
1

Area-Efficient Min-Sum Decoder Design for High-Rate
QC-LDPC Codes in Magnetic Recording

Hao Zhong, Wei Xu, Ningde Xie, and Tong Zhang

Abstract— This paper presents a silicon area efficient quasi-
cyclic (QC) low-density parity-check (LDPC) code decoder design
solution, which is geared to magnetic recording that demands
high code rate and very high decoding throughput under strin-
gent silicon cost constraint. The key of this proposed design
solution is to transform the conventional formulation of the Min-
Sum decoding algorithm in such a way that we can readily
develop a hardware decoder architecture with several desirable
features, including (i) silicon area saving potential inherent in the
Min-Sum algorithm for high-rate codes can be fully exploited, (ii)
the decoder circuit critical path may be greatly reduced, and (iii)
check node processing and variable node processing can operate
concurrently. For the purpose of demonstration, we designed
ASIC (application-specific integrated circuit) decoders for four
rate-8/9 regular-(4, 36) QC-LDPC codes that contain 512-byte,
1024-byte, 2048-byte, and 4096-byte user data per codeword,
respectively. Synthesis results show that this proposed design
solution can meet the beyond-2Gbps throughput requirement in
future magnetic recording at minimal silicon area cost.

Index Terms— Low-density parity-check (LDPC), decoder,
VLSI, magnetic recording

I. INTRODUCTION

Due to their excellent error correcting capability with rel-
atively low-complexity iterative decoding algorithms, low-
density parity-check (LDPC) codes have recently attracted
much attention for their applications in magnetic recording
systems. To be adopted by real-life hard disk drives, LDPC
codes must not only achieve very low sector failure rate with
high code rate (e.g., 8/9 and higher), but also be suitable for
high-speed (e.g., 2Gbps and higher) VLSI implementation at
minimal silicon area cost. Such stringent requirements make
appropriate LDPC code construction a nontrivial task. Prior
work has well demonstrated that quasi-cyclic (QC) LDPC
codes, one special family of LDPC codes, are a promising can-
didate in this context. From the error-correcting performance
perspective, researchers [1]–[3] have recently implemented
high-speed dedicated hardware simulators using FPGA (field
programmable gate array) devices to empirically demonstrate
the significant coding gain of high-rate QC-LDPC codes over
current practice at sector failure rates as low as 10−8 ∼ 10−9.
Meanwhile, the inherent structural regularity of QC-LDPC
codes makes it relatively easy to design efficient partially
parallel decoder architectures, as demonstrated by the large
amount of work recently reported, e.g., see [4]–[11]. Partially
parallel decoders map a certain number of variable nodes
or check nodes to a single hardware unit in a time-division

Manuscript received March 2007.
H. Zhong is with LSI Corporation, San Jose, CA, USA.
W. Xu, N. Xie, and T. Zhang are with Rensselaer Polytechnic Institute,

Troy, NY, USA (email: tzhang@ecse.rpi.edu)

multiplexed mode subject to desirable trade-offs between
silicon area and decoding throughput.

However, the silicon cost of high-speed decoder imple-
mentation still remains a big concern for using QC-LDPC
codes in magnetic recording. This is mainly because of the
long sector length in hard disk drives, e.g., in most current
hard disk drives each sector contains 512-byte user data and
recently IDEMA (International Disk Drive, Equipment, and
Materials Association) announced a recommendation to make
one sector contain 4096-byte user data. Generally, the longer
sector size enables the use of longer ECC (error correction
code) that can achieve the desired level of sector failure rate
at less coding redundancy (or higher code rate). However,
as the penalty, longer ECC tends to incur higher decoder
implementation silicon cost, particularly when targeting on
very high decoding throughput. This is particularly serious
for LDPC codes since the amount of decoding messages to
be stored (and hence the silicon cost for data storage) is
proportional to the codeword length. This work concerns the
development of QC-LDPC code decoder design solutions to
push the silicon area efficiency envelope under the following
magnetic-recording-oriented constraints: (i) code rate is 8/9
and higher, (ii) user data per codeword may range from 512-
byte up to 4096-byte, and (iii) the decoder can achieve beyond-
2Gbps throughput with a reasonable number of decoding
iterations (e.g., 16 iterations). To the best of our knowledge,
in spite of the large amount of recent work on LDPC decoder
design, very few results are readily available on decoders
satisfying the above constraints, particularly for very long
LDPC codes such as 4096-byte user data per codeword that
remains almost completely unexplored in the open literature.

