CMOS circuit. It is almost evident that, compared with
the current CMOS technology, any emerging nanodevices
will have (much) worse reliability characteristics (such as
the probabilities of permanent defects and transient faults).
Hence fault tolerance have been well recognized as one
of the biggest challenges in the emerging hybrid nanoelec-
tronic era [8].

This work concerns the fault tolerant system design for
hybrid nanoelectronic digital memories. Conventionally,
defects and transient faults in CMOS digital memories are
treated separately, i.e., defects are compensated by using
spare rows, columns, and/or words to repair (i.e., replace)
the defective ones, while transient faults are compensated
by using error correcting codes (ECC). In order to provide
good defect tolerance efficiency, the repair-only approach
requires low defect densities that can be readily met by cur-
rent CMOS technologies. Nevertheless, the much higher
defect densities of nanodevices make the repair-only ap-
proach not sufficient, which naturally demands extending
the use of ECC for both defect tolerance and transient fault
tolerance. Because of the dual role of ECC, defect tolerance
and transient fault tolerance should be addressed integrally.
More importantly, realization of fault tolerance in hybrid
nanoelectronic memory will incur area, power, and opera-
tional latency overhead in CMOS domain. Such overhead
in CMOS domain must be taken into account when investi-
gating and evaluating hybrid nanoelectronic digital memory
fault tolerant system design solutions.

Defect tolerance in hybrid nanoelectronic digital mem-
ory have been addressed in [3, 10]. In [10], the authors an-
alyzed the effectiveness of integrating Hamming code with
spare row/column repair for defect tolerance. The ECC-
only defect tolerance has been used to estimate the hybrid
nanoelectronic memory storage capacity in [3]. Neverthe-
less, the two main issues as discussed in the above, i.e.,
(1) integration of defect tolerance and transient fault toler-
ance and (2) consideration of the fault tolerance overhead
in CMOS domain, have not been addressed in prior work.

In this paper, we propose two hybrid nanoelectronic dig-
ital memory fault tolerant system design approaches. We
understand that, at this early stage of nanoelectronics when
relatively few preliminary experimental data under labora-
tory environments have been ever reported, there is a large
uncertainty of the defect and transient fault statistical char-
acteristics (such as their probabilities and temporal/spatial
variations) in the future real-life hybrid CMOS/nanodevice
digital memories. Hence rather than attempting to provide



a definite and complete fault tolerant system design solu-
tion, this work mainly concerns the feasibility and effective-
ness of realizing memory fault tolerance under as-worse-as-
possible scenarios. In particular, we are interested in the
fault tolerant strategies with two features: (1) they should
handle relatively high defect probabilities and high transient
fault rates, and (2) they can automatically adapt to the vari-
ations of the defect probabilities in digital memories (i.e.,
the on-chip fault tolerant system can automatically provide
just enough defect tolerance capability for a wide range of
defect densities due to possible temporal/spatial variations
of the defect probabilities).

The presented two design approaches integrally con-
sider defect tolerance and transient fault tolerance and share
the following three features: (1) a group of ECC is used
for both defect tolerance and transient fault tolerance, (2)
there are no explicitly designated spare columns, rows, or
words in each nanodevice memory cell array (or nanowire
crossbar), and (3) for the storage of each user data block
with an unique memory logical address, its ECC encod-
ing and mapping to the physical nanodevice memory cells
are integrally determined. The first approach, referred to
as two-level hierarchical fault tolerance, is straightforward
and easy to implement, nevertheless the achievable storage
capacity quickly drops as the defect density and/or transient
fault rate increases. The second approach, referred to as
three-level hierarchical fault tolerance, can realize a much
slower drop on the achievable storage capacity as defect
density and/or transient fault rate increases, while it suffers
from higher implementation complexity and longer opera-
tional latency. With the use of BCH codes, we evaluated and
compared these two design approaches while taking into ac-
count of the storage overhead in CMOS domain.

