
Low Power Soft-Output Signal Detector Design for
Wireless MIMO Communication Systems

Sizhong Chen and Tong Zhang
Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic Institute, Troy, NY 12180
sizhong@alum.rpi.edu, tzhang@ecse.rpi.edu

ABSTRACT
Energy-efficient realization of soft-output signal detection is of great

importance in emerging high-speed multiple-input multiple-output

(MIMO) wireless communication systems. This paper presents

three algorithm-level complexity-reduction techniques for soft-output

detector design to achieve significant energy savings. To demon-

strate their effectiveness, we designed a soft-output detector for

4×4 MIMO with 64-QAM using 65nm CMOS technology. While

achieving near-optimum detection performance, the detector can

support over 100Mbps throughput with only 0.24mm2 silicon area

and 11mw power, leading to a ×10 improvement over the state of

the art.

Categories and Subject Descriptors
B.4.1 [Input/Output and Data Communications]: Data Commu-

nications Devices

General Terms
Algorithms, Design

Keywords
MIMO, detection, spatial multiplexing, low power, VLSI

1. INTRODUCTION
Multiple-input multiple-output (MIMO) wireless communication

technology has attracted a lot of attentions in the past decade and

evidently will play an essential role in future high speed wireless

communication systems such as the fourth-generation (4G) mobile

radio systems, fixed/mobile broadband wireless systems (WiMAX),

and wireless local area networks (IEEE 802.11n) [5]. MIMO can

be used to enhance the data transmission rate by spatial multiplex-

ing or improve the transmission reliability by space-time coding.

This paper concerns the MIMO system with spatial multiplexing

which transmits independent data streams from each of the multi-

ple transmit antennas within the same frequency band at the same

time. Therefore, throughout this paper, MIMO always refers to the
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MIMO systems with spatial multiplexing. As the cost of the in-

creased transmission rate, the computational complexity and hence

the power consumption of MIMO signal detection tend to grow dra-

matically with the number of transmit antennas and the modulation

constellation size. This is particularly true for soft-output MIMO

detection that not only provides the binary estimation of each trans-

mitted bit but also the reliability measurement of the binary estima-

tion. Meanwhile, soft-output MIMO signal detection is almost in-

dispensable in practice since most real-life wireless communication

systems use error correcting codes (ECC) that demand soft input

for decoding, such as convolutional codes, Turbo codes, and low-

density parity-check (LDPC) codes. Therefore, effective design so-

lutions for reduced-complexity low-power soft-output MIMO de-

tector are highly desirable.

One family of reduced-complexity detectors is linear detectors

based on the principles of zero-forcing (ZF) or minimum mean-

square error (MMSE). Although they can greatly reduce the com-

putational complexity, they suffer from significant performance degra-

dation. The successive interference cancellation (SIC) detectors

such as the VBLAST architecture [9] are prone to decision error

propagation and can only provide modestly better performance. To

achieve the performance closer or even equivalent to the optimum

detection, researchers have developed several nonlinear detectors

that realize hard- or soft- output detection through non-exhaustive
tree search based on a set of additive metrics, where the goal of

hard-output detection is to find one tree leaf with the best metric

and the goal of soft-output detection is to find a list of tree leaves

to calculate the reliability information.

This paper focuses on the tree-search soft-output MIMO detec-

tion because of its near-optimum detection performance. Since

the recently approved IEEE 802.11n draft and the on-going 3GPP

Long Term Evolution (LTE) project will use 4×4 MIMO trans-

mission (i.e., 4 transmit antennas and 4 receive antennas) with 64-

QAM modulation as the most complex MIMO configuration, we

are primarily interested in the design and VLSI implementation

of tree-search soft-output MIMO detector for 4×4 MIMO with

64-QAM. The authors of [4] developed a tree-search soft-output

MIMO detector design solution based on several algorithm-level

innovations and presented the corresponding ASIC design results

for 4×4 MIMO with 64-QAM. To the best of our knowledge, it

is the only tree-search soft-output MIMO detector design reported

in the open literature that is capable of supporting our interested

4×4 MIMO with 64-QAM. However, its computational complexity

and power consumption (as presented in the next section) are still

very high and may be intolerable in many practical applications.

