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Abstract

Enabled by the emerging three-dimensional (3D) integration technologies, 3D integrated computing platforms that stack
high-density DRAM die(s) with a logic circuit die appear to be attractive for memory-hungry applications such as mul-
timedia signal processing. This paper considers the design of motion estimation accelerator under a 3D logic-DRAM
integrated heterogeneous multi-core system framework. In this work, we develop one specific DRAM organization and
image frame storage strategy geared to motion estimation. This design strategy can seamlessly support various motion es-
timation algorithms and variable block size with high energy efficiency. With a DRAM performance modeling/estimation
tool and ASIC design at 65nm, we demonstrate the energy efficiency of such 3D integrated motion estimation accelerators
with a case study on HDTV multi-frame motion estimation.
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1. Introduction

As the most resource demanding operation in video
encoding, motion estimation has been widely studied over
the past two decades and many motion estimation algo-
rithms have been developed, covering a wide spectrum of
trade-offs between motion estimation accuracy and com-
putational complexity. Most existing algorithms perform
block-based motion estimation, where the basic operations
are calculation and comparison of the matching functions
between current image macroblock (MB) and all the can-
didate MBs inside a confined area in reference frame(s).
The most common matching function is the sum of ab-
solute differences (SAD). In current design practice, the
entire current and reference frames are typically stored
in large-capacity off-chip commodity DRAM, and logic
chips that implement video coding typically contain on-
chip SRAM as buffers to streamline the operations and
reduce the off-chip DRAM access frequency. Such on-chip
SRAM tends to occupy a relatively large amount of sil-
icon area, e.g., more than half of the video codec area
is occupied by SRAM in the design reported in [1], and
most on-chip SRAM is used for motion estimation. As
video image resolution and frame rate continue to increase
and multi-frame based motion estimation is being widely
used, image data access tends to account for an increas-
ingly significant percentage of overall video coding energy
consumption.

Although tremendous research efforts have been de-
voted to energy-efficient realizations of motion estimation,
under the current design practice where motion estima-
tion computation and image frame storage locate on sep-

arate chips, the achievable energy efficiency is subject to
a fundamental limit: Under the logic die size constraint
in practice, the on-chip SRAM buffer can only hold a
small portion of the reference image(s). As a result, we
still need relatively frequent access to the off-chip large-
capacity commodity DRAM and the same reference im-
age may be fetched for several times. Hence, the off-chip
commodity DRAM access tends to consume a significant
amount of energy, regardless to how the motion estima-
tion algorithms are being designed and optimized. More-
over, to maximize the energy efficiency of many systems,
particularly portable devices, it is highly desirable to im-
prove the power awareness. This demands the motion es-
timation engine should be able to support algorithms with
different energy consumption and performance trade-offs.
However, because memory data access tends to account for
a significant percentage of overall energy consumption, the
separation of frame storage and motion estimation compu-
tation in current design practice tends to make it difficult
to seamlessly support such dynamic configuration for the
realization of graceful power awareness.

Because of significant recent developments of three-
dimensional (3D) integration technology with massive ver-
tical interconnect bandwidth towards high manufactura-
bility [2], 3D logic-memory integrated processing platform,
which consists of one logic die and one or more high-density
memory (such as DRAM) die(s), appears to be very at-
tractive for memory-hungry applications. In general, 3D
integration refers to a variety of technologies which pro-
vide electrical connectivity between multiple active de-
vice planes. Monolithic, wafer-level, back-end-of-the-line
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(BEOL) compatible 3D integration, which is enabled by
wafer alignment, bonding, thinning and inter-wafer inter-
connections with through silicon vias (TSVs), appears to
be the most economically and technologically viable op-
tion for mass-product 3D integration [2]. Hence, this work
considers the use of such wafer-level TSV-based 3D in-
tegration. By providing massive interconnect bandwidth
between logic and memory dies with very short distance,
3D logic-memory integration can most effectively enable
the heterogeneous multi-core platform for future converged
computing and multimedia processing systems. It should
be pointed out that the 3D stacked memory does not in-
tend to replace off-chip large-capacity commodity DRAM.
This is mainly because 3D stacked memory must have the
same die size as the logic die, which may be much smaller
than the die size of off-chip commodity memory. More-
over, to serve for various cores and accelerators, the 3D
stacked memory should have a highly distributed struc-
ture with many I/O interfaces, which tends to result in
a reduced storage density. Therefore, 3D stacked mem-
ory in our interested 3D logic-memory integration may not
be able to satisfy the overall storage capacity required by
the entire heterogeneous multi-core system. In fact, the
3D stacked memory can be considered as an in-package
cache/buffer for the off-chip commodity memory, e.g., 3D
stacked memory may serve as a large-capacity last-level
cache for general-purpose processor cores.

