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Abstract— VLSI implementations of nonlinear MIMO signal detectors
are not trivial, particularly for systems with high spectral efficiency.
For example, realization of such a detector for 4×4 MIMO with 64-
QAM still remains missing in open literature. To tackle this challenge,
we developed a nonlinear soft-output detector design solution, based on
which a detector for up to 4×4 MIMO with 64-QAM has been designed
using 0.13µm CMOS technology. Above 75 Mbps detection throughput
has been verified based on post-layout results.

I. INTRODUCTION

Due to its potential of largely increasing the spectral efficiency,
multiple-input multiple-output (MIMO) technology is being con-
sidered for a wide use in future wireless communication systems
[1]. Nevertheless, the computational complexities of the optimum
maximum-likelihood (ML) hard-output and maximum a posteriori
(MAP) soft-output MIMO detection grow exponentially with spectral
efficiency. To largely reduce the computational complexity while
maintaining (near-)optimum detection performance, researchers have
developed several nonlinear detection schemes that realize hard-/soft-
output detection through certain non-exhaustive tree search. Although
the past several years experienced a significant progress on nonlinear
detector VLSI design (e.g., see [2]–[6]), prior work can only support
up to 16 quadrature amplitude modulation (QAM) modulation for
moderate-size MIMO (such as 4×4). This leaves the design solution
that can support 64-QAM for moderate-size MIMO missing in the
open literature, whereas the support of 64-QAM is essential for
realizing high spectral efficiency in future communication systems.

As an attempt to fill this gap, this paper presents a nonlinear
detector design solution that can support 4×4 MIMO with 64-QAM
modulation. This is realized by developing two algorithm level tech-
niques, including: (1) We replace the strict sorting in the conventional
K-best detectors [5], [6] with a distributed and approximate sorting
in order to largely improve the operational throughput and reduce the
power consumption while maintaining good detection performance;
(2) We modify the PSK enumeration technique proposed in [3],
[7] to further reduce the computational complexity for higher order
modulation such as 64-QAM. VLSI architectures in support of these
algorithm level techniques are further developed, and the resulted
detector is referred to as relaxed K-best detector. To demonstrate
its effectiveness, we designed a soft-output relaxed K-best detector
with 0.13µm CMOS standard cell and SRAM libraries. Post-layout
simulation and analysis results show that this detector can achieve
above 75 Mbps for 4×4 MIMO with 64-QAM with the silicon area
of about 20mm2 and power consumption of 847mW.

II. BACKGROUND

A. System Model

This work considers the MIMO system with spatial multiplexing
signaling (i.e., the signals transmitted from individual antennas are
independent of each other). Let Nt and Nr represent the number

of transmit and receive antennas, respectively. Assume that the
transmitted symbol is taken from a W -QAM constellation with
W = 2q . At once, the transmitter maps one qNt × 1 binary vector
x to an Nt × 1 symbol vector s. The transmission of each vector s
over flat-fading MIMO channels can be modeled as y = H · s + n,
where y is an Nr ×1 signal vector received by a MIMO detector, H
is an Nr ×Nt channel matrix, and n is a noise vector whose entries
are independent complex Gaussian random variables with mean zero
and variance N0/2.

B. Soft-Output MIMO Signal Detection

The task of a soft-output detector is to compute the log-likelihood
ratio (LLR) value of each bit, defined as L(xi|y) = ln P (xi=+1|y)

P (xi=−1|y)
,

where xi denotes the i-th bit of the binary vector x. Through standard
simplification [7], [8], L(xi|y) can be approximated as:

L(xi|y) ≈ max
xi=+1

{Λ(x,y} − max
xi=−1

{Λ(x,y)},

where Λ(x,y) = − 1

N0
‖y −H · s‖2.

(1)

Using standard matrix decompositions such as Cholesky or QR
decomposition, we can obtain H∗H = L∗L, where L = (li,j) is
a lower triangular matrix and (·)∗ denotes the complex conjugate
transpose. Let ŝ = (H∗H)−1H∗y, we have

‖y −H · s‖2 = (s− ŝ)∗L∗L(s− ŝ)

+ y∗(I−H(H∗H)−1H∗)y.
(2)

Since the second term in (2) is independent of s and the matrix L is
lower triangular, we can rewrite Λ(x,y) in (1) as

Λ(x,y) =

NtX
i=1

�
− 1

N0

���
iX

j=1

li,j(sj − ŝj)
���
2�

=

NtX
i=1

Λs
i . (3)

Hence, we obtain additive metrics with the metric increment Λs
i that

only depends on sj for j ≤ i. Thus, reduced-complexity nonlinear
soft-output MIMO detection can be formulated as an Nt-depth W -
ary tree search problem: non-exhaustively search through this tree and
find a list of tree leaves, based on which the L-values can be evaluated
according to (1). Since the term − 1

N0
in (3) can be omitted in the tree

search, we define the metric increment Λi as |
Pi

j=1 li,j(sj − ŝj)|2

and the metric of a depth-n path as Γ (n) =
Pn

i=1 Λi. The non-
exhaustive tree search can be realized in either depth-first or breath-
first manner. This work is interested in nonlinear detector based on
breadth-first non-exhaustive tree search.