In fact, even the previously reported tree-search detectors for 4×4

MIMO with only 16-QAM [6, 7] tend to have very high computa-

tional complexity and may be subject to high power consumption.



Therefore, the design of low-power tree-search soft-output MIMO

detector still remain a big challenge and demand further innova-

tions at algorithm/architecture levels.

As an attempt to tackle this challenge, this paper presents three

algorithm-level techniques to largely reduce the computational com-

plexity of conventional tree-search soft-output detection schemes.

The proposed techniques include (i) bidirectional partial tree search,

(ii) hybrid two-step detection, and (iii) ECC feedback aided de-

tection bypassing. Computer simulations under the framework of

MIMO-OFDM wireless communication systems show that these

complexity-reduction techniques only incur very small detection

performance degradation. To demonstrate their effectiveness on

power saving, we designed an ASIC detector optimized for 4×4

MIMO with 64-QAM. We use Synopsys tools for simulation, syn-

thesis, and timing/power analysis with 65nm CMOS standard cell

and SRAM libraries. Post-synthesis results show that this detector

can achieve above 100 Mbps throughput with the silicon area of

0.24mm2 and power consumption of only 11mW, which represents

a more than one order of magnitude improvement over the state of

the art [4] in the open literature.

2. BACKGROUND

2.1 System Model
In MIMO system, on the transmitter side, one qNt × 1 binary

vector x is mapped to an Nt × 1 symbol vector s at once, where

Nt represents the number of transmit antennas. Each transmitted

symbol is taken from a W -QAM constellation with W = 2q . The

transmission of each vector s over flat-fading MIMO channels can

be modeled as y = H · s + n, where Nr represents the number of

receive antennas, y is an Nr ×1 signal vector received by a MIMO

detector, H is an Nr × Nt channel matrix, and n is a noise vector

whose entries are independent complex Gaussian random variables

with mean zero and variance N0/2.

2.2 Soft-Output MIMO Signal Detection
The task of a soft-output detector is to compute the log-likelihood

ratio (LLR) value of each bit, defined as L(xi|y) = ln P (xi=+1|y)
P (xi=−1|y)

,

where xi denotes the i-th bit of the binary vector x. Through stan-

dard simplification [2, 8], L(xi|y) can be approximated as:

L(xi|y) ≈ max
x∈Xi,+1

{Λ(x,y} − max
x∈Xi,−1

{Λ(x,y)},

where Λ(x,y) = − 1

N0
‖y − H · s‖2.

(1)

Using standard matrix decompositions such as Cholesky or QR de-

composition, we can obtain H∗H = L∗L, where L = (li,j) is

a lower triangular matrix and (·)∗ denotes the complex conjugate

transpose. Let ŝ = (H∗H)−1H∗y, we have

‖y − H · s‖2 = (s − ŝ)∗L∗L(s − ŝ)

+ y∗(I − H(H∗H)−1H∗)y.
(2)

Since the second term in (2) is independent of s and the matrix L
is lower triangular, we can rewrite Λ(x,y) in (1) as

Λ(x,y) =

NtX
i=1

“
− 1

N0

˛̨
˛

iX
j=1

li,j(sj − ŝj)
˛̨
˛
2”

=

NtX
i=1

Λs
i . (3)

Hence, we obtain additive metrics with the metric increment Λs
i

that only depends on sj for j ≤ i. Thus, soft-output MIMO detec-

tion can be formulated as an Nt-depth W -ary tree search problem,

where the i-th depth of this tree corresponds to the i-th transmit-

ted symbol (or i-th transmit antenna) and each tree node has W
child nodes corresponding to the W possible QAM points. Since

the term − 1
N0

in (3) can be omitted in the tree search, we define

the metric increment Λi as |Pi
j=1 li,j(sj − ŝj)|2 and the metric

of a depth-n path as Γ (n) =
Pn

i=1 Λi. Each tree leaf represents

a distinct Nt-symbol vector that may be possibly transmitted from

the transmitter.