Under such a 3D logic-memory integrated heteroge-
neous multi-core platform, this work concerns the design of
energy-efficient and highly versatile motion estimation ac-
celerators. Because of the high density and low cost advan-
tages of DRAM, we are particularly interested in 3D logic-
DRAM integration. Intuitively, we can use the 3D stacked
DRAM to store a few complete image frames required for
present motion estimation operations, which clearly can
convert a majority of off-chip commodity DRAM data ac-
cess to 3D stacked DRAM data access. Because 3D stacked
DRAM data access can be more energy efficient, it is rea-
sonable to expect improvement of motion estimation en-
ergy efficiency. Moreover, the use of 3D stacking provides
a large room for DRAM structure customization and op-
timization geared to target applications. In this work, we
develop one specific DRAM architecture design and cor-
responding image frame storage strategy geared to mo-
tion estimation, which can effectively leverage the high
logic-DRAM interconnect bandwidth enabled by 3D inte-
gration, and meanwhile seamlessly support various motion
estimation algorithms and hence enable a graceful power-
awareness. Moreover, we develop a bit-plane DRAM or-
ganization strategy that can naturally support on-the-fly
configuration of the trade-off between image pixel preci-
sion and 3D DRAM data access power consumption. We
note that, in the presence of such customized 3D DRAM
for image storage, we can either completely eliminate on-
chip SRAM buffer to reduce the logic die area or still
keep on-chip SRAM buffer as in current design practice
to further reduce energy consumption. We carry out de-

tailed 3D DRAM modeling and ASIC design at 65nm node
and consider various design scenarios out to quantitatively
demonstrate the energy efficiency of such 3D DRAM based
motion estimation and study the involved trade-offs.

2. Proposed Design Strategies

This work concerns how to leverage 3D DRAM stack-
ing to improve the performance of video coding systems,
in particular motion estimation, under a 3D logic-DRAM
integrated heterogeneous multi-core system as illustrated
in Fig. 1. It contains a heterogeneous multi-core logic die
and multiple DRAM dies that provide large data storage
capacity and very high data access bandwidth for the het-
erogeneous multi-core systems. Those common heavy duty
functions can be realized as application-specific accelera-
tors to improve the overall system energy efficiency.

Core Core
Acc

AccAcc
Core Core

Core

Acc

Figure 1: Illustration of 3D logic-DRAM integrated heterogeneous
multi-core computing system.

In current design practice, the logic chip that imple-
ments video coding fetches image frames from an off-chip
commodity DRAM through high-speed chip-to-chip data
links such as DDR3. As image resolution keeps increasing,
such chip-to-chip data links must provide a higher band-
width and hence tend to consume more energy. In the most
straightforward manner, the use of 3D stacked DRAM can
largely reduce the load on off-chip data links and hence re-
duce the associated energy consumption, without demand-
ing any changes on the design of both the video codec and
DRAM. As discussed in [3, 4], for chip-to-chip data links,
power is mainly dissipated on link termination resistors
and drivers. In the context of 3D integration, the much
shorter signal path within the range of tens of µm com-
pletely obviates the drivers and terminations. Since the ca-
pacitive load of TSV (approximately 38 fF) is much lower
compared with that of chip-to-chip bus, CMOS buffers
can be simply used to connect DRAM dies and logic die.
Therefore, as demonstrated in [4], a typical DDR3 data
link with an effective dynamic on-die termination (ODT)
resistance of 25Ω dissipates 15.9mW, while its counter-
part in 3D integration only consumes 0.38mW, represent-
ing about 40× power reduction. Meanwhile, it is clear that
the DRAM data fetch latency will also largely reduce in
the 3D integration scenario.
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Beyond being used to reduce image fetch power con-
sumption as discussed above, 3D DRAM stacking can be
further exploited to improve overall system performance
if we could rethink how to architect the video codec and
DRAM. It is well known that motion estimation is the
most resource demanding operation in video coding and
largely determines the overall system performance. Hence,
this work focuses on the design of DRAM architecture
for implementing motion estimation accelerators. As the
key operation of motion estimation, SAD computation in-
volves two tasks, including image data retrieval and arith-
metic computation. The essential objective of motion es-
timation accelerator design is to most effectively carry out
the SAD computations according to certain motion vector
search rules as specified by different motion estimation al-
gorithms. In this section, aiming at exploiting 3D DRAM
stacking, we present one DRAM organization and image
data storage strategy.