This paper presents a silicon area efficient QC-LDPC
code decoder design solution geared to the above magnetic-
recording-oriented constraints and demonstrates its practical
potential through ASIC (application-specific integrated circuit)
design at 65nm CMOS technology node. It is well-known
that various LDPC decoding algorithms may fall into three
categories, including Sum-Product algorithm (SPA) [12], Min-
Sum algorithm [13], and layered decoding algorithm1 [4], [9].
This work focuses on the Min-Sum algorithm because its
check node processing approximation may potentially lead to
significant silicon area savings from two perspectives: (i) the
logic complexity may be reduced due to the elimination of the
function log[tanh(x/2)] that is typically implemented as look-
up-table (LUT) in hardware, and (ii) more importantly, the size
of memory for decoding message storage may be reduced due

1We categorize Turbo-Decoding Massage-Passing (TDMP) algorithm in [4]
as layered decoding following the notation in [9].

2

to the possible compact representation of check-to-variable
messages. However, this memory saving potential has not
been fully exploited by existing high-speed partially parallel
Min-Sum decoders [5], [6], although such potential has been
pointed out in some serial Min-Sum decoding schemes [14],
[15]. Moreover, for partially parallel decoder design, the con-
ventional Min-Sum algorithm formulation results in explicit
implementation of a sorter in each check node processing
unit, which will make the potential of logic silicon area saving
quickly diminish and result in an essential speed bottleneck as
the code rate (or, more specifically, the row weight of parity
check matrix) increases.

In this work, we developed a decoder design solution to
fully exploit the potential advantages of Min-Sum decoding
algorithm, particularly under the above magnetic-recording-
oriented constraints. We transform (or re-formulate) the con-
ventional Min-Sum algorithm formulation in such a way that
it becomes relatively straightforward to develop a high-speed
partially parallel decoder architecture with the following fa-
vorable features, including (a) the silicon area saving potential
inherent in the Min-Sum algorithm for high-rate codes can be
fully exploited, (b) the decoder circuit critical path may be
greatly reduced, and (c) check node processing and variable
node processing can operate concurrently. To demonstrate the
effectiveness of this proposed design solution for magnetic
recording, we designed decoders for four rate-8/9 regular-(4,
36) QC-LDPC codes that contain 512-byte, 1024-byte, 2048-
byte, and 4096-byte user data per codeword, respectively. We
note that QC-LDPC codes with column weight of 4 are used
because prior work [1], [2], [16] showed that such codes
may be much more immune to error floor than the codes
with column weight of 3. All these decoders are designed
using Synopsys tools and 65nm CMOS technology libraries.
When the decoding messages are quantized using 4 bits, these
decoders can achieve 2.1Gbps decoding throughput (with 16
decoding iterations) while occupying silicon areas of only
1.92mm2, 2.32mm2, 2.81mm2, and 3.78mm2, respectively.

The remainder of this paper is organized as follows. Section
II presents the proposed Min-Sum algorithm transformation.
Section III presents the developed partially parallel decoder
architecture. The decoder ASIC design results are given in
Section IV, and Section V draws the conclusion.

II. PROPOSED MIN-SUM ALGORITHM TRANSFORMATION

This section presents the proposed transformation of Min-
Sum algorithm formulation. First, we introduce some conven-
tional definitions and notations following the open literature.
Given an M × N parity check matrix H, we define the
set of bits that participate in parity check m as N (m) =
{n : Hm,n = 1}, and the set of parity checks in which
bit n participates as M(n) = {m : Hm,n = 1}. We
denote the set N (m) with bit n excluded by N (m) \ n,
and the set M(n) with check m excluded by M(n) \ m.
The channel message, variable-to-check message, check-to-
variable message, and posterior Log-likelihood ration (LLR)
are denoted as γn, αi

m,n, βi
m,n, and λi

n respectively, where the
superscript i is iteration index.