Tree-search soft-output detector finds a set of tree leaves with

good metrics (i.e., high probabilities of occurrence), based on which

the L-values can be evaluated according to (1). Optimum soft-

output detector exhaustively examine all the tree leaves, which nev-

ertheless will result in prohibitive computational complexity. Com-

putational complexity can be significantly reduced by performing

non-exhaustive tree search at the cost of certain performance degra-

dation. The essence of non-exhaustive tree search can be briefly

described as follows: We depth-by-depth extend/examine the paths

from root towards leaves, and at each depth we prune those bad
paths with relatively low probabilities of occurrence from further

examination. Hence, all the tree nodes under those pruned paths

will not be examined, which will correspondingly reduce the com-

putational complexity. At each depth, the tree paths that are not

pruned are called survivor paths at present depth. Such non-exhaustive

tree search can be realized in either depth-first or breath-first man-

ner. This work is interested in soft-output detection based on breadth-

first non-exhaustive tree search.

2.3 Breadth-First Tree Search K-Best
Detector

Broadly speaking, breadth-first tree search extends all the sur-

vivor paths at each tree depth at once, purge some paths according

to certain criterion, and then continue on to the next tree depth. The

M-algorithm [1] is the most well-known breadth-first non-exhaustive

tree search algorithm. Directly combining the principal of M-algorithm

with the sphere constraint from the sphere decoding algorithm [8],

we have the so-called K-best MIMO detectors [7, 10]. A K-best

detector performs the following operations at each depth:

1. Path Extension: Extend each survivor path from the previous

depth with the W modulation points, i.e., calculate Γ (i) =
Γ (i−1) + Λi for each modulation point.

2. Radius Check: Delete the extended paths whose metrics are

larger than a fixed threshold r2, that is equivalent to the ra-

dius constraint in sphere decoding algorithm.

3. Path Sort: Let R denote the number of the remaining ex-

tended paths. If R > K, then sort these R paths in ascending

order based on the path metric and select the first K paths as

survivors depth, otherwise all the R extended paths are sur-

vivors.

After reaching the tree leaves at depth Nt, the detector keeps all

the survivors as a list of candidates, based on which the L-values

are calculated according to (1). A straightforward implementation

of K-best detectors tends to suffer from two critical drawbacks that

prevent it from achieving high throughput with reasonable silicon

area and power consumption, particularly for high order modula-

tion such as 64-QAM. This is briefly explained as follows:

i) The detector explicitly examines the extension of each survivor

with all the modulation points. Due to the complex computation in-

volved in each path extension, it will incur a large computational

complexity overhead. To solve this problem, PSK enumeration



technique [3, 4, 8] can be used. Its basic idea is to use the radius

constraint to determine an admissible region for the extension of

each survivor path at each tree depth, and only examines the modu-

lation points inside the admissible region for path extension. How-

ever, since the shape of the admissible region is a circle in PSK

enumeration technique, it is not trivial to determine its boundary in

hardware implementation. Moreover, since the modulation points

are enumerated in a zigzag fashion, the data flow control circuitry

becomes quite complex. These may result in non-negligible silicon

area cost and energy overhead.

ii) The search-the-best-K-paths operation is typically realized by

strict sorting (e.g., bubble sorting) in hardware implementation,

which will result in significant silicon area cost and energy over-

head. To tackle this issue, the authors of [4] proposed to replace the

strict sorting with so-called approximate sorting. The basic idea

of approximate sorting can be described as sorting with a coarse
granularity: Given the fixed radius constraint r2, we divide the en-

tire range of the path metric (i.e., [0, r2]) into a certain number

of adjacent regions, and each region is associated with a lower-

bound threshold and an upper-bound threshold. Using simple par-

allel comparison with the lower/upper-bound thresholds, we can

arrange all the extended paths into groups corresponding to those

path metric regions. Within each group, the paths are not sorted

at all. The detectors using such technique is referred to as relaxed

K-best detectors.