2.1. DRAM Architecture for Image Frame Storage

It is feasible and certainly preferable to store both
current and a few corresponding reference frames in 3D
stacked DRAM. Due to the access latency and energy con-
sumption overhead induced by DRAM row activation, it is
always favorable to make as many consecutive reads/writes
as possible on the same row before switching to another
row. Therefore, if image blocks are linearly row-by-row (or
column-by-column) mapped to the physical address space,
a significant amount of row activations will occur, leading
to high access latency and energy consumption. It is very
straightforward that, instead of such a linear translated
mapping, a MB-by-MB mapping geared to motion estima-
tion should be used [5], i.e., each row stores the luminance
intensity data of one or more MBs.

Usually a search region spans several MBs in reference
frames. Let each MB be N×N , and SW and SH represent
the width and height of the search region, each search re-
gion spans SBW ×SBH MBs in the reference frame, where

SBW = 2 ·
⌈
SW −N

2 ·N

⌉
+ 1,

SBH = 2 ·
⌈
SH −N

2 ·N

⌉
+ 1.

In this work, we are mainly interested in the scenario
where the 3D stacked DRAM delivers a candidate MB row-
by-row to the logic die, i.e., during each clock cycle, the
3D stacked DRAM delivers the luminance intensity data
of one row within a candidate MB to the logic die. This
is referred to as per-row DRAM-to-logic data delivery.

In current design practice, a DRAM chip usually con-
sists of multiple banks, which can be accessed indepen-
dently, in order to improve the data access parallelism.
Since each candidate MB at most spans 2× 2 MBs within
the search region and each row in a candidate MB at most
spans two MBs in reference frame, we store each image
frame in two banks that alternatively store all the MBs

row-by-row. For example, suppose each MB is 16×16 and
the search region is 32×32, then we have SBW = SHW = 3,
as illustrated in Fig. 2, where the numbers (i.e., either 0
or 1) within the nine MBs indicate the index of the two
DRAM banks.

10 0

0 0

10 0

1

Reference Frame DRAM
Bank 1

Bank 0 Search region

Total 9 MBs from the reference frame

Candidate MB

Figure 2: Frame memory organization for row-by-row data delivery
when SBW = SHW = 3.

Given the current MB and motion vector, the candi-
date MB from the search region can be readily retrieved
row-by-row. Since one DRAM word-line contains multiple
consecutive rows within the same search region, once each
DRAM word-line is activated and the data of the entire
word-line are latched in the sense amplifiers, multiple rows
within the search region can be sent to the logic die be-
fore we switch to another word-line. Assume luminance
intensity of every pixel is represented by D bits, as shown
in Fig. 3, each clock cycle two DRAM banks delivers two
N -pixel rows within the search region, which are further
shifted and combined to form one row in the candidate
MB according to the present motion vector.

A row in candidate MB

Candidate MB

One row

0

Bank 0

Barrel shifter

Bank 1

Barrel shifter

0

To logic die through TSVs

N·D N·D

N·D

Figure 3: Combine the data from two banks to form a row in candi-
date MB.

We note that, if an extremely high memory access
throughput is required for certain applications, it is pos-
sible to deliver the luminance intensity of an entire candi-
date MB to logic die each clock cycle, which is referred as
per-MB DRAM-to-logic data delivery. In order to deliver
one candidate MB every clock cycle, each reference im-
age frame should be stored in 4 different banks, because
each candidate MB at most spans 4 MBs in the refer-
ence frame. Based upon current MB location and motion
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vector, one corresponding word-line in each bank is acti-
vated and delivers the luminance intensity of one MB at
once. All the four MBs from the four DRAM banks are
sent to a two-dimensional barrel shifter array in order to
form the candidate MB. This per-MB data delivery strat-
egy can achieve very high throughput, but obviously will
demand a large amount of TSVs and incur much higher
energy consumption. Therefore, we only focus on the per-
row DRAM-to-logic data delivery strategy throughout the
remainder of this paper.