2 BCH Code Preliminaries and Fault Model

Because of their strong random error correction capabil-
ity, binary BCH codes [7] are among the best ECC can-
didates for realizing fault tolerance in hybrid nanoelec-
tronic digital memories where the faults (both defects and
transient faults) are most likely random and statistically
independent. Binary BCH code construction and encod-
ing/decoding are based on binary Galois Fields. A binary
Galois Field with degree of m is represented as GF(2m).
For any m ≥ 3 and t < 2m−1, there exists a primitive bi-
nary BCH code over GF(2m), denoted as Cm(t), that has
the code length n = 2m − 1 and information bit length
k ≥ 2m−m · t and can correct up to (or slightly more than)
t errors. For most values of t, Cm(t + 1) requires m more
redundant bits than Cm(t). A primitive t-error-correcting
(n, k) BCH code can be shortened (i.e., eliminate a certain
number, say s, of information bits) to construct a t-error-
correcting (n− s, k − s) BCH code.

Although BCH code encoding is very simple and only
involves a Galois Field polynomial multiplication, BCH
code decoding is much more complex and computation in-
tensive. While different BCH code decoding algorithms
may lead to (slightly) different decoding computational
complexity and hardware implementation results, for a t-
error-correcting binary BCH code under GF(2m) with code
length of n, the product of decoder silicon area and de-
coding latency is approximately proportional to n · t · m2.
Moreover, we note that a group of binary BCH codes un-
der the same GF(2m) can share the same hardware encoder
and decoder that are designed to accommodate the max-
imum code length, maximum information bit length, and
maximum number of correctable errors among all the codes
within the group.

In this work, we assume the following fault model for
nanodevice memory. In terms of defects, we only consider
static defects of nanowires and nanodevice memory cells.
We assume a defective nanowire (irrelevant to defect type)
will make all the connected nanodevice memory cells un-
functional. A memory cell may be subject to open or short
defects. Since a short memory cell defect will short two
orthogonal nanowires that will become defective and hence
make all the other connected memory cells unfunctional,
we consider such short memory cell defect as nanowire de-
fect. An open memory cell defect does not affect the op-
eration of any other memory cells and any nanowires. We
assume these static defects are random and statistically in-
dependent, which are characterized by two defect proba-
bilities, including (1) bit defect probability pbit that repre-
sents the probability of the open memory cell defect, and (2)
nanowire defect probability pwire that represents the prob-
ability of nanowire defect. In a broad sense, transient faults
refer to all the memory operational errors that are not in-
duced by the above static defects (e.g. the pattern-sensitive
defects are considered as transient faults). We also assume
that transient faults are random and statistically indepen-
dent, which is characterized by a transient fault rate ptf .

3 Two Fault Tolerance Design Approaches

In nanodevice memory, due to the high defect proba-
bilities and their possibly large temporal/spatial variations,
different physical memory portions may have (largely) dif-
ferent number of defective memory cells hence demand
(largely) different error correcting capability. Therefore,
other than using a single BCH code, we propose to use a
group of BCH codes with different error correcting capabil-
ity (i.e., different coding redundancy), which should be able
to share the same hardware encoder and decoder.

Let lu represent the number of user bits per block in the
memory. We first construct a group of binary BCH codes,
denoted as C, under the same Galois Field GF(2m) where



2m − 1 > lu. Each BCH code Ci ∈ C is shortened (if nec-
essary) from one primitive BCH code so that the codewords
contain exactly lu information bits. Let ti represent the
maximum number of errors that can be corrected by each
BCH code Ci, we denote tmax = max{ti}.

Given the BCH code group and memory defect map,
a fault tolerance system should determine (i) which BCH
code should be used for protecting each lu-bit user data
block, and (ii) how to physically map each BCH coded data
block onto the nanodevice memory cells. Intuitively, these
two issues should be addressed jointly in order to obtain the
best fault tolerance efficiency. This section presents two dif-
ferent fault tolerance design approaches that address these
two issues jointly, where the first approach is simple and
works well under relatively low and modest bit defect prob-
abilities and/or transient fault rates, while the second one is
more complex but provide much stronger fault tolerance as
bit defect probabilities and/or transient fault rates become
very high.