2.4 Results of Prior Work
Table 1 summarizes the hardware design results of tree-search

soft-output MIMO detectors reported in the open literature. The

soft-output List Sphere Decoder (LSD) [6] performs depth-first tree

search and the parameter l denotes the size of the tree leaves list

used for calculating the soft output. The K-best detector [7] and

relaxed K-best detector [4] perform breadth-first tree search and

the parameter K denotes the number of survivors kept at each tree

depth. Notice that only the relaxed K-best detector can support 64-

QAM, while the other two support 16-QAM.

Table 1: Comparison of soft-output MIMO detectors.

Algorithm
LSD K-best Relaxed K-best

(l=256) [6] (K=5) [7] (K=64) [4]

Antennas 4×4

Modulation 16-QAM 16-QAM 64-QAM

ECC
length-18432 length-18432 length-2304

rate-1/2 Turbo rate-1/2 Turbo rate-1/2 LDPC

Technology 0.18µm 0.13µm 0.13µm

Core Area
10 0.56 21.4

(mm2)

Gate Count N/A 97K 2.5M

Throughput
38.4 106.6

77.1

(Mbps) @17.7dB SNR

Power (mw) N/A N/A 847

As suggested in Table 1, breadth-first tree search may be more

suitable for high-speed soft-output MIMO detection compared with

depth-first tree search. This motivates us to focus on the breadth-

first tree-search detector in this work. The value of K heavily af-

fects the complexity vs. performance tradeoff in breadth-first de-

tector. The larger the K is, the better the detection performance will

be but higher implementation complexity and energy consumption

will be incurred. Moreover, a bigger modulation constellation size

(e.g., 64-QAM vs. 16-QAM) demands a (much) larger value of K.

Appropriate choice of K is also affected by the ECC being used.

If a stronger ECC code (e.g., the very long length-18432 code vs.

length-2304 code) is used, we can choose a smaller K given the

same system error rate performance requirement. Unfortunately,

in practical wireless communication systems, relatively short (and

hence weaker) ECC codes with the codeword length of few thou-

sands are typically used. Therefore, a relatively large value of K
(i.e., 64) was chosen in [4] where a short ECC is used and the mod-

ulation size is 64-QAM. Nevertheless, as listed in Table 1, the sil-

icon area and power consumption of the 64-QAM detector [4] are

very high and may be intolerable to real-life wireless communica-

tion systems.

3. DEVELOPED COMPLEXITY/POWER
REDUCTION TECHNIQUES

This section presents our proposed three algorithm-level tech-

niques that can largely reduce the computational complexity and

hence the power consumption of breadth-first tree-search soft-output

detection.

3.1 Bidirectional Partial Tree Search
From Section 2.2, we know that each metric increment Λi at

depth-i can be calculated as |Pc−Ps|2, where Pc = Gi−Pi−1
j=1 li,jsj ,

Gi =
Pi

j=1 li,j ŝj and Ps = li,isi. This suggests that the compu-

tational overhead for each path extension will increase as we search

deeper towards the tree leaves (i.e., as i increases). We propose a

method called bidirectional partial tree search to reduce the path ex-

tension computational complexity by limiting the tree search depth.

As illustrated in Fig. 1, the basic idea is to perform partial tree

search in both forward and backward directions. In the forward di-

Antenna
#1

Antenna
#2

Antenna
#3

Antenna
#4

Forward Direction, k=K/2

Breadth first tree search Direct path extension
without search

Backward Direction, k=K/2

Figure 1: Bidirectional partial tree search diagram.

rection, we perform the breadth-first tree search over the first and

second symbols, while keeping k=K/2 survivor paths at each tree

depth. For the third and fourth symbols, each survivor path is sim-

ply extended to only one modulation point that is closest to Pc
li,i

at

the i-th depth for i = 3, 4.