We note that since each row contains several MBs and
each MB may contain a few hundred bits (e.g., given N =
16 and D = 8, each MB contains 2048 bits), a row within
a bank should be further partitioned into several segments
in order to maintain a reasonable access speed. Therefore,
we follow the conventional DRAM design practice that
employs a bank→sub-bank→sub-array hierarchy. Each
DRAM bank consists of several identical sub-banks and
at one time only one sub-bank can be accessed. By seg-
menting each row within one sub-bank, each sub-bank is
further partitioned into a certain number of sub-arrays
that collectively carry out DRAM access, and each sub-
array contains an indivisible array of DRAM cells sur-
rounded by supporting peripheral circuits such as address
decoders/drivers, sense amplifiers and output drivers etc.

To map the MB luminance intensity data onto the sub-
arrays within each sub-bank, we propose a bit-plane data
mapping strategy to ensure the memory data access reg-
ularity across all the sub-arrays. Recall that the lumi-
nance intensity of one pixel uses D bits. We partition
each sub-bank into D sub-arrays, A0, A1, ..., AD−1, and
each sub-array Ai stores the i-th bit of the luminance in-
tensity data, as depicted in Fig. 4. Clearly, this bit-plane
storage strategy ensures that all the sub-arrays within the
same sub-bank can readily share the same row and column
address and have a minimum sub-array data I/O routing
overhead. In particular, each sub-array only needs to send
N bits for realizing per-row DRAM-to-logic data delivery.
In contrast, if we store the D bits for each pixel consec-
utively in the same sub-array, in stead of using such bit-
plane storage strategy, different sub-arrays may contribute
to the candidate MB data differently. As a result, the sub-
arrays within the same sub-bank may not be able to fully
share all the row and column address and each sub-array
must have a data I/O width of N ·D bits.

Another advantage of this proposed bit-plane storage
strategy is that it can easily support run-time graceful per-
formance vs. energy trade-off, because the bit-plane struc-
ture makes it very easy to adjust the precision of lumi-
nance intensity data participating in motion estimation.
It is well-known that appropriate pixel truncation [6] can
lead to substantial reduction on computational complex-
ity and power consumption without significantly affecting
image quality. Such bit-plane memory structure can nat-
urally support dynamic pixel truncation, which can mean-
while reduce the power consumption of memory data ac-
cess. Given the D-bit full precision of luminance intensity

D-1

D-2

1

0

D Sub-arrays

D bits of a pixel’s 
luminance intensity

Memory cell array

Peripheral circuits

Address

NData/D

NData/D

NData/D

NData/D

Figure 4: Illustration of bit-plane data mapping strategy. All D sub-
arrays share the same row and column address. Ndata-bit data bus
is uniformly distributed across D sub-arrays, where Ndata = N ·D.

data, if we only use Dr < D bits in motion estimation, we
can directly switch the D−Dr sub-arrays, which store the
lowerD−Dr bits for each pixel, into an idle mode to reduce
the DRAM power consumption. It is intuitive that such
lower-precision operation can be dynamically adjusted to
allow more flexible performance vs. energy trade-off, e.g.,
we could first use low-precision data to calculate coarse
SADs, and then run block matching with full precision in
a small region around the candidate MB with the least
coarse SAD.

It should be pointed out that, unlike conventional de-
sign solutions, the above presented design strategy under
the 3D logic-DRAM integrated system framework can re-
alize any arbitrary and discontinuous motion vector search
and hence seamlessly support most existing motion esti-
mation algorithms. Finally, we note that, although the
above discussion only focuses on data storage for motion
estimation, the same DRAM storage approaches can be
used to facilitate the motion compensation as well in both
video encoders and decoders.

2.2. Logic and Memory Interface

With the above presented DRAM architecture design
strategies, the motion estimation engine on the logic die
can access the 3D DRAM to efficiently fetch the current
MB and candidate MB through a simple interface. Assume
the video encoder supports a multi-frame motion estima-
tion with up-to m reference frames. In order to seamlessly
support multi-frame motion estimation while maintaining
the same video encoding throughput, we store all these m
reference frames separately, each reference frame is stored
in 2 banks when using per-row DRAM-to-logic data deliv-
ery. The motion estimation engine can access all the m
reference frames simultaneously, i.e., the motion estima-
tion engine contains m parallel units, each one carries out
motion estimation based upon one reference frame. We
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Figure 5: Illustration of calculating memory access address to fetch one candidate MB.