3.1 Approach I: Two-Level Hierarchical
Fault Tolerance

The basic idea of this design approach can be described
as follows: We partition each nanodevice memory cell array
into a certain number of memory cell segments, each seg-
ment contains consecutive memory cells and can store one
BCH codeword that provide just enough coding redundancy
to compensate all the defects in present segment and ensure
a target block error rate under a given transient fault rate.
Hence each physical memory segment corresponds to one
unique logical memory address. Notice that the tail of one
segment is not necessarily next to the head of the successive
segment (i.e., there might be some unused memory cells in
between). The location of each segment and the associated
BCH code configuration (i.e., which BCH code out of the
code group is being used for present segment) are stored
in CMOS memory. Whenever we access one logical mem-
ory address in the nanodevice memory, we need first read
from the CMOS memory to get the physical location and
BCH coding information, then perform the corresponding
operations. Therefore, we call this approach as two-level
hierarchical fault tolerance design and, in the following, we
present a procedure to implement this design approach:

Input: the number of user bits per block lu, BCH code
group C, nanodevice memory cell array defect map,
transient fault rate ptf , and target block error rate
Etarget.

Procedure: We first exclude all the defective nanowires
from the nanodevice memory physical address space1.
Then we initialize two memory cell pointers, Ptr Head

1We note that how to exclude the defective nanowires from the physical

and Ptr Tail, that point to the first memory cell, and
start the following iterative process to locate each
memory cell segment and determine the associated
BCH code. This iterative process will terminate when
either pointer reaches the end of the memory cell array.

Step 1: Move Ptr Tail forward over the next lu mem-
ory cells. Initialize two variables tc = 0 and
l = lu, where tc represents the maximum num-
ber of errors that can be corrected by currently
selected BCH code and l represents the length of
current segment.

Step 2: Count the number of defective memory cells,
denoted as tdef , between Ptr Head and Ptr Tail.
Calculate the transient fault correcting capability
required to meet the target block error rate, i.e.,
find the minimum value of ttrans that satisfies

l∑
i=ttrans+1

(
l
i

)
pi

tf (1− ptf )l−i ≤ Etarget (1)

Step 3: If tc ≥ tdef + ttrans, i.e., the currently se-
lected BCH code can provide enough coding re-
dundancy to compensate all the defects within
the present segment and achieve the target block
error rate, then one segment has been success-
fully located and store the physical address of
Ptr Head and the designation of the currently
selected BCH code into CMOS memory, set
Ptr Head = Ptr Tail + 1, and go to Step 1.

Step 4: If tc < tdef + ttrans ≤ tmax (recall that tmax

is the maximum number of errors that can be cor-
rected by any BCH codes in the code group C),
then select a BCH code from C that can correct
tdef + ttrans errors with the least coding redun-
dancy. Let r represent the number of redundant
bits of the selected BCH code, move Ptr Tail for-
ward to make l = lu + r, set tc equal to the max-
imum number of correctable errors of the cur-
rently selected BCH code, and go to Step 2.

Step 5 If tdef + ttrans > tmax (i.e., none of the BCH
codes in C can correct all the defects within the
present segment and ensure the target block error
rate), then change the location of current segment
by moving Ptr Head forward over the first next
defective memory cell, and go to Step 1.

Suppose each nanodevice memory cell array contains N
memory cells and the code group C contains h different
BCH codes. For each located segment, we need to store

address space heavily depends on the design of the interface between nan-
odevice memory cell array and CMOS circuits. In this work, we assume it
is readily feasible and do not consider its overhead.
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(c) 1024−b (BCH on GF(211))
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(e) 2048−b (BCH on GF(212))
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Figure 1. Simulation results on the average storage capacity per 512 × 512 nanodevice memory cell array using the two-level
hierarchical fault tolerance approach. The dotted, solid, and dashed curves correspond to the transient fault rates of 0, 1‰, and 5‰,
respectively.