C. Breadth-First Tree Search K-Best Detector

Broadly speaking, breadth-first tree search extends all the survivor
paths at each tree depth at once, purge some paths according to
certain criterion, and then continue on to the next tree depth. Based
on the principle of M-algorithm, a K-best MIMO signal detector



[5], [6] performs the following operations at each depth: (i) Path
Extension: Extend each survivor path from the previous depth with
the W modulation points. (ii) Radius Check: Delete the extended
paths whose metrics are larger than a fixed radius r. (iii) Path Sort:
Let R denote the number of the remaining extended paths. If R > K,
then sort these R paths in ascending order based on the path metric
and select the first K paths as survivors depth, otherwise all the R
extended paths are survivors. After reaching the tree leaves at depth
Nt, the detector keeps all the survivors as a list of candidates, based
on which the L-values are calculated according to (1).

III. PROPOSED RELAXED K-BEST DETECTOR DESIGN

A. Distributed and Approximate Sorting

For the VLSI implementation of a K-best detector, due to its serial
nature and hence large delay, the sorting operation at each depth fails
to match the inherent parallelism within the path extension and radius
check and becomes the essential detector throughput bottleneck.
Furthermore, strict sorting will also incur large silicon overhead and
a large amount of data movement, which will directly lead to high
power consumption.

To tackle this issue, we propose to modify the K-best detector by
replacing the original strict sorting with distributed and approximate
sorting to improve the overall operational parallelism: Given a
detector parallelism factor β, at the same time β survivor paths can
be extended in parallel and all the extended paths from the same
survivor path are processed by one individual sorter. All the β sorters
perform approximate sorting in parallel and independently from each
other. The basic idea of approximate sorting can be described as
sorting with a coarse granularity: Given the fixed threshold r, we
divide the entire range of the path metric (i.e., [0, r]) into a certain
number of regions and group the paths whose path metrics fall into
the same region. The paths in the same group are not sorted at all.
Such approximate sorting only involves the comparison with fixed
threshold values, which can be directly implemented in parallel.

As illustrated in Fig. 1, we can use a single-port memory to
implement the approximate sorting as follows: We uniformly partition
the memory address space into d consecutive segments. Each segment
Si is associated with a configurable threshold range (ui−1, ui]. A
path is stored into the memory segment Si if its metric falls into the
range (ui−1, ui]. Each segment has one counter to hold the address
of the next available memory location. Initially, we set ui = ti for
i = 0, 1, · · · , d where ti = i ·r/d. In case that one memory segment,
e.g., Si, becomes full, we hand over the range of segment Si to the
next segment Si+1 by setting ui equal to ui−1, i.e., the range of
Si+1 is extended from (ti, ti+1] to (ti−1, ti+1] and Si is closed to
further write since its range becomes (ti−1, ti−1].
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Fig. 1. Realization of the approximate sorting.

From the hardware implementation standpoint, this memory based
distributed and approximate sorting has the following main advan-
tages: (i) The distributed structure well matches the parallelism in

the path extension and hence helps to realize high throughput; (ii)
The computational complexity is much less than the strict sorting,
leading to a great potential of higher throughput and significant power
savings; (iii) There is no data movement at all, which will help to
further reduce the power consumption.

B. Improved PSK enumeration

From Section II, we have that each metric increment Λi at depth-i
is calculated as |Pc − Ps|2, where Pc = Gi −

Pi−1
j=1 li,jsj , Gi =Pi

j=1 li,j ŝj and Ps = li,isi. Gi is common to each received vector
and can be pre-computed. Pc is common to all the paths extended
from the same survivor, while Ps depends on the modulation point
to which the survivor is extended. Due to the complex computation
involved in each path extension, explicitly examining the extension
of each survivor towards all the modulation points will incur a large
computational complexity overhead. To tackle this issue, a technique
called PSK enumeration [3], [7] has been developed, where the basic
idea can be described as follows: For QAM modulation, all the modu-
lation points locate on several circles concentric with the origin, e.g.,
there are 1, 3, and 9 concentric circles in QPSK, 16-QAM, and 64-
QAM, respectively. All the modulation points on the same circle that
satisfy the radius check are always adjacent and hence form a single
admissible region along that circle. By identifying the boundary of
such an admissible region through a zigzag search on each circle,
we do not need to explicitly examine the modulation points outside
the admissible region, hence the computational complexity will be
reduced. However, each concentric circle still has to be explicitly
examined for the search of an admissible region.