The main difference between SPA and Min-Sum algorithm
lies in the check node processing, i.e., the check node pro-
cessing in SPA is realized as

βm,n = Φ
(∑

n′∈N (m)\n

Φ(|αm,n′ |)
) ∏

n′∈N (m)\n

sign(αm,n′),

(1)
where Φ(x) ≡ −log[tanh(x/2)]. The check node processing
in Min-Sum algorithm is approximated as

βm,n = min
n′∈N (m)\n

(αm,n′)
∏

n′∈N (m)\n

sign(αm,n′). (2)

Therefore, the function Φ(x), which is typically implemented
as look-up tables (LUT) in hardware, is eliminated in Min-Sum
algorithm. The conventional Min-Sum algorithm formulation
is described as follows.

Algorithm 1: Min-Sum Decoding Algorithm

Initialization: α0
m,n = γn;

for i=0 to imax or convergence to codeword do
forall check nodes cm, m ∈ {1, ...,M} do

|βi
m,n| = minn′∈N (m)\n{|αi−1

m,n′ |};
sign(βi

m,n) =
∏

n′∈N (m)\n sign(αi−1
m,n′);

end
forall variable nodes vn, n ∈ {1, ..., N} do

λi
n = γn +

∑
m∈M(n) βi

m,n;
αi

m,n = λi
n − βi

m,n;
end

end
Output the decoded bits as sign(λi

n)

Due to the check node processing approximation, the check-
to-variable messages from each check node only have 2
different magnitudes (i.e., the minimum and the 2nd minimum
ones among the magnitudes of all the variable-to-check mes-
sages entering into this check node), no matter how large the
check node degree is. Meanwhile, the check node processing
approximation eliminates the function Φ(x). Intuitively, these
two features may be leveraged to reduce the storage and logic
silicon area. However, a direct realization of partially parallel
decoders based on the above conventional Min-Sum algorithm
formulation, e.g., the existing partially parallel Min-Sum de-
coders [5], [6], may not be able to effectively materialize such
silicon area saving potential for two main reasons:

1) In spite of much less check-to-variable messages storage
requirement, the total number of distinct variable-to-
check messages always equals to the total number of 1s in
the parity check matrix. A direct realization of partially
parallel decoders may have to provide explicit storage
for these variable-to-check messages, leading to the same
(or similar) storage requirement as in its SPA decoder
counterpart.

2) The direct realization of partially parallel decoders tends
to implement parallel-input parallel-output check node
processing units that use a sorter to search the 2 minimum
ones among all the incoming variable-to-check messages.

3

As code rate increases, the silicon area overhead incurred
by sorters will quickly increase.

To tackle the above two issues, we propose a transformed
Min-Sum algorithm described in Algorithm 2. Although it is
mathematically equivalent to the original Min-Sum algorithm,
its formulation and execution order make it straightforward
to realize silicon area savings at VLSI architecture level. In
particular, this algorithm transformation has two key features,
including (1) the check node processing and variable node pro-
cessing are interleaved in such a way that each newly updated
variable-to-check message may be directly absorbed by check
node processing units without being intermediately stored, and
(2) the check node processing is sequentialized so that the
explicit implementation of a sorter is eliminated. To generate
the outgoing check-to-variable messages from each check node
(i.e., {|βm,n|, n ∈ N (m)}), the sequentialized check node
processing only needs to keep track of the two minimum mag-
nitudes, i.e., min1m and min2m where min1m ≤ min2m,
among the input variable-to-check messages, the sign sm,n of
each input variable-to-check message and Sm =

∏
sm,n, and

the variable node index Im representing which variable node
provides the message with the minimum magnitude.