up to (dlog2 Ne + dlog2 he) bits in CMOS memory, where
(dlog2 Ne bits represent the physical address of the seg-
ment head and dlog2 he) bits designates which BCH code
is being used for present segment. If the value of N is big
(e.g., for a 512 × 512 nanodevice memory array, we have
N = 256K, hence (dlog2 Ne = 18)-bit location data have
to be stored in CMOS memory for each segment), it may
lead to a large storage overhead in CMOS domain. In this
regard, we can modify the above procedure by setting an
alignment constraint on the physical address of Ptr Head,
i.e., we require its physical address be a multiple of a con-
stant value k (e.g., 64), which will reduce the CMOS stor-
age overhead by blog2 kc bits per segment.

Denote the average number of user bits stored in each
nanodevice memory cell array and the average number of
associated configuration bits stored in CMOS memory as
Snano and SCMOS , respectively. To take into account of
the storage overhead in CMOS domain, we define the net
storage capacity as Snet = Snano − d · SCMOS , where the
factor d represents the ratio between the effective cell area
of a CMOS memory cell and a nanodevice memory cell. To
demonstrate the effectiveness of this design approach, we
carried out simulations under the following configurations:
each nanodevice memory cell array is 512× 512; the phys-
ical address of each segment is aligned to be a multiple of

64; nanowire defect probability pwire = 0.3; target block
error rate Etarget = 1 × 10−15; and the factor d = 25. We
considered three different numbers of user bits per block lu,
including 2048, 1024, and 512. We constructed four BCH
code groups as listed in the following table, in which the
parameter rmax represents the number of redundant bits re-
quired for correcting tmax errors. When constructing each

Table 1. BCH Code Group Configurations.
Group I Group II Group III Group IV

Galois Field GF(210) GF(211) GF(212) GF(213)

Max. Length 1023 2047 4095 8191

tmax 57 106 198 366

rmax 510 1023 2038 4095

BCH code group, for each t ∈ [1, tmax] we search the BCH
code that can correct t errors with the least redundancy and
put this BCH code into the code group (notice that it is pos-
sible that a few consecutive values of t may correspond to
the same BCH code).

Fig. 1 shows the simulation results on the average stor-
age capacity per 512 × 512 nanodevice memory cell array,
including the user bits stored in nanodevice memory cells,
configuration bits stored in CMOS memory, and net stor-



age capacity assuming d = 25. In each figure the solid and
dashed curves correspond to the transient fault rates of 1‰
and 5‰, respectively. For the purpose of comparison, each
figure also includes a set of dotted curves corresponding to
zero transient fault rates. Given the nanowire defect proba-
bility of 0.3, on average each nanodevice memory cell array
provide (1−0.3)2 ·512·512 ≈ 1.3×105 memory cells after
excluding the defective nanowires. As shown in the figures,
using BCH code group on larger Galois Fields can directly
improve the storage capacity (or fault tolerance efficiency)
due to the stronger error correcting capability, which comes
with the cost of higher ECC encoder and decoder imple-
mentation complexity. Although a system designed based
on this approach works well over the range of relatively
low and modest bit defect probabilities and/or transient fault
rates, the fault tolerance efficiency rapidly drops as we fur-
ther increase the bit defect probability and/or transient fault
rate.

3.2 Approach II: Three-Level Hierarchical
Fault Tolerance

In the above two-level hierarchical design approach, we
always attempt to locate a consecutive memory cell segment
to store the coded data block. Hence, with high bit defect
probabilities, the total number of defective memory cells
within a segment may accumulate very quickly and eas-
ily exceed the maximum error correcting capability. This
will become more serious as transient fault rate increases.
Therefore, as shown in Fig. 1, the effectiveness of this de-
sign approach rapidly degrades as the bit defect probability
and/or transient fault rate increases. In order to achieve a
better storage capacity at high defect probabilities and/or
transient fault rates, this section presents another approach
called three-level hierarchial fault tolerance design. The ba-
sic idea is that, other than using a consecutive memory cell
segment to store each coded data block, we selectively skip
(or exclude) some small sectors that contain too many de-
fective memory cells within each segment. For example,
suppose we use a BCH code group on GF(211). As pointed
out in Section 2, for most values of t, increasing t by 1 (i.e.,
to compensate one more error) requires 11 more redundant
bits. Hence for a sector of 64 memory cells in which there
are 6 defective memory cells, it would be better to exclude
this sector from the memory segment.