assign each MB with a two-dimensional index with the
origin at the top-left corner of each image, i.e., assuming
each frame contains FW×FH MBs, the MBs at the top-left
corner and bottom-right corner of each frame have the in-
dex of (0, 0) and (FW − 1, FH − 1), respectively. Assume
each word-line in one bank stores s MBs, and we store
each MB row-by-row along a DRAM word-line. Hence,
given the MB index (x, y), we first can identify its bank
index and the DRAM row/column address for proposed
DRAM architectures as listed in Table 1. Since each ad-
dress location in one bank corresponds to one row in one
MB and each MB has N rows, each MB spans N consec-
utive column addresses. The first column address is Acol

in the table, and the N consecutive column addresses are
{Acol, Acol + 1, · · · , Acol +N − 1}.

Table 1: Memory access address for proposed DRAM architectures.

Bank Index x%2

Row Address
⌊
y·FW+x

2·s

⌋
Column Address (Acol) ((y · FW + x)%s) ·N

For each motion estimation unit on the logic die to ac-
cess one reference frame, it only needs to provide two sets
of parameters, 2D position index of current MB (xMB , yMB)
and motion vector (xMV , yMV ), which determine the lo-
cation of the candidate MB in the reference frame. Given
these inputs, DRAM will deliver the corresponding candi-
date MB to the logic die. Leveraging the specific DRAM
architecture described above, each DRAM frame storage
can easily derive its own internal row and column address
and the corresponding configuration parameters for the
barrel shifters, which is described as follows.

As pointed out earlier, each candidate MB may span
at most 4 adjacent MBs in the reference frame as illus-
trated in Fig. 3. Given the 2D position index of current
MB (xMB , yMB) and motion vector (xMV , yMV ), we can
directly derive the 2D position indices of these up-to 4

adjacent MBs as(
xMB + sx ·

⌈
|xMV |
N

⌉
, yMB + sy ·

⌈
|yMV |
N

⌉)
,(

xMB + sx ·
⌈
|xMV |
N

⌉
, yMB + sy ·

⌊
|yMV |
N

⌋)
,(

xMB + sx ·
⌊
|xMV |
N

⌋
, yMB + sy ·

⌈
|yMV |
N

⌉)
,(

xMB + sx ·
⌊
|xMV |
N

⌋
, yMB + sy ·

⌊
|yMV |
N

⌋)
,

where sx = sign(xMV ) and sy = sign(yMV ), and sign(·)
represents the sign of the operand. Clearly, dependent
upon the specific values of xMV and yMV , we may have
1, 2, or 4 distinctive indices, i.e., the candidate MB may
span 1, 2, or 4 adjacent MBs in the reference frame. For
the general case, let us consider the scenario when one
candidate MB spans 4 adjacent MBs in the reference frame
as illustrated in Fig. 5, where i 6= j and i, j ∈ {0, 1}.

After obtaining the indices of the 4 reference MBs, we
can directly calculate the corresponding DRAM row ad-
dresses. In order to determine the range of the column
addresses in the case of per-row DRAM-to-logic data de-
livery, we should calculate

yoff-set =

{
|yMV |%N, yMV ≥ 0
N − |yMV |%N, yMV < 0

. (1)

The candidate MB spans the last N − yoff-set rows in the
two top MBs and the first yoff-set rows in the two bottom
MBs, as illustrated in Fig. 5. Hence, we can correspond-
ingly determine the column addresses. Then we should
determine the configuration data for the barrel shifters
that form one row in the candidate MB, i.e., we should
calculate

xoff-set =

{
|xMV |%N, xMV ≥ 0
N − |xMV |%N, xMV < 0

. (2)

For each row read from the reference MBs on the left as
shown in Fig. 5, the barrel shifters shift the data towards
left by xoff-set pixels; for each row read from the ref-
erence MBs on the right as shown in Fig. 5, the barrel
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Table 2: Modeling results for one 2M-byte 2-bank 3D stacked DRAM in the case of per-row DRAM-to-logic data delivery.