Algorithm 2: Transformed Min-Sum Algorithm

for i=0 to imax or convergence to codeword do
forall variable nodes vn, n ∈ {1, ..., N} do

if i=0 then
αi

m,n = γn;
else

βi
m,n =

{
Si

m · si
m,n ·min1i

m n 6= Ii
m

Si
m · si

m,n ·min2i
m otherwise

λi
n = γn +

∑
m∈M(n) βi

m,n ;
αi

m,n = λi
n − βi

m,n;
end
Initialize min1i+1

m = min2i+1
m = +∞, Si+1

m = 1;
forall check nodes cm, m ∈M(n) do

if |αi
m,n| < min1i+1

m then
min1i+1

m = |αi
m,n|;

min2i+1
m = min1i+1

m ;
Ii+1
m = n ;

else
if |αi

m,n| < min2i+1
m then

min2i+1
m = |αi

m,n|;
end

end
si+1

m,n = sign(αi
m,n) ;

Si+1
m = Si+1

m · si+1
m,n ;

end
end

end
Output the decoded bits as sign(λi

n)

Additionally, we note that the Min-Sum algorithm is gen-
erally less sensitive to quantization errors compared to SPA
and hence may enable the use of smaller finite word-length.
For example, it has been shown in [13] that a 4-bit quanti-
zation of decoding messages may be sufficient to avoid error

floor, although it may result in about 0.2dB performance loss
compared to 6-bit quantization.

III. PARTIALLY PARALLEL DECODER ARCHITECTURE

This section presents the developed partially parallel QC-
LDPC decoder architecture based on the above transformed
Min-Sum algorithm formulation. The parity check matrix of a
QC-LDPC code consists of an mb × nb array of p× p square
circulant matrices2. Hence the mb · p × nb · p parity check
matrix can be represented by a bipartite graph as shown in
Fig. 1, where each group of consecutive p rows (or columns)
are represented by a set of p check (or variable) nodes. Notice
that the cyclic permutation blocks in Fig. 1 realize message
passing between adjacent variable and check node groups
through simple cyclic permutations based on the quasi-cyclic
parity check matrix structure.

. . ..
.. .

..
.

..

.
..

.
... . .

p to p cyclic
permutatiopn

p to p cyclic
permutatiopn

p to p cyclic
permutatiopn

p to p cyclic
permutatiopn

p to p cyclic
permutatiopn

p to p cyclic
permutatiopn

p copies

p copies

nbx p variable nodes

mb x p check nodes

nb x p

mb x p

p

Fig. 1. Graph representation of QC-LDPC codes.

A. Decoding Scheduling

In the developed partially parallel QC-LDPC decoder, the
decoding scheduling within each decoding iteration directly
follows the above transformed formulation. This can be il-
lustrated in Fig. 2 and explained as follows. One out of
the total nb variable node sets is processed at one time,
and all the check nodes are processed in a serial manner
interleaved with the variable node processing. In Fig. 2(a) the
first set of variable nodes is processed and feeds variable-to-
check messages to all the check nodes for partial check node
processing. Then the decoding moves to the second step as
shown in Fig. 2(b) where the second set of variable nodes
is processed and feeds variable-to-check messages to all the
check nodes for further partial check node processing. Once
all the variable nodes are processed within present iteration,

2A circulant matrix is such a matrix in which each row is obtained by
cyclicly shifting the row above by one position.

4

as shown in Fig. 2(c), all the check nodes also receive all
the input variable-to-check messages and finish the check
node processing for present iteration. Then all the check-to-
variable messages will be fed to the variable nodes for the next
iteration. Fig. 2 clearly illustrates the two desirable features
of this proposed Min-Sum algorithm transformation, i.e., the
obviation of explicit storage of variable-to-check decoding
messages and concurrent operation of check node processing
and variable node processing.

. . .

(a)

. . .

. . .

(c)

. . .

partialy completed check node set
completed check node set

completed variable node set

unprocessed variable node set

(each set has p check or variable nodes)

. . .

. . .

(b)

Fig. 2. Decoding scheduling within one decoding iteration.