Therefore, we propose to partition the available nanode-
vice memory cells into a certain number of equal-sized sec-
tors, each one is called indivisible memory unit. When we
dynamically determine the BCH code selection and logical-
to-physical address mapping, we have the flexibility to de-
termine whether or not to use each indivisible memory unit
for data storage. Therefore, each memory segment that
stores one BCH coded data block no longer contains a con-

secutive region of memory cells. It is intuitively justifi-
able that, by selectively excluding those indivisible mem-
ory units that contain too many defective cells, we may im-
prove the fault tolerance efficiency. However, in support of
this approach, we have to store certain configuration infor-
mation, including (1) the location and length of each mem-
ory segment, (2) the designation of the selected BCH code,
and (3) whether or not each indivisible memory unit that
falls into the region covered by the segment is used for data
storage. If we directly store these information in CMOS
memory, it will incur a significant CMOS storage overhead.
For example, if the number of user bits per block is 2048
and each indivisible memory unit contains 64 consecutive
memory cells, we have to store more than 32(=2048/64) bits
per block for representing whether each indivisible memory
unit is excluded or not.

To tackle such storage overhead issue, we propose to
store these configuration information in nanodevice mem-
ory, and since the length of these configuration informa-
tion will be much less than the coded user data block, we
may use the above two-level hierarchical fault tolerance
approach to protect these configuration information. This
leads to a so-called three-level hierarchical fault tolerance
as illustrated in Fig. 2.

User Bits per Block

Coded Data Block

1st Level
Config. Data

Coded Data Block

2nd Level
Config. Data

Nanodevice Memory

CMOS Memory

Figure 2. Storage hierarchy in the three-level hierarchical
fault tolerance system.

In this way, we can largely reduce the storage overhead
in CMOS domain. Nevertheless, as the cost, this three-level
hierarchical approach requires extra operations that result in
memory access energy and latency overhead: To read/write
one user data block, we have to first read and decode the
first level configuration data from the nanodevice memory
to recover the memory segment configuration information,
based on which we may read/write the intended user data
block. Furthermore, this approach may require nonvolatile
storage of the first level configuration data in nanodevice
memory. This should not be a serious issue since most pro-
posed/demonstrated nanodevice memory storage elements
are nonvolatile in nature. In the following, we present a
procedure to implement such three-level hierarchical fault
tolerance design approach:

Input: the number of user bits per block lu, indivisible
memory unit length lc, BCH code group C and the de-
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Figure 3. Simulation results on the average storage capacity per 512 × 512 nanodevice memory cell array using the three-level
hierarchical fault tolerance approach. The dotted, solid, and dashed curves correspond to the transient fault rates of 0, 1‰ and 5‰,
respectively.

2 4 6 8 10

10
2

10
3

(a) 512−b (BCH on GF(210))

Bit defect probability p
bit

 (x10−2)

A
ve

ra
ge

 #
 o

f b
its

 p
er

 d
at

a 
bl

oc
k

BCH coded user data
BCH coded conf. data

2 4 6 8 10

10
2

10
3

(b) 512−b (BCH on GF(213))

Bit defect probability p
bit

 (x10−2)

A
ve

ra
ge

 #
 o

f b
its

 p
er

 d
at

a 
bl

oc
k

BCH coded user data
BCH coded conf. data

2 4 6 8 10

10
2

10
3

(c) 1024−b (BCH on GF(211))

Bit defect probability p
bit

 (x10−2)

A
ve

ra
ge

 #
 o

f b
its

 p
er

 d
at

a 
bl

oc
k

BCH coded user data
BCH coded conf. data

2 4 6 8 10

10
2

10
3

(d) 1024−b (BCH on GF(213))

Bit defect probability p
bit

 (x10−2)