In this work, we improved the PSK enumeration method so that
some concentric circles may be excluded from explicit examination.
This will further reduce the computational complexity, particularly
for higher order modulation such as 64-QAM that has a relatively
large number of concentric circles. Denote the circles that contain at
least one modulation point that satisfies the radius check as valid
circles. From the discussion on PSK enumeration in [7], it can
be readily derived that all the valid circles fall into a continuous
region. Therefore, by identifying the boundary of such a continuous
region, we will not need to explicitly examine the circles outside
of this region. Such a boundary can be identified as follows: For
a modulation point at depth-i to survive the radius check, it must
satisfy | Pc

li,i
− si|2 < r−Γ (i−1)

l2i,i
. We obtain the boundary of the

valid circle region by locating the circle closest to the point Pc
li,i

on
each side and extending from these two circles with the distance of
re = r−Γ (i−1)

l2i,i
along both inward and outward directions. Any circle

that falls outside does not contain any modulation points that may
satisfy the radius check, hence can be simply excluded. Note 1/li,i
can be pre-computed during channel estimation and the computation
here involves multiplication instead of division.

C. Detector Architecture

Using the above two design techniques, i.e., distributed and ap-
proximate sorting and improved PSK enumeration, a relaxed K-best
detector can be realized by integrating several identical recursive
detector cores that operate in parallel and independently on different
received signal vectors, as illustrated in Fig. 2(a). The structure of
each detector core is shown in Fig. 2(b), which iterates Nt times
to finish the detection of one received signal vector for a MIMO
system with Nt transmit antennas. We note that this detector does
not contain the pre-computation blocks that perform channel matrix
H decomposition and calculate ŝ = (H∗H)−1H∗y and Gi =
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Fig. 2. Structure diagrams of (a) overall detector and (b) each recursive detector core.
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Pi
j=1 li,j ŝj . Each recursive detector core contains one PC block

that is shared by several PS blocks, where the PC block performs
certain pre-calculation for the extension of each survivor path and
each PS block carries out the path extension using the improved
PSK enumeration method. Each PS block has its own approximate
sorter. To accommodate the dynamically varying computational load
for PSK enumerations, as illustrated in Fig. 2, the entire detector data
flow is driven by handshake through pairs of Req and Ack signals.
The recursive detector core design is further described as follows.

Upon receiving one survivor path, each PC block performs the
following operations: (a) calculates Pc =

Pi−1
j=1 li,j(ŝj −sj)+ li,iŝi,

as mentioned earlier, which is shared among the succeeding path
extensions, (b) identifies the boundary of valid circle region, and (c)
determines the starting point and initial direction for the zigzag search
on each valid circle. Although the involved computation tends to be
very complex, the PC block can be deeply pipelined to support a
high data processing throughput.

Extending one survivor at a time, each PS block non-exhaustively
examines the modulation points for path extension using the improved
PSK enumeration method and sends the extended paths to its own
approximate sorter. Fig. 3 shows the structure diagram of one PS
block, which contains two main sub-blocks including modulation
point selection (MPS) and path extension (PE). Each clock cycle,
MPS selects and feeds one modulation point to PE for path extension.
When PE detects a modulation point out of admissible region (i.e.,
the extended path metric Γ(i) is larger than the radius r), it will
send a termination request to MPS so that MPS will not feed any
other modulation points on the same circle to PE. Nevertheless, since
PE should be deeply pipelined in order to achieve high throughput,
if MPS keeps feeding the modulation points on the same circle to
PE, the PE pipeline will be filled with modulation points out of
admissible region when MPS receives the termination request. This

may largely degrade the PE pipeline utilization efficiency and reduce
the computation saving of PSK enumeration. To solve this problem,
we make MPS feed the modulation points to PE alternatively among
all the valid circles: As shown in Fig. 3, MPS maintains three tables,
including valid circle table (VCT) that stores the indices of valid
circles, next modulation point table (NMPT) that stores the next
modulation point to be extended on each valid circle, and zigzag
search direction table (ZSDT) that stores the present zigzag search
direction on each valid circle. All these tables are initialized by
the data sent from the PC block. Each clock cycle, MPS feeds PE
with one modulation point on the valid circle pointed by a valid
circle pointer, updates the NMPT and ZSDT accordingly, and then
make the valid circle pointer point to the next valid circle in VCT.
If MPS receives a circle termination request from PE, it simple
removes the corresponding circle index from VCT. This alternative
modulation point fetching approach can largely improve the PE
pipeline utilization efficiency for high order modulations.