B. Decoder Architecture

Let the QC-LDPC code parity check matrix be mb ·p×nb ·p
and define a decoder parallelism factor s for partially parallel
decoder design. Without the loss of generality, we assume p is
divisible by s and denote v = p/s. Fig. 3 shows the principal
architecture of our developed partially parallel decoder based
on the proposed Min-Sum algorithm transformation. Given the
decoder parallelism factor s, the decoder contains s variable
node processing units (VNUs) and mb · s serial check node
processing units (SCNUs). The channel messages are stored
in the channel message SRAM blocks (CMMB). Since all the
variable-to-check messages are immediately absorbed by the
concurrent check node processing as described in Section III-
A, the decoder only stores the check-to-variable messages in
the message storage block.

The operation of the decoder is described as follows. All the
s VNUs perform the computation for s consecutive variable
nodes in each clock cycle, hence each set of p variable nodes
as illustrated in Fig. 2 is processed with v consecutive clock
cycles. Therefore, the decoder finishes one round of variable
node processing with nb · v clock cycles. Upon receiving
the variable-to-check messages from s variable nodes, the
SCNUs partially update the decoding messages of the check
nodes connected with those s variable nodes. Each group of
s SCNUs are responsible to one set of p check nodes out
of the total mb sets. Once a time, each SCNU receives one
incoming variable-to-check message and accordingly updates
the intermediate decoding data {min1m, min2m, Sm, Im}
(as defined in Section II). As shown in Fig. 3, one group
of s SCNUs associates with one check-to-variable message
storage block, each block contains one SRAM and two register
arrays. In the run time, register array A stores the intermediate
decoding data {min1m, min2m, Sm, Im} that are being

updated by the SCNUs. Every nb · v clock cycles, the data
set {min1m, min2m, Sm, Im} in the register array A are
completely updated and then are copied to the register array
B that provides the input to all the VNUs as shown in Fig. 3.
The SRAM stores the signs of incoming variable-to-check
messages (i.e., all the sm,n as defined in Section II) that
will be used to generate check-to-variable messages. Since
the decoding datapath is naturally pipelined due to the use
of two register arrays, all the VNUs and SCNUs can work
concurrently and one decoding iteration takes nb · v clock
cycles. The access control for the data storage/retrieval to/from
the SRAMs and register arrays can be readily derived based
on the cyclic structure of the parity check matrix. Let fclock

denote the clock frequency of the decoder and r denote the
number of decoding iterations, the decoding throughput can
be estimated as

nb · p−mb · p
nb · v · r

· fclock =
(nb −mb) · s

nb · r
· fclock. (3)

The structures of each SCNU and VNU can be straightfor-
wardly derived from the the above algorithm and architecture
descriptions, as shown in Fig. 4 and Fig. 5, respectively. We
use q to denote the finite word-length of each decoding mes-
sage. Each SCNU receives one variable-to-check message at a
time and accordingly updates the check-to-variable messages
(i.e., sifts the 2 minimum magnitudes of incoming variable-
to-check messages) in serial, while each VNU receives all
the check-variable messages and generate the corresponding
variable-to-check messages at once.

-

-

. .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

sign part
decision bitchannel message

check to
variable

messages

variable
to check
message

-

-

sign

variable
to check
message

sign product

min1

min2

∑

min_ID update

hard
decisio

n

parity1-bit

q-bit

1-bit

1-bit

(q-1)-bit

1-bit

1-bit

1-bit

q-bit

q-bitq-bit

q-bit

q-bit

(a)

(b)

SM 2's

SM 2's

2's SM

2's SM

(q-1)-bit

(q-1)-bit

Fig. 4. Structure of one serial check node processing unit (SCNU).

-

-

. .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

sign part
decision bitchannel message

check to
variable

messages

variable
to check
message

-

-

sign

variable
to check
message

sign product

min1

min2

∑

min_ID update

hard
decisio

n

parity1-bit

q-bit

1-bit

1-bit

(q-1)-bit

1-bit

1-bit

1-bit

q-bit

q-bitq-bit

q-bit

q-bit

(a)

(b)

SM 2's

SM 2's

2's SM

2's SM

(q-1)-bit

(q-1)-bit

Fig. 5. Structure of one variable node processing unit (VNU).