A
ve

ra
ge

 #
 o

f b
its

 p
er

 d
at

a 
bl

oc
k

BCH coded user data
BCH coded conf. data

2 4 6 8 10

10
2

10
3

(e) 2048−b (BCH on GF(212))

Bit defect probability p
bit

 (x10−2)

A
ve

ra
ge

 #
 o

f b
its

 p
er

 d
at

a 
bl

oc
k

BCH coded user data
BCH coded conf. data

2 4 6 8 10

10
2

10
3

(f) 2048−b (BCH on GF(213))

Bit defect probability p
bit

 (x10−2)

A
ve

ra
ge

 #
 o

f b
its

 p
er

 d
at

a 
bl

oc
k

BCH coded user data
BCH coded conf. data

Figure 4. Simulation results on the average number of bits per BCH coded user data block and BCH coded configuration data
block. The dotted, solid, and dashed curves correspond to the transient fault rates of 0, 1‰ and 5‰, respectively.



gree m of the underlying GF(2m), nanodevice memory
cell array defect map, transient fault rate ptf , and tar-
get block error rate Etarget.

Procedure: Again, we first exclude all the defective
nanowires from the nanodevice memory physical ad-
dress space. Then we partition the available nanode-
vice memory space into arrays of lc-cell indivisible
memory units. We mark all the indivisible memory
units that contain more than blc/mc defective mem-
ory cells as unusable memory units and all the oth-
ers as usable units. The memory cells fall into us-
able indivisible memory units are called usable mem-
ory cells. We initialize two memory cell pointers,
Ptr Head and Ptr Tail, that point to the first memory
cell, and start the following iterative process until ei-
ther pointer reaches the end of the memory cell array.

Step 1: Move Ptr Tail forward so that there are lu
usable memory cells between Ptr Head and
Ptr Tail. Initialize two variables tc = 0 and
l = lu, where tc represents the maximum num-
ber of errors that can be corrected by currently
selected BCH code and l represents the number
of usable memory cells within current segment.

Step 2: Count the number of defective memory cells,
denoted as tdef , between Ptr Head and Ptr Tail.
Calculate the transient fault correcting capability
required to meet the target block error rate, i.e.,
find the minimum value of ttrans that satisfies the
inequality (1) in Section 3.1.

Step 3: If tc ≥ tdef + ttrans (i.e., one segment has
been successfully located), then go to Step 6 to
process the storage of the first level configuration
data in nanodevice memory.

Step 4: If tc < tdef + ttrans ≤ tmax, then select a
BCH code from C that can correct tdef + ttrans

errors with the least coding redundancy. Let r
represent the number of redundant bits of the
selected BCH code, move Ptr Tail forward so
that there are l = lu + r usable cells between
Ptr Head and Ptr Tail, set tc equal to the max-
imum number of correctable errors of the cur-
rently selected BCH code, and go to Step 2.

Step 5 If tdef + ttrans > tmax, then move Ptr Head
forward to the next usable unit, and go to Step 1.

Step 6 Let s represent the number of indivisible mem-
ory units (both usable and unusable units) within
Ptr Head and Ptr Tail, we need an s-bit vector
to represent whether each unit is usable (i.e., in-
cluded in current segment) or unusable (i.e., ex-
cluded from current segment). Hence the first

level configuration data to be stored in nanode-
vice memory includes an s-bit vector, the phys-
ical location and length of current segment, and
the designation of the selected BCH code. Then
we apply the two-level fault tolerance approach
(as described in Section 3.1) to store these first
level configuration data, where we can use the
same BCH code group. Nevertheless, since the
first level configuration data do not have a con-
stant length, unlike the user data, we have to
on-the-fly shorten those BCH codes in the code
group. Hence we need to store the information
of how the selected BCH code is shortened in
CMOS memory. After we encode and store the
first level configuration data in a segment of suc-
cessive nanodevice memory cells and store the
corresponding second level configuration data in
CMOS memory, we move Ptr Head to the next
available usable unit and go to Step 1.