1-layer stacking

Number of sub-banks 1 2 4 8

Access time (non-burst) (ns) 9.49 7.37 6.65 6.57

Burst access time (ns) 7.17 4.83 4.11 3.91

Energy per access (non-burst) (nJ) 0.71 1.00 1.29 1.61

Energy per burst access (nJ) 0.15 0.45 0.76 1.08

Footprint (mm2) 1.10 2.08 3.12 4.79

4-layer stacking

Number of sub-banks 1 2 4 8

Access time (non-burst) (ns) 9.36 7.25 6.53 6.44

Burst access time (ns) 7.09 4.84 4.03 3.83

Energy per access (non-burst) (nJ) 0.93 1.22 1.28 1.59

Energy per burst access (nJ) 0.13 0.43 0.74 1.06

Footprint (mm2) 0.22 0.34 0.47 0.69

shifters shift the data towards right by N − xoff-set pix-
els. By implementing the above simple calculations in the
DRAM domain, the 3D stacked DRAM can readily deliver
the candidate MB to the motion estimation engine on the
logic die, while the motion estimation engine only needs to
supply the current motion vector and the position of the
current MB.

3. Simulation Results

This section presents our case study on multi-frame
motion estimation to demonstrate the above presented de-
sign approach. In particular, we set the following param-
eters. The size of each MB is 16× 16 and search region is
80×80 for HDTV1080p (1920×1080) with a frame rate of
30 frames per second. We assume the luminance intensity
of each pixel uses 8 bits, hence each DRAM sub-bank has
8 sub-arrays. We assume up-to 5 reference frames can be
used during video encoding. Therefore, to access data in
each frame simultaneously using the per-row DRAM-to-
logic data delivery strategy, the 3D stacked DRAM has
2 × 6 = 12 banks and an aggregate data I/O width of
16 × 8 × 6 = 768 bits (i.e., 768 TSVs). For DRAM per-
formance modeling and energy estimation, we use the 3D
DRAM design strategy presented in [7] that has been im-
plemented based upon the widely used memory modeling
tool CACTI [8]. All the DRAM modeling is carried out at
the 65nm technology node.

When using the per-row DRAM-to-logic data delivery,
each frame is stored in two banks and each bank has a
128-bit data I/O width. Although each two-bank DRAM
module can store multiple frames, in this work we only
consider the storage of a single frame with 2M-byte. We
explore the 3D DRAM design space by varying the size
of each sub-array and the number of sub-banks. In this
study, the number of bit-lines in each sub-bank is fixed as
512. Table 2 shows the parameters of 3D stacked DRAM,
where both 1-layer and 4-layer DRAM die stacking are
considered.

In DRAM, the access time is the time to read a random
bit from a pre-charged sub-bank, while it takes less time to
read data along the same word-line (i.e., during the burst
mode of DRAM access) as shown in Table 2, because it
does not require additional time for word-line address de-
coding and activations, etc. Clearly, the same argument
applies to DRAM access energy consumption. By reduc-
ing the word-line activation frequency, the MB-oriented
DRAM storage adopted in this work can effectively speed
up the operation and save the energy consumption. As
shown in Table 2 4-layer DRAM stacking can achieve much
less footprint and slightly better energy efficiency than its
1-layer counterpart. If each memory bank is partitioned
into smaller sub-banks, the burst read energy becomes
higher, since more energy is consumed on the memory
global routing. The access time does not change mono-
tonically with size of sub-banks as observed in the table,
because when the sub-banks become smaller, the delay in
peripheral circuits tends to increase, even though it takes
less time to access the memory core.

As pointed out in the above, the 3D stacked DRAM
data storage strategy can naturally support various block
matching schemes, including exhaustive full search (FS),
three step search (TSS) [9], new three step search (NTSS)
[10], four step search (FSS) [11, 12], and diamond search
(DS) [13, 14]. Moreover, hybrid block matching can also
be seamlessly supported, e.g., we can first run three step
search motion estimation on the search region of reference
frame and then run full search motion estimation again
on the search region with the least SAD value. Since all
the search schemes are seamlessly supported, the trade-off
between motion estimation accuracy and computational
complexity (hence power consumption) can be easily and
gracefully configured on the fly. In this work, we use two
HDTV 1080p video sequences Tractor and Rush hour [15]
for the purpose of demonstration, where 15 frames are ex-
tracted and analyzed in each video sequence. Fig. 6 and
Fig. 7 show the peak signal-to-noise ratio (PSNR) of var-
ious multi-frame motion estimation algorithms over 3D
DRAM energy consumption to process one image frame
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Figure 6: Performance of various advanced motion estimation algorithms vs. 3D DRAM access energy consumption without on-chip SRAM
buffer, where we assume there is 1-layer 3D DRAM stacking and 1 sub-bank per bank in 3D DRAM.