The same operation is performed in the backward direction by

treating the fourth antenna as the root and first antenna as leaf. No-

tice that since the symbol vector is detected in the reverse order

along the backward direction, the channel matrix is the up-down

flipped version of the original channel matrix H and the channel

matrix decomposition result used in (3) should be re-computed.

After both forward and backward partial tree search are finished,

we obtain a list of K paths based on which we can calculate the soft

output according to (1). Using such bidirectional partial tree search



approach, the computational complexity can reduce to only about

35% of a conventional K-best detector. Although the channel ma-

trix decomposition has to be done twice, the cost can be marginal

since the channel is typically considered to be constant during the

transmission of several consecutive packets.

To evaluate the signal detection performance of the proposed

bidirectional partial tree search approach, we performed computer

simulations using the following system configurations that will also

be used for all the other simulations throughout the paper: We con-

sider LDPC-coded MIMO-OFDM system with 64-point FFT for

4×4 MIMO transmission with 64-QAM. Out of the 64 subcarriers,

48 are data carriers while the rest are used for pilots and virtual

carriers, as defined in the IEEE 802.11a standard. Each subcarrier

MIMO channel remains constant during transmission of one packet

and is subject to flat fading, i.e., all the entries in the MIMO channel

matrix are independent random Gaussian variables. Each packet is

protected by a length-2304, rate-1/2 LDPC code, where the LDPC

code decoder performs up to 15 decoding iterations. There is no

iteration between MIMO detection and LDPC decoding. For the

definition of the MIMO channel SNR, we follow the one proposed

in [8]: Let R denote the channel code rate (R = 1 for uncoded

systems), SNR is defined as:

Eb

N0

˛̨
˛
dB

=
Es

N0

˛̨
˛
dB

+ 10 log10

Nr

R · Nt · q ,

where Es denotes the average symbol energy of the QAM con-

stellation. As pointed out earlier, the radius r2 is calculated as

2αNrσ
2 [8], where α = 6 is a predefined constant parameter and

σ is the noise standard deviation. For the purpose of comparison,

we also carried out simulations using depth-first sphere decoding

algorithm and conventional K-best detection scheme. The sphere

decoder exhaustively examines all the paths that satisfy the sphere

radius constraint for the calculation of the soft output. Therefore, it

can achieve better performance than the LSD scheme used in [6]

that does not exhaustively examines all the paths satisfying the

sphere radius constraint. All the detectors use the same radius

constraint. As shown in Fig. 2, the K-best and bidirectional de-

tectors have almost the same performance. Both of them have only

very small degradation compared to sphere decoder when K is large

(e.g., 64). At very small value of K, the bidirectional K-best detec-

tor is even slightly better than the conventional K-best detector.
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Figure 2: Simulated PER performance for 4×4 MIMO 64-
QAM.

3.2 Hybrid Two-Step Detection
Practical wireless communication systems (such as IEEE 802.11n

and 3GPP LTE) typically target on achieving the packet error rate

(PER) of 10−2 ∼ 10−3 at low SNR. Due to the significant impact

of the value of K on the detection performance as shown in Fig. 2,

we may need to use a large value of K (e.g., 64), which nevertheless

tends to incur very high computational complexity. We note that,

as shown in Fig. 2, although a small K (e.g., 8) will result in a big

SNR loss at the target detection PER, it still can achieve fair PERs

(close to 10−1) in the low SNR range. This motivates us to pro-

pose a hybrid two-step technique to reduce the average detection

computational complexity as described in the following. As shown

in Fig. 3, in the first step, a simpler detector with K=8 is used. If

the ECC decoder fails to decode the packet correctly, all the vec-

tors in the packet will be re-detected with K=64 in the second step.