To demonstrate the effectiveness of this design approach,
we carried out simulations under the same configurations as
used in Section 3.1: each nanodevice memory cell array is
512× 512; nanowire defect probability pwire = 0.3; target
block error rate Etarget = 1×10−15; the factor d = 25; the
same four BCH code groups are used; and the same three
values of user data length lu (i.e., 2048, 1024, and 512) are
considered. We set the indivisible memory unit length lc as
32 for lu = 512 and 64 for lu = 1024 and lu = 2048.

Fig. 3 shows the simulation results on the average stor-
age capacity per 512 × 512 nanodevice memory cell array,
including the user bits stored in nanodevice memory cells,
configuration bits stored in CMOS memory, and net storage
capacity assuming d = 25. In each figure the dotted, solid,
and dashed curves correspond to the transient fault rates of
0, 1‰ and 5‰, respectively. We note that, for lu = 512, the
net storage capacity will be negative if we assume d = 25.
Comparing the simulation results in Fig. 3 and Fig. 1, we
have the following observations:

• At relatively low and modest bit defect probabili-
ties and/or transient fault rates, the two-level design
approach can realize slightly better storage capacity
meanwhile have less operational complexity and la-
tency overhead.

• At relatively high bit defect probabilities and/or tran-
sient fault rates, the three-level hierarchical approach
can achieve much better storage capacities.

• The three-level hierarchial approach can maintain
more graceful (or smooth) storage capacity curves over
wider ranges of defect probability and hence can better
adapt to the potential defect statistics variations.



Nevertheless, due to the operation on the first level configu-
ration data stored in the nanodevice memory, the three-level
fault tolerance approach is subject to longer memory access
latency. Since the memory access latency is approximately
proportional to the BCH codeword length, Fig. 4 shows the
comparisons between the average length of BCH coded user
data blocks and BCH coded first level configuration data,
based on which we may approximately quantify the mem-
ory access latency overhead. The simulation results suggest
that, at low defect probabilities and/or transient fault rates,
the latency overhead incurred by the first level configuration
data is much less (by 1 or 2 orders of magnitudes) than that
of the coded user data block; while as defect probabilities
and/or transient fault rates increase, the latency overhead in-
curred by the first level configuration data quickly increases
and fall into the same order of magnitudes as that of the
coded user data block.

Finally, we note that both design approaches are subject
to a trade-off between the BCH coding system complex-
ity and achievable storage capacity: as we construct BCH
codes under larger Galois Fields to obtain stronger error
correcting capability and hence larger storage capacity, the
BCH coding system (particularly decoder) implementation
complexity will increase accordingly. Such trade-off can be
approximately quantified based on the rule that the product
of BCH decoder silicon area and decoding latency is ap-
proximately proportional to n · t · m2, where n is the code
length, t is the maximum number of correctable errors, and
m is the degree of the underlying binary Galois Field.

4 Conclusions

In this paper, we presented two fault tolerance design
approaches that integrally address the defect tolerance and
transient fault tolerance for hybrid CMOS/nanodevice dig-
ital memories. To accommodate the high defect probabili-
ties and transient fault rates, the developed approaches have
several key features that have not been used in conventional
digital memories, including the use of a group of ECC for
both defect tolerance and transient fault tolerance, absence
of explicitly designated spare rows, columns and/or words,
and integration of ECC selection and logical-to-physical ad-
dress mapping. These two fault tolerance design approaches
seek different trade-offs among the achievable storage ca-
pacity, robustness to defect statistics variations, implemen-
tation complexity, and operational latency and CMOS stor-
age overhead. By using BCH codes as ECC, we demon-
strated that the developed approaches can achieve good
storage capacity, while taking into account of the storage
overhead in CMOS domain, under high defect probabilities
(close to 1%) and transient fault rates (up to 5‰), and can
readily adapt to large defect statistics variations. Current
work is being directed to practically evaluating the BCH

code coding system implementation silicon cost and latency
overhead, and investigating more comprehensive compari-
son among different design approaches with various config-
urations while taking into account of the CMOS storage and
BCH coding system implementation overhead.
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