Each approximate sorter contains two single-port memory blocks
that receive the data from the current depth and provide the data to the
next depth, alternatively. Controlled by the survivor read controller
as shown in Fig. 2(b), approximate sorters send the survivors back
to PC block as follows: We start with fetching one path at a time
from segment S1 in each single-port memory as survivor, alternatively
among all the single-port memories, until we have fetched K paths
or all the paths stored in the S1 segments have been fetched. If latter
happens, we move on to the segment S2, and so on. When the last
depth Nt is reached, an output generator is invoked to generate LLR
according to (1). In case that all the last-depth survivors agree on
one bit position, i.e., the corresponding Γi,+1 or Γi,−1 remains as
undefined, we use |Γwst − Γbst| as the magnitude of the L-value
for those bits, where Γbst and Γwst represent the best and worst
metrics of the last-depth survivors, respectively. When the output



generator is calculating LLR, the detector core requests the next
received signal vector and those associated pre-computed data from
the input interface.

IV. DETECTOR ASIC DESIGN

We designed a soft-output relaxed K-best detector for 4×4 MIMO
with 64-QAM modulation. The design parameters are outlined as
follows: It contains 9 detector cores, each one has 1 PC block and 8
PS blocks. Each single-port memory in the approximate sorters can
store 128 path data (including the path symbols and path metric) and
is partitioned into 16 segments. The path metric is represented by 8
bits, and each entry in the matrix L and vector ŝ is represented by
15 and 16 bits, respectively. Our computer simulations suggest that
such finite wordlength configuration incurs negligible performance
degradation from using floating-point precision.

The detection performance is evaluated based on fixed-point com-
puter simulations with the following configurations: We consider
LDPC-coded MIMO-OFDM system with 64-point FFT. Each sub-
carrier MIMO channel remains constant during transmission of a
complete frame and is flat fading, i.e., all the entries in the MIMO
channel matrix are independent random Gaussian variables. The
LDPC code has a code rate of 1/2 and code length of 2304, and the
LDPC code decoder performs up to 20 decoding iterations. There is
no iteration between detector and decoder. For the definition of the
MIMO channel SNR, we follow the one proposed in [7]. For the
purpose of comparison, we also performed the simulation using soft-
output exhaustive search sphere detectors that exhaustively examines
all the paths that satisfy the sphere radius check. Both detectors use
the same radius r calculated as 2αNrσ

2 [7], where α is empirically
set as 6 and σ is the noise standard deviation. Fig. 4 shows the
simulated frame error rate (FER).
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Using Chartered 0.13µm CMOS standard cell and SRAM libraries
with 8 metal layers, we designed one recursive detector core. Syn-
opsys tools were used throughout the design hierarchy down to
place and route. The post-layout simulation results have been verified
against fixed-point C testbench. Fig. 5 shows the detector core layout,
where the dark area in the layout is occupied by SRAM.

By integrating 9 identical recursive detector cores, this relaxed-K
detector has the implementation metrics summarized in Table I based
on the post-layout power estimation and static timing analysis. Due
to the use of PSK enumeration method, the computational load and
instantaneous throughput of the detector dynamically vary and depend
on run-time channel conditions. Therefore, we carried out extensive

Fig. 5. Layout of one detector core.

TABLE I
IMPLEMENTATION METRICS OF THE DETECTOR.

# of cores VDD fclk Area Gate Count Power
9 1.2 V 270 MHz 21.4 mm2 1.79 M 847 mW

post-layout simulations to estimate the average detection throughput
under different SNRs. Table II shows the estimated average detection
throughput at four different SNRs for 4 × 4 MIMO 64-QAM when
K = 64.

TABLE II
AVERAGE THROUGHPUT OF THE DETECTOR.

Eb/N0 (dB) 17.7 17.2 16.7 16.2
Throughput (Mbps) 77.1 74.0 71.4 69.1

V. CONCLUSIONS

This paper presents a near-optimum nonlinear breadth-first signal
detector design solution for MIMO systems with high spectral
efficiency. Algorithm level techniques and corresponding VLSI ar-
chitectures are developed to ensure good hardware implementation
efficiency while maintaining near-optimum detection performance.
With 0.13µm CMOS standard cell and SRAM libraries, we designed
a soft-output detector that, for the first time ever reported in the
open literature, can support 4×4 MIMO with 64-QAM at reasonable
silicon area and power consumption cost.
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