IV. ASIC DESIGN RESULTS

This section presents ASIC decoder design results to
demonstrate the effectiveness of the proposed decoder design

5

VNU1 VNUs CMMB

SCNU1 . . . SCNUs

SRAM
Register Array A

Register Array B

SCNU1 . . . SCNUs

SRAM
Register Array A

Register Array B Check-to-Variable
Message Storage

mb groups

Fig. 3. Proposed partially parallel decoder architecture that contains s VNUs and mb · s SCNUs.

TABLE I
DECODER DESIGN RESULTS FOR THE FOUR RATE-8/9 REGULAR-(4, 36) QC-LDPC CODES.

p D (Bytes) Silicon Area (mm2) ThroughputVNU & SCNU Register Array SRAM Others Total
128 512

0.26

1.21 0.25 0.20 1.92
256 1024 1.62 0.29 0.15 2.32 2.1Gbps
512 2048 1.96 0.40 0.19 2.81 @ 300MHz
1024 4096 2.60 0.66 0.26 3.78

solution and evaluate the trade-offs between the codeword
length and silicon area cost. Prior work [1], [2], [16] demon-
strated that regular QC-LDPC codes with column weight of
4 may be much less subject to error floor and be good candi-
dates for magnetic recording. Therefore, this work focused on
rate-8/9 regular-(4, 36) QC-LDPC codes whose parity check
matrices are 4 · p × 36 · p and each p × p circulant matrix
has column weight of 1. Taking the circulant matrix size p
as 128, 256, 512, and 1024, we constructed four QC-LDPC
codes that contain 512-byte, 1024-byte, 2048-byte, and 4096-
byte user data per codeword, respectively. We set the decoder
parallelism factor s as 128, hence each decoder contains four
SCNU groups, each group has 128 SCNUs, and one group
of 128 VNUs. According to (3), the decoding throughput of
these decoders is 64

9 fclock under 16 iterations. We designed
these decoders using 65nm CMOS technology and Synopsys
tools for simulation, synthesis, verification, and static timing
analysis. All the decoders quantize the channel messages and
decoding messages to be 4-bit. Let D denote the amount of
user data in the code. Table I summarizes the ASIC design
results. We note that the listed silicon area for Register Array
and SRAM also includes the cost of the access controllers that
control the data storage/retrieval.

Table II further shows the comparison with representative
recent work on LDPC code partially parallel decoder design.
For the first order approximation, when being compared
against with decoders at 65-nm node, the areas of the decoders
at 180-nm, 160-nm, and 130-nm listed in the table may
roughly scale down by 8, 6, and 4, respectively. Considering
the code length, decoding throughput (normalized with respect
to the decoding iterations), and silicon area, this comparison

further justifies the silicon area efficiency advantage of the
proposed design solution.

V. CONCLUSION

In this paper, by appropriately transforming the conventional
Min-Sum algorithm formulation, we develop an area efficient
QC-LDPC code decoder design solution. It is particularly
suitable for magnetic recording that demands long codeword
length, high code rate, and very high decoding throughput.
The decoder silicon cost for data storage is reduced by ob-
viating the explicit storage of variable-to-check messages and
storing the check-to-variable messages in a compact manner.
The logic complexity reduction is achieved by obviating the
explicit implementation of the resource-consuming data sorters
in check node processing units. Furthermore, the decoder
enables concurrent operation of variable node processing and
check node processing, leading to further decoding throughput
improvement. Its effectiveness has been demonstrated using
ASIC decoder design at 65nm CMOS technology with the
configurations geared to magnetic recording.

REFERENCES

[1] L. Sun, H. Song, B.V.K.V. Kumar, and Z. Keirn, “Field-
programmable gate-array-based investigation of the error floor
of low-density parity check codes for magnetic recording chan-
nels,” in IEEE Transactions on Magnetics, Oct. 2005, pp. 2983
– 2985.

[2] H. Zhong and T. Zhang, “High-rate quasi-cyclic LDPC codes
for magnetic recording channel with low error floor,” in
Proc. of IEEE International Symposium on Circuits and Systems
(ISCAS), May 2006, pp. 3546–3549.

6

TABLE II
COMPARISON WITH REPRESENTATIVE RECENT WORK ON LDPC CODE PARTIALLY PARALLEL DECODER DESIGN.