Therefore, majority of the packets can be successfully processed

with the simpler detector and only about 10% of packets need to be

further processed by the much more costly detector with K=64. It

should be pointed out that, based on our computer simulations, the

iterative detection/decoding scheme (i.e., feedback the soft-output

of the ECC decoder in the first step to the detection in the sec-

ond step) fails to improve the overall system performance when the

first-step detection is performed with very small K (e.g., 8). There-

fore, we do not consider the use of iterative detection/decoding in

this work.

Low-Complexity
Detection

(K=8)

High-Complexity
Detection

(K=64)

ECC Decoding

Succeed?

Start

N

Y

ECC Decoding

Succeed?

Y

Failure

High energy consumption
but less occurrence

N

Figure 3: The flow diagram of the hybrid two-step detection.

To further simplify the search for the admissible region during

the path extension, we propose to use rectangular shaped admissi-

ble region instead of the circular shaped admissible region in PSK

enumeration technique. In the case of K=8, locating the admissi-

ble points is very easy, especially when the bidirectional partial tree

search is used. Since each survivor only extend with k=K/2=4 mod-

ulation points, we only need to find the 4 modulation points around
Pc
li,i

at the i-th depth as shown in Fig. 4. For K=64, a rectangu-

lar shaped region is formed by extending the inner 4-point square

with the radius constraint as shown in Fig. 4. Although a few more

points may be included in the rectangular shaped region than the

circular shaped region, it is much easier to define the boundary

and identify the admissible points. In the corresponding VLSI ar-

chitecture design, the data flow will become very regular and the

control circuitry can be significantly simplified. Moreover, we pro-

pose to realize path purge differently for K=8 and K=64: For K=8,

we simply use the bubble sorter to select the best ones among all

the extended paths, while for K=64, we propose to use the memory

based-approximate sorter [4], as described in 2.3, in order to reduce

the silicon area cost and power consumption.



Pc/li,i

Figure 4: Rectangular shaped admissible region.

3.3 ECC Feedback Aided Detection
Bypassing

In a straightforward realization of the above hybrid two-step de-

tection, when the ECC decoder fails to decode a packet for the

first time, the detector will repeat the detection with large K on

all the vectors in the packet. However, our simulations show that

it is typically not necessary to re-detect all the vectors since some

vectors may already have good enough soft detection output after

the first detection step. We further observed that, if the ECC de-

coder can generate soft output (e.g., the decoding of Turbo code

and LDPC code), it is possible to use the corresponding ECC de-

coding soft output to distinguish the good vectors from bad vec-

tors with reasonably good confidence and perform the second-step

high-complexity detection only for those bad vectors. Through

such detection bypassing on good vectors, further saving of com-

putational complexity and power consumption can be achieved.

In this work, we propose the following procedure to identify

those bad vectors. We claim a vector to be a bad vector if it con-

tains more than α bad bits, where α is called vector classification

threshold. The bad bits are identified as follows:

1. Let LD denote the a posteriori soft-output of the ECC de-

coder for each bit. If the absolute value of LD is less than a

pre-specified threshold β0, the corresponding bit is declared

to be a bad bit.

2. Let LE1 denote the extrinsic soft-output of the detector for

each bit during the first-step detection, which is also the a
prior soft-input LA of the ECC decoder. Let LE2 denote

the extrinsic soft-output of the ECC decoder. We define a

parameter γ as follows: When LA and LE2 have the same

sign, which means the detector and ECC decoder agree with

each other on the bit decision, γ is 0. If LA and LE2 have

different signs, γ equals to |LA −LE2|. If γ is greater than a

pre-specified threshold β1, the corresponding bit is declared

to be a bad bit.

To determine the appropriate value of α, β0, and β1, we typically

rely on extensive computer simulations. For our interested 4×4

MIMO with 64-QAM under LDPC-coded MIMO-OFDM trans-

mission environment as described in the above, Fig. 5 show the

simulated probability distribution of |LD| (i.e., the absolute value

of LD) and γ, based on which we decide to choose α = 3, β0 = 3,

and β1 = 10. Our simulations show that, under such setup, about

50% of the vectors can be by-passed in the second-step detection.

