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Abstract— This paper presents an implementation-oriented breadth-
first tree search MIMO detector design solution. Techniques at al-
gorithm and VLSI architecture levels are developed to improve the
implementation efficiency. Using Synopsys synthesis tool with 0.18µm
CMOS technology, we designed soft-output detectors for 4×4 MIMO
channel with 64-QAM modulation, which can achieve close to 30 Mbps
throughput. To the best of our knowledge, the presented detectors are
the first one reported in the open literature capable of supporting tree
search soft-output MIMO detection for 4×4 MIMO transmission with
64-QAM modulation.

I. I NTRODUCTION

Signal detector is a key element in multiple-input multiple-output
(MIMO) communication devices. In general, optimal maximum-
likelihood (ML) hard-output and maximuma posteriori(MAP) soft-
output MIMO detectors incur prohibitive computational complexity
due to their essence of exhaustive search. To reduce the compu-
tational complexity while maintaining (near-)optimal performance,
researchers have developed several nonlinear detectors that perform
non-exhaustive tree searchbased on a set of additive metrics. De-
pending on how to carry out the non-exhaustive tree search, existing
nonlinear detectors fall into three categories, i.e., depth-first search,
metric-first search, and breadth-first search. VLSI architecture design
and implementations of depth-first and breadth-first detectors have
been addressed in [1]–[4], which nevertheless can only support up-
to 16-QAM modulation for a moderate-size MIMO channel such as
4×4. In order to support higher order modulation such as 64-QAM,
which will dramatically increase the computational complexity com-
pared with 16-QAM, the detector should have sufficient operational
parallelism for realizing reasonably high detection throughput. The
serial nature of conventional depth-first search algorithm itself and
the sorting operation in conventional breadth-first search algorithm
make them incapable of effectively supporting 64-QAM modulation.
This leaves the nonlinear tree search detectors that can support 64-
QAM modulation for a moderate-size MIMO channel missing in the
open literature.

Attempting to fill this gap, this paper presents algorithm and
VLSI architecture techniques to design MIMO detectors that per-
form breadth-first tree search and can support moderate-size MIMO
channel with high order modulation such as 4×4 MIMO channel
with 64-QAM modulation. The basic idea is to improve the oper-
ational parallelism in breadth-first search by replacing the original
strict sorting operation with distributed and approximate sorting
operations. We also developed a technique to further reduce the
computational complexity for high order modulation such as 64-
QAM. VLSI architectures have been developed to implement the
proposed modified breadth-first detection algorithm, and the resulted
detectors are referred to as relaxedK-best detectors. For the purpose
of demonstration, we designed two soft-output relaxedK-best detec-
tors, with different silicon area vs. detection performance tradeoffs,
for 4×4 MIMO channel with 64-QAM modulation. Simulation results
show that the detectors, when being concatenated with a low-density

parity-check (LDPC) code, can achieve the performance very close
to the one using an exhaustive-search based sphere detection scheme.
Synopsys tool was used to synthesize these two detectors with
0.18µm CMOS standard cell and memory libraries. With the silicon
area of 10.5mm2 and 16.3mm2, these two detectors can achieve close
to 30Mbps detection throughput when the block error rate is around
10−3.

II. BACKGROUND

A. MIMO Signal Detection

This work considers the MIMO system withspatial multiplexing
signaling. Let Nt and Nr represent the number of transmit and
receive antennas, respectively. The MIMO transmission can be mod-
elled asy = H·s+n, wherey is a signal vector received by a MIMO
detector,H is anNr ×Nt channel matrix,s is a transmitted symbol
vector, andn is a Gaussian noise vector with variance ofN0/2. Let
x denote the transmitted binary vector, we haves=map(x). Following
the principle of maximum likelihood (ML) detection, the task of a
hard-output detector is to solve

min
s∈Ω

‖y −H · s‖2, (1)

whereΩ contains all the possible transmitted symbol vectors. The
task of a soft-output detector is to compute the log-likelihood value
of each bit, which is defined asL(xi|y) = ln P (xi=+1|y)

P (xi=−1|y)
. Through

standard simplification [5], [6],L(xi|y) can be approximated as:

L(xi|y) ≈ max
xi=+1

{Λ(x,y} − max
xi=−1

{Λ(x,y)},

where Λ(x,y) = − 1

N0
‖y −H · s‖2.