Reference This work [4] [5] [6] [7]
CMOS Technology 65nm, 0.9V 180nm, 1.8V 160nm, 1.5V 180nm, 3.3V 130nm, 1.2V
Decoding Algorithm Min-Sum TDMP Min-Sum Min-Sum SPA
Code Rate 8/9 1/2 to 7/8 3/4 3/5 1/2
Average Column Weight 4 3 3 - 3
Quantization 4-bit 4-bit 6-bit 6-bit -
Clock Frequency 300 MHz 125MHz 264MHz - 200MHz
Throughput 2.1 Gbit/s 640Mbit/s 480Mbit/s 5.92Gbit/s 985Mbit/s
Decoding Iterations 16 16 10 - 8
Code Length 4608 9216 18432 36864 2048 600 1200 1024
Area (mm2) 1.92 2.32 2.81 3.78 14.3 22.4 13.5 10.08

[3] X. Hu, B. V. K. V. Kumar, L. Sun, and J. Xie, “Decoding
behavior study of LDPC codes under a realistic magnetic
recording channel model,” IEEE Transactions on Magnetics,
vol. 42, no. 10, pp. 2606–2608, Oct. 2006.

[4] M.M. Mansour and N.R. Shanbhag, “A 640-Mb/s 2048-bit
programmable LDPC decoder chip,” IEEE Journal of Solid-
State Circuits, vol. 41, pp. 684–698, March 2006.

[5] H. Liu et al, “A 480Mb/s LDPC-COFDM-based UWB base-
band transceiver,” in IEEE International Solid-State Circuits
Conference (ISSCC), Feb. 2005, pp. 444–609.

[6] C. Lin, K. Lin, H. Chan, and C. Lee, “A 3.33Gb/s (1200,720)
low-density parity check code decoder,” in Proceedings of the
31st European Solid-State Circuits Conference, Sept. 2005, pp.
211–214.

[7] S. Kang and I. Park, “Loosely coupled memory-based decoding
architecture for low density parity check codes,” Proceedings
of the IEEE Custom Integrated Circuits Conference (CICC), pp.
703–706, Sept. 2005.

[8] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC
coding system design approach,” IEEE Transactions on Circuits
and Systems I, vol. 52, pp. 766–775, April 2005.

[9] D.E. Hocevar, “A reduced complexity decoder architecture via
layered decoding of LDPC codes,” IEEE Workshop on Signal
Processing Systems (SIPS), pp. 107–112, March 2004.

[10] J.K.-S. Lee, B. Lee, J. Thorpe, K. Andrews, S. Dolinar, and
J. Hamkins, “A scalable architecture of a structured LDPC
decoder,” in International Symposium on Information Theory,
July 2004, p. 293.

[11] Z. Wang and Q. Jia, “Low complexity, high speed decoder
architecture for quasi-cyclic LDPC codes,” IEEE International
Symposium on Circuits and Systems (ISCAS), vol. 6, pp. 5786–
5789, May 2005.

[12] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor
graphs and the sum-product algorithm,” IEEE Transactions on
Information Theory, vol. 47, pp. 498–519, Feb. 2001.

[13] J. Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier, and
Xiao-Yu Hu, “Reduced-Complexity Decoding of LDPC Codes,”
IEEE Transactions on Communications, vol. 53, pp. 1288–1299,
Agu. 2005.

[14] F. Guilloud, E. Boutillon, and J.L. Danger, “λ-Min Decoding
Algorithm of Regular and Irregular Codes,” Proceedings of
the 3nd International Symposium on Turbo Codes and Related
Topics, Sept. 2003.

[15] Z. Wu and G. Burd, “Equation based LDPC decoder for inter-
symbol interference channels,” IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’05), vol.
5, pp. 757–760, March 2005.

[16] L. Sun, H. Song, and B.V.K.V. Kumar, “Error floor investigation
and girth optimization for certain types of low-density parity
check codes,” in Proc. of IEEE International Conference on
Acoustics, Speech, and Signal Processing, March 2005, pp.
1101–1104.