Fig. 6 shows the simulation results to demonstrate the detection

performance while using the above proposed three design tech-

niques and their comparison with the sphere-constrained exhaustive-

search sphere decoding and conventional K-best detection. The di-
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Figure 5: The simulated distributions of |LD| and γ.

rect combination of these three techniques only incur about 0.5dB

performance degradation. If we further use the memory-based ap-

proximate sorting to reduce the second-step detection complexity,

another 0.1dB loss will be incurred. This leads to a total 0.6dB

degradation compared with the sphere decoding.
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Figure 6: Simulated PER performance for 4×4 MIMO 64-
QAM.

4. DETECTOR ASIC DESIGN
To evaluate the effectiveness of the above proposed three design

techniques (i.e., bidirectional detection, hybrid two-step detection,

and ECC feedback aided detection bypassing), we designed a soft-

output detector optimized for 4×4 MIMO with 64-QAM. Fig. 7

shows the principal structure of the detector core. The survivor ex-

tension block extends the survivors from the previous depth using

the rectangular shaped admissible region as described in Section
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Figure 7: Principal structure of the detector core that implements the above proposed three design techniques.

3.2. For the path purge, we use a bubble sorter to select the best 4

paths when K=8, and use the memory-based approximate sorter to

select 32 paths when K=64. In the realization of memory-based ap-

proximate sorter, each memory can store 128 paths and is divided

into 16 segments. Readers are referred to [4] for a detailed descrip-

tion of its implementation. The same hardware is used for both for-

ward detection and backward detection. The ECC feedback aided

detection bypassing is realized using the rules and parameters de-

scribed in Section 3.3. The detector is designed using TSMC 65nm

CMOS standard cell and SRAM libraries. Synopsys tools are used

for the simulation, synthesis, and timing/power analysis. The de-

sign metrics are summarized in Table 2.

Table 2: Detector AISC Design Metrics.
VDD fclk Area Gate Count Power

0.9 V 200 MHz 0.24 mm2 174K 11 mW

Because of the use of the sphere constraint, the number of sur-

vivors may vary during the tree search. Therefore, the run-time de-

tection throughput will vary and the average throughput is highly

dependent on the SNR. At high SNR, the throughput will be higher

because: 1) The sphere constraint will become tighter as SNR in-

crease; 2) At high SNR, it is more likely the detector only need

to perform the first-step detection; 3) At high SNR, more vectors

will be declared as good vectors and will be bypassed during the

second-step detection. Table 3 shows the estimated average detec-

tion throughput at four different SNRs for 4 × 4 MIMO 64-QAM.

The above results show that, compared with the design solution

reported in [4] for 4×4 MIMO with 64-QAM, our proposed de-

sign can achieve almost the same detection performance and much

higher throughput, while reducing the silicon area and power con-

sumption by more than one order of magnitude.

Table 3: Average throughput of the detector.
Eb/N0 (dB) 17.7 17.2 16.7 16.2

Throughput (Mbps) 114.8 85.0 60.3 41.7

5. CONCLUSIONS
This paper presents a new energy-efficient soft-output breadth-

first tree-search detector design solution for wireless MIMO com-

munication systems. Three algorithm-level techniques are devel-

oped to significantly reduce the computational complexity and power

consumption while maintaining the near-optimum detection perfor-

mance. Using 65nm CMOS standard cell and SRAM libraries, we

designed a soft-output detector that can support 4×4 MIMO with

64-QAM. To achieve a throughput over 100Mbps, the detector only

occupies 0.24mm2 silicon area (equivalent to 174K logic gates) and

consumes 11mw, which represents a more than one order of mag-

nitude improvement over the state of the art reported in the open

literature.
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