(2)

As discussed in the literature (e.g., see [5], [6]), we can rewrite (1)
andΛ(x,y) in (2) as

min
s∈Ω

“ NtX
i=1

˛̨̨ iX
j=1

li,j(sj − ŝj)
˛̨̨2”

= min
s∈Ω

“ NtX
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Λh
i

”
(3)

and

Λ(x,y) =

NtX
i=1

“
− 1

N0

˛̨̨ iX
j=1

li,j(sj − ŝj)
˛̨̨2”

=

NtX
i=1

Λs
i . (4)

whereL = (li,j) is a lower triangular matrix obtained fromH by
standard matrix decompositions such as Cholesky or QR decompo-
sition and ŝ = (H∗H)−1H∗y. Hence, we obtainadditive metrics
with the metric incrementsΛh

i and Λs
i that depend only onsj for

j ≤ i. Since the term− 1
N0

in (4) can be omitted in the tree search,
the metric incrementΛs

i for soft-output detection becomes equivalent
to the metric incrementΛh

i for hard-output detection. Therefore, we
simply denote the metric increment asΛi and define the metric of a
depth-n path asΓ (n) =

Pn
i=1 Λi.
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Fig. 1. (a) Structure of the processing unit at each depth in aK-best detector, (b) structure of the distributed and approximate sorting, and (c) realization of
the approximate sorting.

B. Breadth-First Search K-Best Detector

From the above discussion, we know that hard/soft-output detection
can be formulated as tree search problems based on the additive
metric Λi. Applying the principle ofM-algorithm [7] to perform
breadth-first tree search MIMO detection, we have the so-called
K-best detector [3], [4]. AK-best detector performs the following
operations at depthd:

1) Path Extension: Extend each survivor path from the previous
depth, i.e., calculateΓ (d) = Γ (d−1) + Λd for each modulation
point.

2) Radius Check: Delete the extended paths whose metrics are
larger than a pre-defined valuer that is equivalent to the radius
in the sphere detection algorithm.

3) Path Search: Let R denote the number of the remaining extended
paths. Sort theR extended paths in ascending order based on the
path metric and select the firstmin(R, K) paths as survivors at
depthd.

Hard- and soft- outputK-best detectors only differ on how to
generate the output using the survivors obtained after reaching the
tree leaves. In general, to provide high quality soft-output information
and ensure good performance, a soft-output detector typically requires
a (much) larger value ofK than that of its hard-output counterpart.
Thus a soft-output detector usually has much higher computational
complexity and hence silicon overhead.

III. R ELAXED K-BEST DETECTOR

In this section, we first elaborate on two inherent drawbacks of
the originalK-best detector in terms of VLSI implementation, then
present our solutions to tackle these issues, which will lead to so-
called relaxedK-best detectors.

From Section II-A, we have that the calculation of metric in-
crements at depth-i can be written as|Pc − Ps|2, where Pc =Pi−1

j=1 li,j(ŝj − sj) + li,iŝi that is common to all the paths extended
from the same survivor, andPs = li,isi that corresponds to each
modulation point. Therefore, to extend one survivor, we need to
calculate only onePc but multiple |Pc − Ps|2. Straightforwardly,
we have the generic structure of the processing unit at each depth as
shown in Fig. 1(a). Each PC block calculates thePc, and each PS
block calculates the metrics, i.e.,Γ (i−1)+ |Pc−Ps|2, of all the paths
extended from the same survivor and deletes those that fail the radius
check. Due to the computational complexity mismatch between PC
and PS blocks, several PS blocks can share one PC block. The output
of all the PS blocks, i.e., the extended paths that pass the radius check,
are sent to a sorting block that selects the bestK extended paths as

survivors. Such straightforward structure has two critical drawbacks,
particularly for high order modulation such as 64-QAM:

1) The detector explicitly examines the extension of each survivor
with all the modulation points. Due to the complex computation
involved in each path extension, this will incur a large compu-
tational complexity overhead.

2) Due to its serial nature, the sorting at each depth will incur
a large delay and hence become an essential throughput bot-
tleneck. This fails to match the inherent parallelism within the
path extension and radius check. Besides the large delay, sorting
will also incur large silicon cost and a large amount of data
movement, which will directly lead to high power consumption.

A. Improved PSK enumeration

How to tackle the first issue above has been addressed in the
context of depth-first tree search detection [1], [5]. The technique
is called PSK enumeration, where the basic idea is described as
follows: For QAM modulation, all the modulation points locate on
several circles concentric with the origin, e.g., there are 1, 3, and 9
concentric circles in QPSK, 16-QAM, and 64-QAM, respectively. It
can be proved that all the points on the same circle that satisfy the
radius check are always adjacent and hence form a single admissible
region along the circle. By identifying the boundary of the admissible
region on each circle, we do not need to explicitly examine the
points outside the admissible region, leading to a significant saving
of computational complexity.