without using the on-chip SRAM buffer. Each curve con-
tains five points, corresponding to the scenarios using 1,
2, 3, 4 and 5 reference frames respectively. The mem-
ory access energy consumption for each point is obtained
based on DRAM parameters with 1-layer DRAM stacking
and 1 sub-bank per bank. Due to the regular memory ac-
cess pattern in full search, explicit memory access can be
greatly reduced by data reuse [16] in motion estimation
engine. In this study, we set the full search motion esti-
mation design approach can fully exploit such data reuse.
However, since the search region is 80× 80, the number of
full search computation needed to find a best match of a
current MB is much larger than the number of other ad-
vanced algorithms, and energy consumption of full search
is still much higher, so we plot the curves for full search
in Fig. 7 and curves for the other algorithms in Fig. 6 to
make the figures more legible.
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Figure 7: Performance of full search algorithm vs. 3D DRAM access
energy consumption without on-chip SRAM buffer, where we assume
there is 1-layer 3D DRAM stacking and 1 sub-bank per bank in 3D
DRAM.

Based upon the above 3D DRAM parameters, we esti-
mate the overall memory sub-system power consumption
and obtain the comparison with conventional design prac-
tice. Regardless to whether 3D DRAM stacking is used or
not, we assume the image frames are originally stored in
an off-chip 4Gb commodity DRAM, which also stores data
and instructions for other cores in the envisioned heteroge-
neous multi-core systems. In the case of conventional de-
sign practice, the motion estimation accelerator contains
an on-chip SRAM buffer to store the current MB and a
80 × 80 search region in each reference frame (i.e., a to-
tal 250Kb when using 5 reference frames). In the case of
3D-based design, we consider two scenarios: (i) we elimi-
nate the on-chip SRAM buffer in order to reduce the logic
die area, where motion estimation computation blocks di-
rectly obtain image data from 3D stacked DRAM, and
(ii) we still keep the on-chip SRAM buffer in order to
reduce the frequency of 3D stacked DRAM access. The
estimation and comparison results are list in Table 3 and
Table 4, in which full search and three step search algo-
rithms are used respectively. The access power listed in
the table is the power consumed for memory read/write
under the real-time constraint (i.e., 30 frames per second
for HDTV1080p), including address decoder, sense ampli-
fiers, repeaters, routing, etc. The I/O power of DRAM
and SRAM is aggregated and listed in the table. It clearly
shows the energy efficiency advantages when 3D stacked
DRAM is being used, especially in three step search case,
mainly because the use of 3D stacked DRAM can largely
reduce the frequency of off-chip 4Gb commodity DRAM
access and data access to the small 3D stacked DRAM ded-
icated for motion estimation is much more energy-efficient
than access to off-chip 4Gb commodity DRAM. Neverthe-
less, accessing 3D DRAM directly without on-chip SRAM
consumes a large amount of power if full search is used. It
is because a large search region imposes more frequent data
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Table 3: Comparison between current design practice and the design using 3D stacked DRAM with full search.

Current practice
Design using 3D stacked DRAM

(w/o on-chip SRAM) (w/ on-chip SRAM)

Off-chip DRAM
Capacity (Gb) 4 4 4

Access power (mW) 274.56 21.90 21.90
I/O Power (mW) 124.02 9.89 9.89

3D DRAM

Capacity (Mb) N/A 100 100
Access power (mW) N/A 910.93 18.50

Leakage power (mW) N/A 31.03 31.03
Barrel shifter power (mW) N/A ??? ???

I/O power (mW) N/A 146.03 2.96

On-chip SRAM
Capacity (Kb) 250 N/A 250

Footprint (mm2) 0.91 N/A 0.91
Access power (mW) 187.12 N/A 187.12

Total memory access power (mW) 585.70 1119.79 271.39
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Figure 9: Average power consumption of entire motion estimation
using full search algorithm.

access from 3D DRAM. Moreover, the above two differ-
ent scenarios (i.e., with and without on-chip SRAM buffer
when using 3D stacked DRAM) essentially represent dif-
ferent trade-offs between the logic die area reduction and
total memory access power consumption.

Using Synopsys tool sets and a 65nm CMOS standard
cell library, we synthesize parallel motion estimation com-
putation engines and estimate the power consumption.
Combining the above memory sub-system power consump-
tion results, we estimate the overall average motion esti-
mation power consumption as shown in Fig. 8 and Fig. 9,
where we consider both with and without on-chip SRAM
buffer. Because the search steps of NTSS, FS-TSS and
DS algorithms may vary during the run time, we show the
average values obtained from computer simulations. The
lower and upper parts of each bar in the figures represent
memory access and computation logic power consumption
respectively. The power consumption is obtained at the
clock frequencies that are just fast enough for real-time
processing in all the studies.