However, using the original PSK enumeration method, we have
to explicitly examine all the concentric circles. Denote the circles
that contain modulation points satisfying the radius check as valid
circles. We observe that not all the cocentric circles may be valid
circles, and it is desirable if we only examine those valid circles
instead of all the circles, particularly for higher order modulations.
From the discussion on PSK enumeration in [5], it can be readily
derived that all the valid circles fall into a continuous region. We can
identify the boundary of the region containing all the valid circles
as follows: For a modulation point to survive the radius check, the
metric increment at depth-i must satisfy|Pc − li,isi|2 < r−Γ (i−1),
which can be reformulated as| Pc

li,i
−si|2 < r−Γ (i−1)

l2i,i
. We can easily

find the circle closest to the pointPc
li,i

on each side, as shown in Fig.2.

Extending from these two circles with the distance ofre = r−Γ (i−1)

l2i,i

on both inward and outward directions, we obtain the boundary of
the valid circle region. Any circle that falls outside does not contain
any modulation points that may satisfy the radius check, hence can be



simply excluded from explicit PSK enumeration. Since the distance
between any PSK circles is available beforehand, the boundary can
be easily determined. Moreover, we note that we can pre-compute
each1/li,i after estimating the MIMO channel matrix, hence the
computation here involves multiplication instead of division.

Pc/li,i

re

re

Fig. 2. Identification of valid circles.

B. Distributed and Approximate Sorting

To tackle the second issue above, we propose to replace the original
strict sorting with a memory based distributed and approximate
sorting. As illustrated in Fig.1(b), the basic idea is described as
follows: Instead of sharing one big sorter among all the PS blocks
as shown in Fig.1(a), each PS block has its own sorter and all the
sorters perform approximate sorting independent from each other. The
principle of approximate sorting is explained as follows: We divide
the entire range of the path metric into a certain number of regions,
based on which we arrange the paths extended by the same PS block
into groups. Within each group, the extended paths are not sorted at
all. Clearly, such approximate sorting only involves the comparison
with fixed threshold values, which can be directly implemented in
parallel.

Intuitively, we can use a memory block to implement such ap-
proximate sorting as follows: We uniformly partition the memory
address space intol consecutive segments. Since all the incoming
paths have the metric better (i.e., less) than the radiusr that is used
in the radius check, we choosel +1 threshold valuest0 = 0 < t1 <
t2 < · · · < tl = r, and assign the range (ti−1, ti] to segmentSi for
i = 1, 2, · · · , l. We haveti = i · tl/l for i = 1, 2, · · · , l − 1. Each
path, whose metric falls into the range (ti−1, ti], is simply stored
into the memory segmentSi. Each segment has one counter to hold
the address of the next available memory location.

In case that one memory segment becomes full, if we simply throw
away any further incoming path to that segment, our simulations
suggest that it will incur significant performance degradation. Thus
we propose to make the threshold range associated with each mem-
ory segment configurable, as illustrated in Fig.1(c). Let(ui−1, ui]
represent the configurable threshold range associated with segment
Si. Initially, we setui = ti for i = 1, 2, · · · , l. Before the segment
Si becomes full, we haveui = ti. OnceSi becomes full, by using a
switch as shown in Fig.1(c) we configureui = ui−1 so that the lower
bound of the threshold range of the next segment will automatically
extend fromti (i.e., the previous value ofui) to ui−1. In this way, the
range ofSi is handed over to the next (with higher value of index)
segment.

The survivor paths at each depth are fed to the next depth as
follows: We start with fetching one path in segmentS1 as survivor
from each memory block at one time, alternatively among all the

memory blocks, until we have fetchedK paths or all the path stored
in all theS1 segments have been fetched. If latter happens, we move
on to the segmentS2, and so on. From the hardware implementation
standpoint, this memory based distributed and approximate sorting
has the following main advantages:

1) The computational complexity is much less than the strict
sorting, leading to a great potential of higher throughput and
significant power savings;

2) There is no data movement at all as in the strict sorting, hence
further reduce the power consumption;

3) The distributed structure well matches the parallelism in the path
extension and hence helps to realize high throughput.

It can be intuitively justified that a bigger value ofl and/or a
larger size of memory will improve the detection performance at the
cost of larger silicon area. In practice, we have to rely on extensive
simulations to choose the appropriate values ofl and total memory
size subject to the desired silicon area vs. detection performance
trade-offs.

C. Overall Detector Structure

Fig. 3 shows the structure of an unrolled relaxedK-best detector,
which is optimized for detection throughput by mapping different tree
search depth onto different depth processing unit (DPU). The path
extension at each depth contains several PC blocks, and each PC
block is shared by several PS blocks. The ratio between the numbers
of PC and PS blocks is dependent on the target modulation size.
Extending one survivor path at a time, each PS block consists of one
or more PSK units, where each PSK unit non-exhaustively examines
the modulation points on the same circle once a time. Since one PS
block connects one approximate sorting block and all the PSK units
may generate extended path that passes the radius check every clock
cycle, the number of PSK units in each PS block is limited by the
ratio between the speed of approximate sorting and the speed of PSK
unit.
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Fig. 3. Unrolled relaxedK-best detector structure.

As shown in Fig.3, an output generator is used to generate the
detector output based on the last-depth survivors. For hard-output
detection, it simply searches the survivor path with the best metric and
output the corresponding hard decisions. For soft-output detection, we
need to evaluate theL-value of each bit according to (2) based on
all the last-depth survivors. We note that it is possible that all the



survivor paths agree on one bit position, i.e., one of the two terms in
(2) remains as undefined. As a result, theL-value of this bit cannot
be directly calculated. To solve this problem, in this work, we use the
worst metric among all the K final survivor paths to replace all the
undefined terms. Finally, we note that the detector does not include
the matrix decomposition functional block that computes the lower
triangular matrixL . Readers are referred to [8] for the discussion of
implementing such a functional block.

IV. D ESIGN EXAMPLE

We designed two soft-output relaxedK-best detectors, withK of
64 and 128, respectively, for 4×4 MIMO transmission with 64-QAM
modulation. The decoders contain 8 and 16 PS blocks at each depth
for K=64 andK = 128, respectively. At each depth, one PC block is
deeply pipelined to feed all the PS blocks. Each PS block consists of 2
PSK units. Each approximate sorter contains two single-port memory
blocks that receive the data from the current depth and provide the
data to the next depth, alternatively. Each single-port memory can
store totally 128 path data and is partitioned into 16 segments.

To evaluate the detection performance, we consider MIMO-OFDM
transmission, where OFDM is based on 64-point FFT as in the IEEE
802.11a standard. Each sub-carrier MIMO channel is flat fading,
i.e., all the entries in the MIMO channel matrix are independent
random Gaussian variables. In the simulation, the soft-output is fed
to a length 2048, rate-1/2 LDPC code decoder, which performs up to
20 decoding iterations. For the purpose of comparison, we designed
a soft-output MAP detector subject to the sphere constraint, i.e., the
detector exhaustively examines the paths that satisfy the sphere radius
check to obtain the soft-output. The radius is the same as the one
used in the relaxedK-best detectors. Fig.4 shows the simulated block
error rate performance, where the relaxedK-best detectors only incur
very small performance degradation. We note that, as proposed in
[5], the radiusr is calculated as2αNrσ

2, whereα is a predefined
constant parameter andσ is the noise standard deviation.

15.5 16 16.5 17 17.5

10
−3

10
−2

E
b
/N

0
(dB)

B
lo

ck
 E

rr
or

 R
at

e

MAP detector with sphere constraint
Relaxed K−Best (K=128)
Relaxed K−Best (K=64)

4x4 MIMO 64−QAM 

Fig. 4. Simulation results for 4×4 64-QAM.

The above relaxedK-best detectors have been designed with
Verilog and synthesized using Synopsys tools with 0.18µm stan-
dard cell and memory libraries. The detectors operate with two
synchronized clock signals: each PSK unit operates with a clock
frequency of 166.5MHz, all the other functional blocks including
the PC blocks and the approximate sorters operate with a clock
frequency of 333MHz. The two detectors have the core areas of
10.5mm2 (K=64) and 16.3mm2 (K = 128), respectively. The detection

throughput depends on the average number of survivors generated at
each depth that largely depends on the run-time environment such
as average SNR and instantaneous channel gain. Table I shows the
average throughput of the two detectors at various SNR over the flat
fading MIMO channel. Finally, we note that these detectors can also
be configured to support the soft-output detection for 16-QAM and
QPSK and hard-output detection for 64-QAM, 16-QAM, and QPSK,
where much higher throughput can be realized mainly because of
the much less average number of survivor paths, particularly in hard-
output detection.

TABLE I
THROUGHPUT AT VARIOUSSNR OF THE TWO DETECTORS.

Eb/N0 17.5dB 17.0dB 16.5dB
K=128 26.9Mbps 25.2Mbps 23.6Mbps
K=64 28.2Mbps 26.0Mbps 24.0Mbps

V. CONCLUSIONS

This paper presents a nonlinear breadth-first tree search MIMO
signal detector hardware design solution that supports 4×4 MIMO
transmission with 64-QAM modulation. Algorithm and VLSI ar-
chitecture level techniques have been developed to improve the
detector implementation efficiency, while maintaining good detection
performance. Proof-of-concept hardware prototypes of soft-output
detectors that support 4×4 MIMO transmission with 64-QAM have
been designed using 0.18µm CMOS technology. With the silicon area
of less than 17mm2, the detectors can achieve the throughput close
to 30Mbps.
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