Finally, we evaluate the potential of leveraging the bit-
plane DRAM storage structure to enable graceful perfor-
mance vs. energy consumption. We only consider the sce-
nario of 3D stacked DRAM without on-chip SRAM buffer.
We carry out simulations with full search, three step search

and new three step search algorithms with one reference
frame, and we take the DRAM parameters of 1-layer stack-
ing and 1 sub-bank per bank listed in Table 2. For full
search, we simply study the use of 4 bits, 5 bits,· · · , 8
bits of every pixel in motion estimation. For three step
search, because of the relatively large search region (i.e.,
80×80), every MB actually takes five steps to find the best
matched MB. In the first step, since 9 candidate MBs are
well separated away from each other in a reference frame
and their SADs between current MB tend to largely dif-
fer, less number of bits may be sufficient, hence 4 bits of
each pixel are used in the first step. On the other hand,
search in the last two steps is limited into a small region
and the accuracy directly affects the motion estimation
performance, therefore we used full precision in the last
two steps. We only vary the number of bits used for mo-
tion estimation in the second and third steps. For new
three step search, which evolves from three step search,
the number of steps can be either 2 or 5 for every current
MB. So we only vary the precision in the first step, and we
keep the full precision during the following 1 or 4 step(s).
The PSNR vs. memory access energy consumption results
are shown in Fig. 10. The five points on each full-search
curve correspond to using 4, 5, 6, 7 and 8 bits in motion
estimation; the five points on each new-three-step-search
curve correspond to using 4, 5, 6, 7 and 8 bits in the first
step; the left five points on each three-step-search curve
correspond to using 4, 5, 6, 7 and 8 bits in the second and
third steps and the rightmost point represents the result
when the full precision is being used in all the five steps.
The simulation results clearly show the trade-offs in vari-
ous design scenarios. In particular, for three step search,
if we only reduce the first step precision from 8 bits to 4
bits and keep the full precision in the rest steps, PSNR
performance does not degrade at all, while it can save al-
most 15% of memory access power consumption as well as
computation logic power consumption.
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Table 4: Comparison between current design practice and the design using 3D stacked DRAM with three step search.

Current practice
Design using 3D stacked DRAM

(w/o on-chip SRAM) (w/ on-chip SRAM)

Off-chip DRAM
Capacity (Gb) 4 4 4

Access power (mW) 274.56 21.90 21.90
I/O power (mW) 124.02 9.89 9.89

3D DRAM

Capacity (Mb) N/A 100 100
Access power (mW) N/A 146.49 18.50
Leakage power(mW) N/A 31.03 31.03

Barrel shifter power (mW) N/A ??? ???
I/O power (mW) N/A 23.48 2.96

On-chip SRAM
Capacity (Kb) 250 N/A 250

Footprint (mm2) 0.91 N/A 0.91
Access power (mW) 29.97 N/A 29.97

Total memory access power (mW) 428.55 232.79 114.24
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Figure 8: Average power consumption of entire motion estimation using advanced algorithms (a) without on-chip SRAM buffer, and (b) with
on-chip SRAM buffer.
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Figure 10: Motion estimation PSNR vs. memory access energy when varying pixel luminance intensity precisions, where different points on
the same curve correspond to different bit precisions for block matching: (a) Three step search and new three step search for both video
sequences; (b) Full search for both video sequences.

4. Conclusion

With 3D memory stacking, memory access may no
longer be a bottleneck for video encoding, in particular
for motion estimation. This provides new opportunities to
explore efficient motion estimation accelerator architecture
design. In this paper, we investigate motion estimation
accelerator architectures to effectively utilize the 3D inte-
grated DRAM. We develop one specific 3D DRAM data
storage organization and frame storage strategy geared to
motion estimation, which can be seamlessly coupled with
parallel motion estimation computation engines. The pre-
sented design strategy has a good energy efficiency and
can seamlessly support various motion estimation algo-
rithms with variable block size. Using DRAM performance
modeling/estimation tool and ASIC design at 65nm tech-
nology node, we demonstrate the effectiveness of such 3D
integrated motion estimation accelerator design for multi-
frame motion estimation.
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